Livestock Manure and the Impacts on Soil Health: A Review
Abstract
:1. Introduction
2. Methodology
3. Soil Nutrient Status
4. Total Nitrogen and Nitrate
5. Phosphorus
6. Trace Elements and Micronutrients
7. Soil Acidity
8. Cation Exchange Capacity and Ca, Mg Saturation
9. Electrical Conductivity
10. Soil Organic Matter and Carbon
11. Manure and Soil Physical Properties
12. Soil Water and Soil Hydraulic Properties
13. Soil Temperature
14. Bulk Density
15. Soil Biology
16. Yield and Yield Components
17. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Bogaard, A.; Fraser, R.; Heaton, T.H.; Wallace, M.; Vaiglova, P.; Charles, M.; Jones, G.; Evershed, R.P.; Styring, A.K.; Andersen, N.H. Crop manuring and intensive land management by Europe’s first farmers. Proc. Natl. Acad. Sci. USA 2013, 110, 12589–12594. [Google Scholar] [CrossRef] [Green Version]
- Risse, L.M.; Cabrera, M.L.; Franzluebbers, A.J.; Gaskin, J.W.; Gilley, J.E.; Killorn, R.; Radcliffe, D.E.; Tollner, W.E.; Zhang, H. Land Application of Manure for Beneficial Reuse. In Animal Agriculture and the Environment: National Center for Manure and Animal Waste Management White Papers; Pub. Number 913C0306; Rice, J.M., Caldwell, D.F., Humenik, F.J., Eds.; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2006; pp. 283–316. [Google Scholar]
- Beal, W.H. Barnyard Manure; Farmers’ Bulletin No. 21; U.S. Department of Agriculture, U.S. Government Printing Office: Washington, DC, USA, 1894. Available online: http://naldc.nal.usda.gov/download/ORC00000018/PDF (accessed on 10 July 2020).
- Eswaran, H.; Lal, R.; Reich, P.F. Land Degradation: An Overview. In Responses to Land Degradation, Proceedings of the 2nd International Conference on Land Degradation and Desertification, Khon Kaen, Thailand, 2001; Bridges, E.M., Hannam, I.D., Oldeman, L.R., de Vries, P.F.W.T., Scher, S.J., Sompatpanit, S., Eds.; Oxford Press: New Delhi, India, 2001; pp. 20–35. [Google Scholar]
- Natural Resources Conservation Service (USDA-NRCS). Soil Health. Available online: http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/ (accessed on 10 July 2020).
- Antonious, G.F. Soil Amendments for Agricultural Production. In Organic Fertilizers—From Basic Concepts to Applied Outcomes; Larramendy, M.L., Soloneski, S., Eds.; Intech: Rijeka, Croatia, 2016. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.A.; Radovich, T.J.K.; Nguyen, H.V.; Uyeda, J.; Arakaki, A.; Cadby, J.; Paull, R.; Sugano, J.; Teves, G. Use of Organic Fertilizers to Enhance Soil Fertility, Plant Growth, and Yield in a Tropical Environment. In Organic Fertilizers—From Basic Concepts to Applied Outcomes; Larramendy, M.L., Soloneski, S., Eds.; Intech: Rijeka, Croatia, 2016; pp. 85–108. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations (FAO). Statistic Database. 2018. Available online: http://www.fao.org/faostat/en/#home (accessed on 16 October 2020).
- United State Environmental Protection Agency (USEPA). Literature Review of Contaminants in Livestock and Poultry Manure and Implications for Water Quality, 2013, EPA 820-R-13-002. Available online: https://www.adeq.state.ar.us/regs/drafts/3rdParty/reg05/14-002-R/comments/regs_5_and_6_comments_of_robert_cross_and_ozark_society_(attachment_3).pdf (accessed on 10 July 2020).
- National Agricultural Statistics Service (NASS). Agricultural Census. 2012. Available online: https://quickstats.nass.usda.gov/ (accessed on 10 July 2020).
- Zhang, B.; Tian, H.; Lu, C.; Dangal, S.R.S.; Yang, J.; Pan, S. Global manure nitrogen production and application in cropland during 1860–2014: A 5 arcmin gridded global dataset for Earth system modeling. Earth Syst. Sci. Data 2017, 9, 667–678. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.-B.; Yang, J.-S.; Yao, R.-J.; Yu, S.-P.; Li, F.-R.; Hou, X.-J. The effect of farmyard manure and mulch on soil physical properties in a reclaimed coastal tidal flat salt-affected soil. J. Integr. Agric. 2014, 13, 1782–1790. [Google Scholar] [CrossRef] [Green Version]
- Eghball, B.; Wienhold, B.J.; Gilley, J.E.; Eigenberg, R.A. Mineralization of manure nutrients. J. Soil Water Conserv. 2002, 57, 470–473. [Google Scholar]
- Kibblewhite, M.G.; Ritz, K.; Swift, M.J. Soil health in agricultural systems. Phil. Trans. R. Soc. B Biol. Sci. 2008, 363, 685–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agriculture Organization of the United Nations (FAO). Nitrogen Inputs to Agricultural Soils from Livestock Manure: New Statistics. 2018. Available online: http://www.fao.org/3/I8153EN/i8153en.pdf (accessed on 10 July 2020).
- Reddy, D.D.; Rao, A.S.; Reddy, K.S.; Takkar, P.N. Yield sustainability and phosphorus utilization in soybean-wheat system on Vertisols in response to integrated use of manure and fertilizer phosphorus. Field Crop. Res. 1999, 62, 181–190. [Google Scholar] [CrossRef]
- Motavalli, P.; Miles, R. Soil phosphorus fractions after 111 years of animal manure and fertilizer applications. Biol. Fertil. Soils 2002, 36, 35–42. [Google Scholar]
- Watts, D.B.; Torbert, H.A.; Prior, S.A.; Huluka, G. Long-term tillage and poultry litter impacts soil carbon and nitrogen mineralization and fertility. Soil Sci. Soc. Am. J. 2010, 74, 1239–1247. [Google Scholar] [CrossRef] [Green Version]
- Sutton, J. Non-cooperative bargaining theory: An introduction. Rev. Econ. Stud. 1986, 53, 709–724. [Google Scholar] [CrossRef] [Green Version]
- Brown, C. Available Nutrients and Value for Manure from Various Livestock Types; Ministry of Agriculture, Food and Rural Affairs: Guelph, ON, Canada, 2013. Available online: http://www.omaf.gov.on.ca/english/crops/facts/13-043.htm (accessed on 18 May 2020).
- Leikam, D.F.; Lamond, R.E. Estimating Manure Nutrient Availability; MF-2562; Kansas State University: Manhattan, KS, USA, 2003. [Google Scholar]
- Lorimor, J.; Powers, W.; Sutton, A. Manure Characteristic, 2nd ed.; Manure Management Systems Series; MWPS-18; Midwest Plan Service; Iowa State University: Ames, IA, USA, 2004. [Google Scholar]
- Whalen, J.K.; Chang, C.; Clayton, G.W.; Carefoot, J.P. Cattle manure amendments can increase the pH of acid soils. Soil Sci. Soc. Am. J. 2000, 64, 962–966. [Google Scholar] [CrossRef] [Green Version]
- Pennington, J.A.; VanDevender, K.; Jennings, J.A. Nutrient and Fertilizer Value of Dairy Manure; University of Arkansas Cooperative Extension Service: Fayetteville, AR, USA, 2004; FSA4017; Available online: https://www.uaex.edu/publications/PDF/FSA-4017.pdf (accessed on 10 July 2020).
- Bates, T.; Gagon, E. Nutrient Content of Manure; University of Guelph: Guelph, ON, Canada, 1981. [Google Scholar]
- Busari, M.A.; Salako, F.K.; Adetunji, M.T. Soil chemical properties and maize yield after application of organic and inorganic amendments to an acidic soil in Southwestern Nigeria. Span. J. Agric. Res. 2008, 6, 691–699. [Google Scholar] [CrossRef] [Green Version]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Nehls, T.; de Macêdo, J.L.V.; Blum, W.E.; Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 2007, 291, 275–290. [Google Scholar] [CrossRef] [Green Version]
- Giola, P.; Basso, B.; Pruneddu, G.; Giunta, F.; Jones, J.W. Impact of manure and slurry applications on soil nitrate in a maize–triticale rotation: Field study and long term simulation analysis. Eur. J. Agron. 2012, 38, 43–53. [Google Scholar] [CrossRef]
- Ferreras, L.; Gomez, E.; Toresani, S.; Firpo, I.; Rotondo, R. Effect of organic amendments on some physical, chemical and biological properties in a horticultural soil. Bioresour. Technol. 2006, 97, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.U.H.; Iqbal, M.; Islam, K.R. Dairy manure and tillage effects on soil fertility and corn yields. Bioresour. Technol. 2007, 98, 1972–1979. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Wang, X.; Li, R.; Jia, Z.; Liang, L.; Wang, J.; Nie, J.; Chen, X.; Wang, Z. Effect of different manure application rates on soil properties, nutrient use, and crop yield during dryland maize farming. Soil Res. 2012, 50, 507–514. [Google Scholar] [CrossRef]
- Beckwith, C.P.; Cooper, J.; Smith, K.A.; Shepherd, M.A. Nitrate leaching loss following application of organic manures to sandy soils in arable cropping. Soil Use Manag. 2006, 14, 123–130. [Google Scholar] [CrossRef]
- Van Es, H.M.; Sogbedji, J.M.; Schindelbeck, R.R. Effect of manure application timing, crop, and soil type on nitrate leaching. J. Environ. Qual. 2006, 35, 670–679. [Google Scholar] [CrossRef]
- Mokgolo, M.J. Organic Manure Effects on Selected Soil Properties, Water Use Efficiency and Grain Yield of Sunflower; University of Venda: Thohoyandou, South Africa, 2016; Available online: http://univendspace.univen.ac.za/handle/11602/615 (accessed on 10 July 2020).
- Adeli, A.; Tewolde, H.; Rowe, D.; Sistani, K.R. Continuous and residual effects of broiler litter application to cotton on soil properties. Soil Sci. 2011, 176, 668–675. [Google Scholar] [CrossRef] [Green Version]
- Liu, E.; Yan, C.; Mei, X.; He, W.; Bing, S.H.; Ding, L.; Liu, Q.; Liu, S.; Fan, T. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma 2010, 158, 173–180. [Google Scholar] [CrossRef]
- Agbede, T.M.; Ojeniyi, S.O.; Adeyemo, A.J. Effect of poultry manure on soil physical and chemical properties, growth and grain yield of sorghum in Southwest, Nigeri. Am.-Eurasian J. Sustain. Agric. 2008, 2, 72–77. [Google Scholar]
- Ewulo, B.S.; Ojeniyi, S.O.; Akanni, D.A. Effect of poultry manure on selected soil physical and chemical properties, growth, yield and nutrient status of tomato. Afr. J. Agric. Res. 2008, 3, 612–616. [Google Scholar]
- N’dayegamiye, A.; Côté, D. Effect of long-term pig slurry and solid cattle manure application on soil chemical and biological properties. Can. J. Soil Sci. 1989, 69, 39–47. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Daniel, T.C.; Edwards, D.R. Phosphorus movement in the landscape. J. Prod. Agric. 1993, 6, 492–500. [Google Scholar] [CrossRef]
- Buckley, K.; Makortoff, M. Phosphorus in Livestock Manures. In Advanced Silage Corn Management; Agriculture and Agri-Food Canada: Brandon, MB, Canada, 2004; Available online: https://farmwest.com/node/953 (accessed on 3 March 2020).
- Butler, T.J.; Han, K.J.; Muir, J.P.; Weindorf, D.C.; Lastly, L. Dairy manure compost effects on corn silage production and soil properties. Agron. J. 2008, 100, 1541–1545. [Google Scholar] [CrossRef]
- Chatterjee, D.; Datta, S.C.; Manjaiah, K.M. Fractions, uptake and fixation capacity of phosphorus and potassium in three contrasting soil orders. J. Soil Sci. Plant Nutr. 2014, 14, 640–656. [Google Scholar] [CrossRef]
- Fuentes, B.; Bolan, N.; Naidu, R.; de la Luz, M.M. Phosphorus in organic waste-soil systems. J. Soil Sci. Plant Nutr. 2006, 6, 64–83. [Google Scholar] [CrossRef]
- Barnett, G.M. Phosphorus forms in animal manure. Bioresour. Technol. 1994, 49, 139–147. [Google Scholar] [CrossRef]
- Leytem, A.B.; Turner, B.L.; Thacker, P.A. Phosphorus composition of manure from swine fed low-phytate grains: Evidence for hydrolysis in the animal. J. Environ. Qual. 2004, 33, 2380–2383. [Google Scholar] [CrossRef] [Green Version]
- Benke, M.B.; Indraratne, S.P.; Hao, X.; Chang, C.; Goh, T.B. Trace element changes in soil after long-term cattle manure applications. J. Environ. Qual. 2008, 37, 798–807. [Google Scholar] [CrossRef]
- Nikoli, T.; Matsi, T. Influence of liquid cattle manure on micronutrients content and uptake by corn and their availability in a calcareous soil. Agron. J. 2011, 103, 113–118. [Google Scholar] [CrossRef]
- Sheppard, S.C.; Sanipelli, B. Trace elements in feed, manure, and manured soil. J. Environ. Qual. 2012, 41, 1846–1856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alloway, B.J. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, 2nd ed.; Springer Science & Business Media: London, UK, 1995; pp. 38–57. [Google Scholar]
- Boyd, C.E. Micronutrients and Other Trace Elements. In Water Quality; Springer International Publishing: Cham, Switzerland, 2015; pp. 277–311. [Google Scholar] [CrossRef]
- Japenga, J.; Dalenberg, J.W.; Wiersma, D.; Scheltens, S.D.; Hesterberg, D.; Salomons, W. Effect of liquid animal manure application on the solubilization of heavy metals from soil. Int. J. Environ. Anal. Chem. 1992, 46, 25–39. [Google Scholar] [CrossRef]
- Li, Z.; Shuman, L.M. Mobility of Zn, Cd, and Pb in soils as affected by poultry litter extract—I. Leaching in soil columns. Environ. Pollut. 1997, 95, 219–226. [Google Scholar] [CrossRef]
- Matsi, T. Liquid Cattle Manure Application to Soil and Its Effect on Crop Growth, Yield, Composition, and on Soil Properties. In Soil Fertility Improvement and Integrated Nutrient Management—A Global Perspective; Whalen, J.K., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef] [Green Version]
- Sager, M. Trace and nutrient elements in manure, dung and compost samples in Austria. Soil Biol. Biochem. 2007, 39, 1383–1390. [Google Scholar] [CrossRef]
- Bolan, N.; Szogi, A.; Seshadri, B.; Chuasavathi, T. The management of phosphorus in poultry litter. In Proceedings of the 2nd International Workshop on Advances in Science and Technology of Natural Resources, Universidad de La Frontera, Pucon, Chile, 27–29 October 2010; pp. 8–10. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.460.4932&rep=rep1&type=pdf#page=19 (accessed on 10 July 2020).
- Chaudhary, M.; Narwal, R.P. Effect of long-term application of farmyard manure on soil micronutrient status. Arch. Agron. Soil Sci. 2005, 51, 351–359. [Google Scholar] [CrossRef]
- O’Hallorans, J.M.; Munoz, M.A.; Colbery, O. Effect of chicken manure on chemical properties of a Mollisol and tomato production. J. Agric. Univ. Puerto Rico 1993, 77, 181–191. [Google Scholar] [CrossRef]
- Ano, A.O.; Ubochi, C.I. Neutralization of soil acidity by animal manure: Mechanism of reaction. Afr. J. Biotechnol. 2007, 364–368. [Google Scholar]
- Han, S.H.; An, J.Y.; Hwang, J.; Kim, S.B.; Park, B.B. The effects of organic manure and chemical fertilizer on the growth and nutrient concentrations of yellow poplar (Liriodendron tulipifera Lin.) in a nursery system. For. Sci. Technol. 2016, 12, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Eghball, B.; Binford, G.D.; Baltensperger, D.D. Phosphorus movement and adsorption in a soil receiving long-term manure and fertilizer application. J. Environ. Qual. 1996, 25, 1339–1343. [Google Scholar] [CrossRef]
- L’Herroux, L.; Le Roux, S.; Appriou, P.; Martinez, J. Behaviour of metals following intensive pig slurry application to a natural field treatment process in Brittany (France). Environ. Pollut. 1997, 97, 119–130. [Google Scholar] [CrossRef]
- Butterly, C.R.; Baldock, J.A.; Tang, C. The contribution of crop residues to changes in soil pH under field conditions. Plant Soil 2013, 366, 185–198. [Google Scholar] [CrossRef]
- Naramabuye, F.X.; Hayned, R.J. Effects of organic amendments on soil pH and Al solubility and the use of laboratory indices to predict their limiting effect. Soil Sci. 2006, 171, 754–763. [Google Scholar] [CrossRef]
- Hao, X.; Chang, C. Effect of 25 annual cattle manure application on soluble and exchangeable cations in soil. Soil Sci. 2002, 167, 126–134. [Google Scholar] [CrossRef]
- Chang, C.; Sommerfeldt, T.G.; Entz, T. Rates of soil chemical changes with eleven annual applications of cattle feedlot manure. Can. J. Soil Sci. 1990, 79, 673–681. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Yu, Q. Impact of chemical composition of legume residues and initial soil pH on pH change of a soil after residue incorporation. Plant Soil 1999, 215, 29–38. [Google Scholar] [CrossRef]
- Goldberg, N.; Nachshon, U.; Argaman, E.; Ben-Hur, M. Short term effects of livestock manures on soil structure stability, runoff and soil erosion in semi-arid soils under simulated rainfall. Geoscience 2020, 10, 213. [Google Scholar] [CrossRef]
- Magdoff, F.R.; Amadon, J.F. Yield trends and soil chemical changes resulting from N and manure application to continuous corn. Agron. J. 1980, 72, 161–164. [Google Scholar] [CrossRef]
- Miller, J.; Beasley, B.; Drury, C.; Larney, F.; Hao, X. Influence of long-term application of composted or stockpiled feedlot manure with straw or wood chips on soil cation exchange capacity. Compost. Sci. Util. 2016, 24, 54–60. [Google Scholar] [CrossRef]
- Muller, J.F. Some observations on base exchange in organic materials. Soil Sci. 1933, 35, 229–238. [Google Scholar] [CrossRef]
- Qian, P.; Schoenau, J.J.; King, T.; Japp, M. Effect of repeated manure application on potassium, calcium and magnesium in soil and cereal crops in Saskatchewan. Can. J. Soil Sci. 2005, 85, 397–403. [Google Scholar] [CrossRef]
- Lund, E.D.; Christy, C.D.; Drummond, P.E. Practical applications of soil electrical conductivity mapping. In Proceedings of the 2nd European Conference on Precision Agriculture, Precision Agriculture ’99, Odense, Denmark, 11–15 July 1999; Sheffield Academic Press: Sheffield, UK, 1999; pp. 771–779. [Google Scholar]
- Grisso, R.; Alley, M.; Holshouser, D.; Thomason, W. Precision Farming Tools: Soil Electrical Conductivity; Publication 442–508; Virginia State University Cooperative Extension: Petersburg, VA, USA, 2009. [Google Scholar]
- Liebhardt, W.C. Soil characteristic and corn yield as affected by previous applications of poultry manure. J. Environ. Qual. 1976, 5, 459–462. [Google Scholar] [CrossRef]
- Shortall, J.G.; Liebhardt, W.C. Yield and growth of corn as affected by Poultry manure. J. Environ. Qual. 1975, 4, 186–191. [Google Scholar] [CrossRef]
- Carmo, D.L.; Silva, C.A.; de Lima, J.M.; Pinheiro, G.L. Electrical conductivity and chemical composition of soil solution: Comparison of solution samplers in tropical soils. Rev. Bras. Cienc. Solo 2016, 40, 0140795. [Google Scholar] [CrossRef]
- Miller, J.; Beasley, B.; Drury, C.; Larney, F.; Hao, X. Surface soil salinity and soluble salts after 15 applications of composted or stockpiled manure with straw or wood-chips. Compost. Sci. Util. 2017, 25, 36–47. [Google Scholar] [CrossRef]
- Tiessen, H.; Stewart, J.W.B. Particle-size fractions and their use in studies of soil organic matter: II. Cultivation effects on organic matter composition in size fractions. Soil Sci. Soc. Am. J. 1983, 47, 509–514. [Google Scholar] [CrossRef]
- Bakayoko, S.; Soro, D.; Nindjin, C.; Dao, D.; Tschannen, A.; Girardin, O.; Assa, A. Effects of cattle and poultry manures on organic matter content and adsorption complex of a sandy soil under cassava cultivation (Manihot esculenta, Crantz). Afr. J. Environ. Sci. Technol. 2009, 3, 190–197. [Google Scholar] [CrossRef]
- Schulten, H.-R.; Leinweber, P. Influence of long-term fertilization with farmyard manure on soil organic matter: Characteristics of particle-size fractions. Biol. Fertil. Soils 1991, 12, 81–88. [Google Scholar] [CrossRef]
- Deryqe, J.S.A.; Kader, K.A.A.; Albaba, H.B. Effect of poultry manure on soil phosphorus availability and vegetative growth of maize plant. J. Agric. Veter. Sci. 2016, 9, 12–18. [Google Scholar]
- Manitoba Agriculture. Soil Management Guide—Nutrient Management. 2013. Available online: https://www.gov.mb.ca/agriculture/environment/soil-management/soil-management-guide/nutrient-management.html (accessed on 10 July 2020).
- Currell, C. Manure and Soil Organic Matter: When It Comes to Building Soil Organic Matter, Manure Sources Are not All Created Equal; Michigan State University Extension: East Lansing, MI, USA, 2016; Available online: https://www.canr.msu.edu/news/manure_and_soil_organic_matter (accessed on 3 March 2020).
- Rhoton, F.E. Influence of time on soil response to no-till practices. Soil Sci. Soc. Am. J. 2000, 64, 700–709. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Tillage Res. 2002, 66, 197–205. [Google Scholar] [CrossRef]
- Bot, A.; Benites, J. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production; FAO Soils Bulletin 80; Food and Agricultural Organization of the United Nations: Rome, Italy, 2005. [Google Scholar]
- Post, W.M. Organic Carbon in Soil and the Global Carbon Cycle. In The Global Carbon Cycle; Heimann, M., Ed.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 277–302. [Google Scholar]
- Wallace, A.; Wallace, G.A.; Cha, J.W. Soil organic matter and the global carbon cycle. J. Plant Nutri. 1990, 13, 459–466. [Google Scholar] [CrossRef]
- Bernoux, M.; Paustian, K. Climate Change Mitigation. In Soil Carbon: Science, Management and Policy for Multiple Benefits; Banwart, S.A., Ed.; CABI: Wallingford, UK, 2015; pp. 119–131. [Google Scholar]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Economic and Sector Work. Carbon Sequestration in Agricultural Soils; Report No. 67395-GLB.; The World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Wang, Y.; Hu, N.; Xu, M.; Li, Z.; Lou, Y.; Chen, Y.; Wu, C.; Wang, Z.-L. 23-year manure and fertilizer application increases soil organic carbon sequestration of a rice–barley cropping system. Biol. Fertil. Soils 2015, 51, 583–591. [Google Scholar] [CrossRef]
- Manna, M.C.; Swarup, A.; Wanjari, R.H.; Ravankar, H.N.; Mishra, B.; Saha, M.N.; Singh, Y.V.; Sahi, D.K.; Sarap, P.A. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India. Field Crop. Res. 2005, 93, 264–280. [Google Scholar] [CrossRef]
- Omara, Z.M.; Abdullah, A.S.; Kabeel, A.E. The cooling techniques of the solar stills’ glass covers—A review. Renew. Sustain. Energy Rev. 2017, 78, 176–193. [Google Scholar] [CrossRef]
- Ren, T.; Wang, J.; Chen, Q.; Zhang, F.; Lu, S. The effects of manure and nitrogen fertilizer applications on soil organic carbon and nitrogen in a high-input cropping system. PLoS ONE 2014, 9, e97732. [Google Scholar] [CrossRef]
- Tan, Z.; Lal, R.; Owens, L.; Izaurralde, R. Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice. Soil Tillage Res. 2007, 92, 53–59. [Google Scholar] [CrossRef]
- Bremer, E.; Ellert, B.H.; Janzen, H.H. Total and light-fraction carbon dynamics during four decades after cropping changes. Soil Sci. Soc. Am. J. 1995, 59, 1398–1403. [Google Scholar] [CrossRef]
- Hassink, J. Decomposition rate constants of size density fractions of soil organic matter. Soil Sci. Soc. Am. J. 1995, 59, 1631–1635. [Google Scholar] [CrossRef]
- Barrios, E.; Buresh, R.J.; Sprent, J.I. Organic matter in soil particle size and density fractions from maize and legume cropping systems. Soil Biol. Biochem. 1996, 28, 185–193. [Google Scholar] [CrossRef]
- Marschner, B.; Noble, A.D. Chemical and biological processes leading to the neutralization of acidity in soil incubated with litter materials. Soil Biol. Biochem. 2000, 32, 805–813. [Google Scholar] [CrossRef]
- Martens, D.A.; Frankenberger, W.T., Jr. Modification of infiltration rates in an Organic-Amended irrigated soil. Agron. J. 1992, 84, 707–717. [Google Scholar] [CrossRef]
- SchjØnning, P.; Christensen, B.T.; Carstensen, B. Physical and chemical properties of a sandy loam receiving animal manure, mineral fertilizer or no fertilizer for 90 years. Eur. J. Soil Sci. 1994, 45, 257–268. [Google Scholar] [CrossRef]
- Gilley, J.E.; Risse, L.M. Runoff and Soil Loss as Affected by the Application of Manure. In Biological Systems Engineering: Papers and Publications; No. 30; University of Nebraska: Lincoln, NE, USA, 2000; Available online: https://digitalcommons.unl.edu/biosysengfacpub/30 (accessed on 10 July 2020).
- Okono, A.; Monneveux, P.; Ribaut, J.-M. Facing the challenges of global agriculture today: What can we do about drought? Front. Physiol. 2013, 4, 289. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [Green Version]
- Bouyoucos, G.J. Effect of organic matter on the water-holding capacity and the wilting point of mineral soils. Soil Sci. 1939, 47, 377–384. [Google Scholar] [CrossRef]
- Nyamangara, J.; Gotosa, J.; Mpofu, S.E. Cattle manure effects on structural stability and water retention capacity of a granitic sandy soil in Zimbabwe. Soil Tillage Res. 2001, 62, 157–162. [Google Scholar] [CrossRef]
- Usowicz, B.; Lipiec, J. The effect of exogenous organic matter on the thermal properties of tilled soils in Poland and the Czech Republic. J. Soils Sediments 2020, 20, 365–379. [Google Scholar] [CrossRef] [Green Version]
- Rawls, W.J.; Nemes, A.; Pachepsky, Y. Effect of soil organic carbon on soil hydraulic properties. Develop. Soil Sci. 2004, 30, 95–114. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. Limited effect of organic matter on soil available water capacity. Eur. J. Soil Sci. 2017, 69, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Ankenbauer, K.; Loheide, S.P., II. The effects of soil organic matter on soil water retention and plant water use in a meadow of the Sierra Nevada, CA. Hydrol. Process. 2016, 31, 891–901. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, G.; Yang, J.; Li, D.; Zhao, Y.; Liu, F.; Yang, R.; Yang, F. Organic matter controls of soil water retention in an alpine grassland and its significance for hydrological processes. J. Hydrol. 2014, 519, 3086–3093. [Google Scholar] [CrossRef]
- Ni, J.J.; Bordoloi, S.; Shao, W.; Garg, A.; Xu, G.; Sarmah, A.J. Two-year evaluation of hydraulic properties of biochar-amended vegetated soil for application in landfill cover system. Sci Total. Environ. 2020, 712, 136486. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A. Influence of soil organic matter on bulk density and available water capacity of soils. Farm Res. 1974, 31, 5. [Google Scholar]
- Bilskie, J. Soil Water Status: Content and Potential; Campbell Scientific, Inc.: Logan, UT, USA, 2001; Available online: http://s.campbellsci.com/documents/cn/technical-papers/soilh20c.pdf (accessed on 10 July 2020).
- Hillel, D. Introduction to Environmental Soil Physics; Academic Press: San Diego, CA, USA, 2004. [Google Scholar]
- Miller, J.J.; Beasley, B.W.; Drury, C.F.; Larney, F.J.; Hao, X.; Chanasyk, D.S. Influence of long-term feedlot manure amendments on soil hydraulic conductivity, water-stable aggregates, and soil thermal properties during the growing season. Can. J. Soil Sci. 2018, 98, 421–435. [Google Scholar] [CrossRef]
- Ahmed, B.O.; Inoue, M.; Moritani, S. Effect of saline water irrigation and manure application on the available water content, soil salinity, and growth of wheat. Agric. Water Manag. 2010, 97, 165–170. [Google Scholar] [CrossRef]
- Wang, X.; Jia, Z.; Liang, L.; Yang, B.; Ding, R.; Nie, J.; Wang, J. Impacts of manure application on soil environment, rainfall use efficiency and crop biomass under dryland farming. Sci. Rep. 2016, 6, 20994. [Google Scholar] [CrossRef] [Green Version]
- Assouline, S. Infiltration into soils: Conceptual approaches and solutions. Water Resour. Res. 2013, 49, 1755–1772. [Google Scholar] [CrossRef]
- Yague, M.R.; Domingo-Olive, F.; Bosch-Serra, A.D.; Poch, R.M.; Boixadera, J. Dairy cattle manure effects on soil quality: Porosity, earthworms aggregates, and soil organic carbon fractions. Land Degrad. Dev. 2016, 27, 1753–1762. [Google Scholar] [CrossRef] [Green Version]
- Hoover, N.L.; Law, J.Y.; Long, L.A.M.; Kanwar, R.S.; Soupir, M.L. Long-term impact of poultry manure on crop yield, soil and water quality, and crop revenue. J. Environ. Manag. 2019, 252, 109582. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.Y.; Heenan, D.P. Lime-induced loss of soil organic carbon and effect on aggregate stability. Soil Sci. Soc. Am. J. 1999, 63, 1841–1844. [Google Scholar] [CrossRef]
- Allison, S.D.; Wallenstein, M.D.; Bradford, M.A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 2010, 3, 336–340. [Google Scholar] [CrossRef]
- Wallenstein, M.D.; Allison, S.; Ernakovich, J.; Steinweg, J.M.; Sinsabaugh, R. Controls on the Temperature Sensitivity of Soil Enzymes: A Key Driver of In Situ Enzyme Activity Rates. In Soil Enzymology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 245–258. [Google Scholar]
- Yilvainio, K.; Pettovuori, T. Phosphorus acquisition by barley (Hordeum vulgare L.) at suboptimal soil temperature. Agric. Food Sci. 2012, 21, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Toselli, M.; Flore, J.A.; Marangoni, B.; Masia, A. Effects of root–zone temperature on nitrogen accumulation by non–breeding apple trees. J. Hortic. Sci. Biotechnol. 1999, 74, 118–124. [Google Scholar] [CrossRef]
- Pinamonti, F. Compost mulch effects on soil fertility, nutritional status and performance of grapevine. Nutr. Cycl. Agroecosyst. 1998, 51, 239–248. [Google Scholar] [CrossRef]
- Deguchi, S.; Kawamoto, H.; Tanaka, O.; Fushimi, A.; Ouzumi, S. Compost application increases the soil temperature on bare Andosol in a cool climate region. Soil Sci. Plant Nutr. 2009, 55, 778–782. [Google Scholar] [CrossRef]
- Unger, P.W.; Steward, B.A. Feedlot waster effects on soil conditions and water evaporation. Soil Sci. Soc. Am. J. 1974, 38, 954–957. [Google Scholar] [CrossRef]
- Zhu, D.; Ciasis, P.; Krinner, G.; Maignan, F.; Puig, A.J.; Hugelius, G. Controls of soil organic matter on soil thermal dynamics in the northern high latitudes. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rees, H.W.; Chow, T.L.; Zebarth, B.; Xing, Z.; Toner, P.; Lavoid, J.; Daigle, J.-L. Impact of supplemental poultry manure application on potato yield and soil properties on a loam soil in north-western New Brunswick. Can. J. Soil Sci. 2014, 94, 49–65. [Google Scholar] [CrossRef] [Green Version]
- Al-Kayssi, A.W.; Al-Karaghouli, A.A.; Hasson, A.M.; Beker, S.A. Influence of soil moisture content on soil temperature and heat storage under greenhouse conditions. J. Agric. Eng. Res. 1990, 45, 241–252. [Google Scholar] [CrossRef]
- Perie, C.; Ouimet, R. Organic carbon, organic matter and bulk density relationships in boreal forest soils. Can. J. Soil Sci. 2008, 88, 315–325. [Google Scholar] [CrossRef]
- Chaudhari, P.R.; Ahire, D.V.; Ahire, V.D.; Chkravarty, M.; Maity, S. Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. Int. J. Sci. Res. Publ. 2013, 3, 1–8. [Google Scholar]
- Rivenshield, A.; Bassuk, N.L. Using organic amendments to decrease bulk density and increase macroporosity in compacted soils. Arboric. Urban For. 2007, 33, 140–146. [Google Scholar]
- Adekiya, A.O.; Agbede, T.M.; Olayanju, A.; Ejue, W.S.; Adekanye, T.A.; Adenusi, T.T.; Ayeni, J.F. Effect of biochar on soil properties, soil loss, and Cocoyam yield on a tropical sandy loam alfisol. Sci. World J. 2020, 2020, 9391630. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA–NRCS). Soil Quality Indicators. 2008. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1247858.pdf (accessed on 10 July 2020).
- Khaleel, R.; Reddy, K.R.; Overcash, M.R. Changes in soil physical properties due to organic waste application: A review. J. Environ. Qual. 1981, 10, 133–141. [Google Scholar] [CrossRef]
- Agbede, T.M.; Adekiya, A.O.; Eifediyi, E.K. Impact of poultry manure and NPK fertilizer on soil physical properties and growth and yield of carrot. J. Hortic. Res. 2017, 25, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Celik, I.; Gunal, H.; Budak, M.; Akpinar, C. Effects of long-term organic and mineral fertilizers on bulk density and penetration resistance in semi-arid Mediterranean soil conditions. Geoderma 2010, 160, 236–243. [Google Scholar] [CrossRef]
- Meng, Q.; Ma, X.; Zhang, J.; Yu, Z. The long-term effects of cattle manure application to agricultural soils as a natural-based solution to combat salinization. Catena 2019, 175, 193–202. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Naresh, R.K.; Mandal, A.; Walia, M.K.; Gupta, R.K.; Singh, R.; Dhaliwal, M.K. Effect of manures and fertilizers on soil physical properties, build-up of macro and micronutrients and uptake in soil under different cropping systems: A review. J. Plant Nutr. 2019, 42, 2873–2900. [Google Scholar] [CrossRef]
- Trudinger, P.A. Chemistry of the sulfur cycle: Sulfur in agriculture. Agron. Monogr. 1986, 27, 1–22. [Google Scholar]
- Parham, J.A.; Deng, S.P.; Da, H.N.; Sun, H.Y.; Raun, W.R. Long-term cattle manure application in soil. II. Effect on soil microbial populations and community structure. Biol. Fertil. Soils 2003, 38, 209–215. [Google Scholar] [CrossRef]
- Hamm, A.C.; Tenuta, M.; Krause, D.O.; Ominski, K.H.; Tkachuk, V.L.; Flaten, D.N. Bacterial communities of an agricultural soil amended with solid pig and dairy manures, and urea fertilizer. Appl. Soil Ecol. 2016, 103, 61–71. [Google Scholar] [CrossRef]
- Ding, J.; Jiang, X.; Guan, D.; Zhao, B.; Ma, M.; Zhou, B.; Cao, F.; Yang, X.; Li, L.; Li, J. Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols. Appl. Soil Ecol. 2017, 111, 114–122. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, B.; Xu, M.; Zhang, H.; He, X.; Zhang, L.; Gao, S. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China. J. Soils Sediments 2015, 15, 260–270. [Google Scholar] [CrossRef]
- Sekiguchi, H.; Kushida, A.; Takenaka, S. Effects of cattle manure and green manure on the microbial community structure in upland soil determined by denaturing gradient gel electrophoresis. Microbes Environ. 2007, 22, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Hadas, A.; Kautsky, L.; Portnoy, R. Mineralization of composted manure and microbial dynamics in soil as affected by long-term nitrogen management. Soil Biol. Biochem. 1996, 28, 733–738. [Google Scholar] [CrossRef]
- Yang, R.; Mo, Y.; Liu, C.; Wang, Y.; Ma, J.; Zhang, Y.; Li, H.; Zhang, X. The effects of cattle manure and garlic rotation on soil under continuous cropping of watermelon (Citrullus lanatus L.). PLoS ONE 2016, 11, e0156515. [Google Scholar] [CrossRef]
- De Freitas, J.R.; Schoenau, J.J.; Boyetchko, S.M.; Cyrenne, S.A. Soil microbial populations, community composition, and activity as affected by repeated applications of hog and cattle manure in eastern Saskatchewan. Can. J. Microbiol. 2003, 49, 538–548. [Google Scholar] [CrossRef]
- Gong, W.; Yan, X.; Wang, J.; Hu, T.; Gong, Y. Long-term manure and fertilizer effects on soil organic matter fractions and microbes under a wheat–maize cropping system in northern China. Geoderma 2009, 149, 318–324. [Google Scholar] [CrossRef]
- Muthukumar, T.; Udaiyan, K. Influence of organic manures on arbuscular mycorrhizal fungi associated with Vigna unguiculata (L.) Walp. in relation to tissue nutrients and soluble carbohydrate in roots under field conditions. Biol. Fertil. Soils 2000, 31, 114–120. [Google Scholar] [CrossRef]
- Bittman, S.; Forge, T.A.; Kowalenko, C.G. Responses of the bacterial and fungal biomass in a grassland soil to multi-year applications of dairy manure slurry and fertilizer. Soil Biol. Biochem. 2005, 37, 613–623. [Google Scholar] [CrossRef]
- Chopra, B.K.; Bhat, S.; Mikheenko, I.P.; Xu, Z.; Yang, Y.; Luo, X.; Chen, H.; Van Zwieten, L.; Lilley, R.M.; Zhang, R. The characteristics of rhizosphere microbes associated with plants in arsenic-contaminated soils from cattle dip sites. Sci. Total. Environ. 2007, 378, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Kabir, Z.; O’Halloran, I.P.; Fyles, J.W.; Hamel, C. Seasonal changes of arbuscular mycorrhizal fungi as affected by tillage practices and fertilization: Hyphal density and mycorrhizal root colonization. Plant Soil 1997, 192, 285–293. [Google Scholar] [CrossRef]
- Bolan, N.S. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 1991, 134, 189–207. [Google Scholar] [CrossRef]
- Beare, M.H.; Hu, S.; Coleman, D.C.; Hendrix, P.F. Influences of mycelial fungi on soil aggregation and organic matter storage in conventional and no-tillage soils. Appl. Soil Ecol. 1997, 5, 211–219. [Google Scholar] [CrossRef]
- Hurisso, T.T.; Davis, J.G.; Brummer, J.E.; Stromberger, M.E.; Mikha, M.M.; Haddix, M.L.; Booher, M.R.; Paul, E.A. Rapid changes in microbial biomass and aggregate size distribution in response to changes in organic matter management in grass pasture. Geoderma 2013, 193, 68–75. [Google Scholar] [CrossRef]
- Parham, J.A.S.P.; Deng, S.; Raun, W.; Johnson, G. Long-term cattle manure application in soil. Biol. Fertil. Soils 2002, 35, 328–337. [Google Scholar]
- Plaza, C.; Hernandez, D.; Garcia-Gil, J.C.; Polo, A. Microbial activity in pig slurry-amended soils under semiarid conditions. Soil Biol. Biochem. 2004, 36, 1577–1585. [Google Scholar] [CrossRef]
- Guo, Z.C.; Zhang, Z.B.; Zhou, H.; Rahman, M.T.; Wang, D.Z.; Guo, X.S.; Li, L.J.; Peng, X.H. Long-term animal manure application promoted biological binding agents but not soil aggregation in a Vertisol. Soil Tillage Res. 2018, 180, 232–237. [Google Scholar] [CrossRef]
- Tang, J.; Mo, Y.; Zhang, J.; Zhang, R. Influence of biological aggregating agents associated with microbial population on soil aggregate stability. Appl. Soil Ecol. 2011, 47, 153–159. [Google Scholar] [CrossRef]
- Daniel, T.C.; Sharpley, A.N.; Lemunyon, J.L. Agricultural phosphorus and eutrophication: A symposium overview. J. Environ. Qual. 1998, 27, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Chambers, B.J.; Smith, K.A.; Pain, B.F. Strategies to encourage better use of nitrogen in animal manures. Soil Use Manag. 2000, 16, 157–166. [Google Scholar] [CrossRef]
- Adeyemo, A.J.; Akingbola, O.O.; Ojeniyi, S.O. Effects of poultry manure on soil infiltration, organic matter contents and maize performance on two contrasting degraded alfisols in southwestern Nigeria. Int. J. Recycl. Org. Waste Agric. 2019, 8, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, F.; Khan, I.; Ashraf, U.; Shahzad, T.; Hussain, S.; Shahid, M.; Abid, M.; Ullah, S. Effect of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties. J. Soil Sci. Plant Nutr. 2017, 17, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Rahimabadi, E.T.; Ansari, M.H.; Razavinmatollahi, A. Influence of cow manure and its vermicomposting on the improvement of grain yield and quality of rice (Oryza sativa L.) in field condition. Appl. Ecol. Environ. Res. 2018, 16, 97–110. [Google Scholar] [CrossRef]
- Nikiema, P.; Buckley, K.E.; Enns, J.M.; Qiang, H.; Akinremi, O.O. Effects of liquid hog manure on soil available nitrogen status, nitrogen leaching losses and wheat yield on a sandy loam soil of western Canada. Can. J. Soil Sci. 2013, 93, 573–584. [Google Scholar] [CrossRef]
- Jan, M.F.; Ahmadzai, M.D.; Liaqat, W.; Ahmad, H.; Rehan, W. Effect of poultry manure and phosphorous on phenology, yield and yield components of wheat. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3751–3760. [Google Scholar]
- Koutroubas, S.D.; Antoniadis, V.; Damalas, C.A.; Fotiadis, S. Effect of organic manure on wheat grain yield, nutrient accumulation, and translocation. Agron. J. 2016, 108, 615–625. [Google Scholar] [CrossRef]
- Jokela, W.E. Nitrogen fertilizer and dairy manure effects on corn yield and soil nitrate. Soil Sci. Soc. Am. J. 1992, 56, 148–154. [Google Scholar] [CrossRef]
- Obour, A.; Stahlman, P.; Thompson, C. Long-term residual effects of feedlot manure application on crop yield and soil surface chemistry. J. Plant Nutr. 2017, 40, 427–438. [Google Scholar] [CrossRef]
- Ojo, A.O.; Adetunji, M.T.; Okeleye, K.A.; Adejuyigbe, C.O. Soil fertility, phosphorus fractions, and maize yield as affected by poultry manure and single superphosphate. Int. Sch. Res. Not. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Banik, P.; Ghosal, P.K.; Sasmal, T.K.; Bhattacharya, S.; Sarkar, B.K.; Bagchi, D.K. Effect of organic and inorganic nutrients for soil quality conservation and yield of rainfed low land rice in sub-tropical plateau region. J. Agron. Crop. Sci. 2006, 192, 331–343. [Google Scholar] [CrossRef]
- Stein-Bachinerxy, K.; Werner, W. Effect of manure on crop yield and quality in an organic agricultural system. Biol. Agric. Hortic. 1997, 14, 221–235. [Google Scholar] [CrossRef]
- Rosen, C.J.; Bierman, P.M. Nutrient Management for Fruit and Vegetable Crop Production: Using Manure and Compost as Nutrient Sources for Fruit and Vegetable Crops; University of Minnesota Extension Service: Twin Cities, MN, USA, 2005; Available online: http://hdl.handle.net/11299/200639 (accessed on 28 February 2020).
Manure Type | Total N | P2O5 | K2O | Reference |
---|---|---|---|---|
g kg−1 | ||||
Beef | 3.7 (liquid) † | 0.8 | 2.3 | [20] |
5.5 (solid) † § | 9 | 5 | [21] | |
10.5 (solid) † ¶ | 9 | 13 | ||
3.8 (1000- lbs. cow) † | 2.0 | 3.2 | [22] | |
22.8 ‡ | 5.2 | 21.5 | [23] | |
Dairy | 3.9 (liquid) † | 0.9 | 2.5 | [20] |
5.5 (solid) | 2.5 | 5.5 | [24] | |
4.5 (solid) †§ | 2 | 5 | [21] | |
12 (liquid) † | 9 | 14.5 | ||
5.9 (1000-lbs dry cow)† | 2.2 | 4.7 | [22] | |
3.3-8.8 (solid) | 1.1–8.8 | 1.1–17.6 | [25] | |
Swine | 3.9 (solid) † | 1.2 | 1.3 | [20] |
5 (solid) † § | 4.5 | 4 | [21] | |
4 (solid) † § | 3.5 | 3.5 | ||
11.5 (300 lbs. finishing) | 4.1 | 6.1 | [22] | |
2.2–15.4 | 1.1–34.2 | 1.1–9.9 | [25] | |
Poultry | 8.1 † | 2.8 | 3.0 | [20] |
16.5 (solid) † § | 24 | 17 | [21] | |
28 (solid) † ¶ | 22.5 | 17 | ||
11.0 (broiler) | 7.4 | 5.3 | [22] | |
19.3 | 28.9 | 14.7 | [26] |
Study Site | Nutrient | Total N | Soil Test P | Exchangeable K | References | |
---|---|---|---|---|---|---|
Source | Quantity Mg ha−1 | mg kg−1 | ||||
South Africa | - | 0 | 450, 570 † | 7.6, 2.0 | 156, 163.8 | [34] |
Poultry | 20 | 420, 570 | 9.3, 2.7 | 252.3, 417.3 | ||
Cattle | 20 | 500, 650 | 31.0, 30,3 | 250.8, 265.2 | ||
Poultry + Cattle | 20 + 20 | 370, 780 | 8.5, 29.4 | 223.1, 553.8 | ||
United States | - | 0 | 650, 600 † | 22, 55 | [35] | |
Poultry | 2.2 | 860, 700 | 38, 97 | |||
Poultry | 4.5 | 890, 770 | 64, 119 | |||
Poultry | 6.7 | 980, 890 | 97, 146 | |||
China | - | 0 | 980 | 5.8 | 144 | [36] |
Cattle | 75 | 1220 | 12.7 | 193 | ||
Nigeria | - | 0 | 900,1100 ‡ | 8.3, 9.9 | 44.9, 163.8 | [37] |
Poultry | 7.5 | 3100, 3600 ‡ | 13.5, 15.4 | 232.1, 368.6 | ||
Nigeria | 0 | 600 | 9.1, 6.9 | 50.4, 68.4 | [26] | |
Poultry | 5 | 800,700 † | 12.5, 14.2 | 82.8, 140.4 | ||
Poultry | 10 | 900,800 | 13.2, 17.8 | 111.6, 151.2 | ||
Nigeria | - | 0 | 900, 1200 † | 10.6, 9.0 | [38] | |
Poultry | 10 | 1700, 3500 | 18.2, 18.9 | |||
Poultry | 25 | 5100, 4800 | 30.9, 37.1 | |||
Poultry | 40 | 2800, 5200 | 33.0, 44.3 | |||
Poultry | 50 | 3100, 5600 | 32.6, 45.6 | |||
Argentina | - | 0 | 950, 1240 † | [29] | ||
Poultry | 10 | 1050, 1550 | ||||
Poultry | 20 | 1080, 1490 | ||||
United States | - | 0 | 51.8, 65.3 § | 19.5, 29.4 | [23] | |
Cattle | 10 | 93.6, 101.3 | 45.9, 44.6 | |||
Cattle | 20 | 153.6, 162.8 | 59.9,65.4 | |||
Cattle | 30 | 205.7, 155.4 | 75.6, 91.9 | |||
Cattle | 40 | 236.1, 209.3 | 96.7, 126.4 | |||
Canada | - | 0 | 1300 | [39] | ||
Cattle | 20 | 1400 | ||||
Cattle | 40 | 1500 | ||||
Cattle | 60 | 1600 |
Study Site | Nutrient | CEC | Ca | Mg | References | |
---|---|---|---|---|---|---|
Source | Quantity Mg ha−1 | Cmol kg−1 | ||||
South Africa | - | 0 | 18.2, 17.7 † | 6.7, 7.2 † | 2.2, 2.4 † | [34] |
Poultry | 20 | 13.5, 15.6 | 5.5,6.3 | 1.9, 2.2 | ||
Cattle | 20 | 19.1, 21.0 | 8.5, 8.7 | 2.7, 3.0 | ||
Poultry + Cattle | 20 + 20 | 16.1, 17.2 | 5.6, 7.5 | 2.1, 3.1 | ||
Canada | - | 0 | 25.2, 25.0, 27.3 † | [70] | ||
Cattle ¶ | 13 | 25.9, 26.6, 28.7 | ||||
Cattle | 39 | 26.7, 26.7, 29.8 | ||||
Cattle | 77 | 26.8, 28.4, 31.6 | ||||
Cattle ¶¶ | 13 | 26.5, 25.5, 28.5 | ||||
39 | 25.4, 27.2, 29.1 | |||||
77 | 27.2, 25.9, 30.2 | |||||
Nigeria | - | 0 | 2.0, 1.2 ‡ | 0.9, 1.3 ‡ | [37] | |
Poultry | 7.5 | 3.7, 3.5 ‡ | 2.5, 2.1 ‡ | |||
Nigeria | - | 0 | 2.8, 3.6 † | 2.1, 2.1 † | 0.5, 0.9 † | [26] |
Poultry | 5 | 4.0, 4.9 | 2.8, 3.0 | 0.7, 1.3 | ||
Poultry | 10 | 4.5, 6.6 | 2.6, 4.2 | 0.7, 1.7 | ||
Canada | - | 0 | 19.5, 19.6 § | 15.4, 15.8 § | 2.2, 2.3 § | [65] |
Cattle | 30 | 20.7, 23.7 | 13.7, 16.1 | 2.7, 3.7 | ||
Cattle | 60 | 24.2, 28.4 | 15.0, 19.0 | 3.6, 4.7 | ||
Cattle | 90 | 25.1, 33.5 | 14.5, 21.3 | 4.2, 6.0 | ||
Canada | - | 0 | 16.1 | 6.5 | [72] | |
Cattle | 100 £ | 16.5 | 6.6 | |||
Cattle | 400 £ | 18.0 | 6.7 | |||
Puerto Rico | - | 0 | 1.7 | 0.5 | [58] | |
Poultry | 5 | 1.8 | 0.5 | |||
Poultry | 10 | 2.0 | 0.5 | |||
Poultry | 15 | 2.4 | 0.6 |
Treatment | Organic Matter (g kg−1) |
---|---|
Untreated check | 12.0 |
Inorganic fertilizer (336N-49P-93K kg ha−1) | 14.8 |
Dairy Compost (Mg ha−1) | |
0 | 15.6 |
35 | 20.7 |
70 | 29.3 |
105 | 29.3 |
Site of Study | Nutrient | Microbial | Reference | ||
---|---|---|---|---|---|
Source | Quantity (Mg ha−1) | Type | Population (cfu g−1) | ||
Japan | - | 0 | Fungi | 105(2.1–2.7) † | [150] |
Cattle manure | 40 | Fungi | 105(2.3–3.2) | ||
- | 0 | Bacteria | 107(3.0–5.0) | ||
Cattle manure | 40 | Bacteria | 107(3.0–5.6) | ||
Israel | - | 0 | Fungi | 1.2 × 104 | [151] |
Cattle manure | 90 | Fungi | 1.6 × 104 | ||
- | 0 | Bacteria | 7.0 × 107 | ||
Cattle manure | 90 | Bacteria | 8.3 × 107 | ||
China | - | 0 | Bacteria | 106(0.8, 1.5, 0.8) ‡ | [152] |
Cattle manure | 80 | Bacteria | 106(1.6, 4.4, 4.5) | ||
- | 0 | Fungi | 103(4.1, 4.1, 4.9) | ||
Cattle manure | 80 | Fungi | 103(3.5, 2.7, 1.5) | ||
- | 0 | Actinomycetes | 105(2.4, 2.0, 1.7) | ||
Cattle manure | 80 | Actinomycetes | 105(2.7, 6.6, 10.5) | ||
Canada | - | 0 | Heterotrophs | 103(4, 6.2, 6.8) | [153] |
Cattle manure | 120 § | Heterotrophs | 103(1.6, 9.0, 70.0) | ||
Cattle manure | 240 § | Heterotrophs | 103(1.6,11.0, 96.0) | ||
Cattle manure | 480 § | Heterotrophs | 103(4.9, 11.0, 5.7) | ||
Urea | 50 § | Heterotrophs | 103(5.8, 4.7, 5.8) | ||
Urea | 100 § | Heterotrophs | 103(5.1, 9.7, 1.1) | ||
Urea | 200 § | Heterotrophs | 103 (0.6, 6.1, 71.0) |
Study Site | Nutrient | Crop | Grain Yield(s) | Source | |
---|---|---|---|---|---|
Source | Quantity Mg ha−1 | Mg ha−1 | |||
United States | Cattle | 0 | Sorghum | 3.80 | [175] |
22.5 | 4.40 | ||||
45 | 4.30 | ||||
90 | 4.20 | ||||
180 | 3.60 | ||||
Cattle | 0 | Wheat | 2.50 | [175] | |
22.5 | 2.30 | ||||
45 | 2.30 | ||||
90 | 2.20 | ||||
180 | 2.20 | ||||
Greece | Cattle | 0 | Wheat | 3.28 | [173] |
16 | 3.49 | ||||
32 | 4.50 | ||||
Nigeria | Poultry | 0 | Maize | 1.33, 0.81 † | [176] |
5 | 2.76, 1.98 | ||||
10 | 2.87, 1.66 | ||||
15 | 3.63, 0.83 | ||||
20 | 2.82, 2.82 | ||||
Nigeria | Poultry | 0 | Maize | 1.90 | [26] |
5 | 3.72 | ||||
10 | 2.95 | ||||
India | Cattle | 0 | Rice | 2.23 | [177] |
40 § | 3.47 | ||||
Germany | Cattle | 0 | Wheat | 5.15; 5.27 † | [178] |
80 § | 5.48; 5.84 | ||||
160 § | 5.53; 6.19 | ||||
240 § | - - ; 6.34 | ||||
United States | Cattle | 0 | Maize | 6.9, 6.5, 6.3 | [174] |
56 § | 7.2, 7.3, 6.9 | ||||
112 § | 7.3, 7.5, 5.9 | ||||
168 § | 6.6, 7.8, 7.0 |
Variable | Key Findings | References |
---|---|---|
Soil chemical properties | Applied animal manure resulted in a higher amount of SOM when compared to inorganic fertilizer. This led to the building up of SOM in the soil profile | [42] |
While not consistent, applied livestock manure increased CEC by as much as 10 cmolc kg−1 relative to the control treatment. This was due to the presence of organic matter present in manure | [27,69,70] | |
Repeated manure application led to the build-up of P in the soil with the potential to cause eutrophication | [39,42] | |
Generally, manure application tended to lead to an increase in soil pH due to the presence of CaCO3 and HCO3-. Properties of manure type and soil conditions dictate soil acidity | [23,58,59,60] | |
Leaching of NO3− was least for manure applied in spring and highest for fall-applied manure | [32,33] | |
Soil physical properties | Manure was vital for lowering soil bulk density, thus, increasing soil pores to support growth of crop roots | [35,37] |
Increased infiltration rate and water holding capacity of the soil due to increased soil organic matter aggregation of soil particles | [103,107,108,109,110,112] | |
Depending on the time, rate, and properties of manure applied, soil temperature could increase or decrease | [37,129,130,131] | |
Soil biological properties | Applied animal manure improved fungal and bacterial diversity in the soil. This is important for mineralization and root extension to extract nutrients from lower soil layers | [146,147,148,155,156] |
Increased microbial population improved SOC. Additionally, soil microbial C was associated with SOC | [12,154] | |
Increased microbial activities such as mineralization of soil organic matter, colonization of plant root, soil aggregation e.g., via fungal hyphae and microbial C | [162,163,164] | |
Yield and Yield Components | Manure application improved grain yield over no fertilization of crops due to supply of macronutrients. Application based on N leads to P overapplication | [26,173,175,176] |
Both manure characteristics and climatic conditions dictate whether crops will respond to applied manure | [171] | |
Some studies found 1000-grain weight to reduce and no yield difference between manure treated and control plots due to the slow-release nature of manure | [169,170] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rayne, N.; Aula, L. Livestock Manure and the Impacts on Soil Health: A Review. Soil Syst. 2020, 4, 64. https://doi.org/10.3390/soilsystems4040064
Rayne N, Aula L. Livestock Manure and the Impacts on Soil Health: A Review. Soil Systems. 2020; 4(4):64. https://doi.org/10.3390/soilsystems4040064
Chicago/Turabian StyleRayne, Natasha, and Lawrence Aula. 2020. "Livestock Manure and the Impacts on Soil Health: A Review" Soil Systems 4, no. 4: 64. https://doi.org/10.3390/soilsystems4040064
APA StyleRayne, N., & Aula, L. (2020). Livestock Manure and the Impacts on Soil Health: A Review. Soil Systems, 4(4), 64. https://doi.org/10.3390/soilsystems4040064