Sorption and Desorption of Vanadate, Arsenate and Chromate by Two Volcanic Soils of Equatorial Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soils
% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Soil | Location | Altitude, m | pH | C, % | Texture | Mehlich-3 P, mg kg−1 | Feo | Alo | Fed | Ald | pHNaF |
Silandic Andosol | 01°36′32′′ S, 29°32′57′′ E | 311 | 5.60 | 6.18 | Sandy loam | 32.2 | 3.46 | 2.48 | 4.60 | 1.81 | 11.07 |
Vitric Andosol | 00°20′00′′ N, 06°39′00′′ E | 2368 | 6.30 | 7.46 | Silty loam | 13.5 | 1.11 | 0.40 | 7.84 | 1.74 | 8.39 |
2.2. Sorption and Desorption Isotherms
3. Results
3.1. Vanadate
3.2. Arsenate
3.3. Chromate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adegoke, H.I.; Adekola, F.A.; Fatoki, O.S.; Ximba, B.J. Sorptive Interaction of Oxyanions with Iron Oxides: A Review. Pol. J. Environ. Stud. 2013, 22, 7–24. [Google Scholar]
- Bastounopoulou, M.; Gasparatos, D.; Haidouti, C.; Massas, I. Chemical Fractionation and Sorption of Phosphorus in Greek Inceptisols. J. Agric. Sci. Technol. A 2011, 1, 33–38. [Google Scholar] [CrossRef]
- Jiang, X.; Peng, C.; Fu, D.; Chen, Z.; Shen, L.; Li, Q.; Ouyang, T.; Wang, Y. Removal of arsenate by ferrihydrite via surface complexation and surface precipitation. Appl. Surf. Sci. 2015, 353, 1087–1094. [Google Scholar] [CrossRef]
- Jiang, Y.; Yin, X.; Luo, X.; Yu, L.; Sun, H.; Wang, N.; Mathews, S. Sorption of vanadium (V) on three typical agricultural soil of the Loess Plateau, China. Environ. Pollut. Bioavailab. 2019, 31, 120–130. [Google Scholar] [CrossRef] [Green Version]
- Kumar, E.; Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpaa, M. Interaction of inorganic anions with iron-mineral adsorbents in aqueous media—A review. Adv. Colloid Interface Sci. 2014, 203, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Kumar, E.; Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpaa, M. Interaction of anionic pollutants with Al-based adsorbents in aqueous media—A review. Chem. Eng. J. 2014, 241, 443–456. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, R.; Mittal, S.; Arora, M.; Babu, J.N. Role of soil physicochemical characteristics on the present state of arsenic and its adsorption in alluvial soils of two agri-intensive region of Bathinda, Punjab, India. J. Soils Sediments 2016, 16, 605–620. [Google Scholar] [CrossRef]
- Parfitt, R.L. Anion adsorption by soils and soil materials. In Advances in Agronomy; Brady, N.C., Ed.; Academic Press: Cambridge, MA, USA, 1979; Volume 30, pp. 1–50. [Google Scholar]
- Singh, B.R.; Krogstad, T.; Shivay, Y.S.; Shivakumar, B.G.; Bakkegard, M. Phosphorus fractionation and sorption in P-enriched soils of Norway. Nutr. Cycl. Agroecosyst. 2005, 73, 245–256. [Google Scholar] [CrossRef]
- Wendling, L.A.; Blomberg, P.; Sarlin, T.; Priha, O.; Arnold, M. Phosphorus sorption and recovery using mineral-based materials: Sorption mechanisms and potential phytoavailability. Appl. Geochem. 2013, 37, 157–169. [Google Scholar] [CrossRef]
- Sparks, D.L. Metal and oxyanion sorption on naturally occurring oxide and clay mineral surfaces. In Environmental Catalysis; Grassian, V.H., Ed.; CRC Press LLC: Boca Raton, FL, USA, 2005; pp. 3–36. [Google Scholar]
- Pigna, M.; Caporale, A.G.; Cavalca, L.; Sommella, A.; Violante, A. Arsenic in the Soil Environment: Mobility and Phytoavailability. Environ. Eng. Sci. 2015, 32, 551–563. [Google Scholar] [CrossRef] [Green Version]
- Schlesinger, W.H.; Klein, E.M.; Vengosh, A. Global biogeochemical cycle of vanadium. Proc. Natl. Acad. Sci. USA 2017, 114, E11092–E11100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imtiaz, M.; Rizwan, M.S.; Xiong, S.; Li, H.; Ashraf, M.; Shahzad, S.M.; Shahzad, M.; Rizwan, M.; Tu, S. Vanadium, recent advancements and research prospects: A review. Environ. Int. 2015, 80, 79–88. [Google Scholar] [CrossRef]
- Watt, J.A.J.; Burke, I.T.; Edwards, R.A.; Malcolm, H.M.; Mayes, W.M.; Olszewska, J.P.; Pan, G.; Graham, M.C.; Heal, K.V.; Rose, N.L.; et al. Vanadium: A Re-Emerging Environmental Hazard. Environ. Sci. Technol. 2018, 52, 11973–11974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustafsson, J.P. Vanadium geochemistry in the biogeosphere -speciation, solid-solution interactions, and ecotoxicity. Appl. Geochem. 2019, 102, 1–25. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Larsson, M.A.; Baken, S.; Gustafsson, J.P.; Hadialhejazi, G.; Smolders, E. Vanadium bioavailability and toxicity to soil microorganisms and plants. Environ. Toxicol. Chem. 2013, 32, 2266–2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rattner, B.A.; McKernan, M.A.; Eisenreich, K.M.; Link, W.A.; Olsen, G.H.; Hoffman, D.J.; Knowles, K.A.; McGowan, P.C. Toxicity and hazard of vanadium to Mallard ducks (Anas platyrhynchos) and Canada geese (Branta canadensis). J. Toxicol. Environ. Health Part A Curr. Issues 2006, 69, 331–351. [Google Scholar] [CrossRef] [PubMed]
- Rowe, C.L.; Heyes, A.; Hopkins, W. Effects of dietary vanadium on growth and lipid storage in a larval anuran: Results from studies employing ad libitum and rationed feeding. Aquat. Toxicol. 2009, 91, 179–186. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Alessi, D.S.; Tack, F.M.G.; Ok, Y.S.; Kim, K.-H.; Gustafsson, J.P.; Sparks, D.L.; Rinklebe, J. Redox chemistry of vanadium in soils and sediments: Interactions with colloidal materials, mobilization, speciation, and relevant environmental implications—A review. Adv. Colloid Interface Sci. 2019, 265, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Vessey, C.J.; Schmidt, M.P.; Abdolahnezhad, M.; Peak, D.; Lindsay, M.B.J. Adsorption of (Poly)vanadate onto Ferrihydrite and Hematite: An In Situ ATR–FTIR Study. ACS Earth Space Chem. 2020, 4, 641–649. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Contaminant Candidate List (CCL) and Regulatory Determination: Chemical Contaminants—CCL 4. Available online: https://www.epa.gov/ccl/chemical-contaminants-ccl-4 (accessed on 27 June 2020).
- Baken, S.; Larsson, M.A.; Gustafsson, J.P.; Cubadda, F.; Smolders, E. Ageing of vanadium in soils and consequences for bioavailability. Eur. J. Soil Sci. 2012, 63, 839–847. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Alvarez, J.M.; Orellana-Gallego, R.; Fernandez-Marcos, M.L. Potentially Toxic Elements in Urban Soils of Havana, Cuba. Environments 2020, 7, 43. [Google Scholar] [CrossRef]
- Larsson, M.A.; Hadialhejazi, G.; Gustafsson, J.P. Vanadium sorption by mineral soils: Development of a predictive model. Chemosphere 2017, 168, 925–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.-H.; Huang, F.; Evans, L.; Glasauer, S. Vanadium: Global (bio)geochemistry. Chem. Geol. 2015, 417, 68–89. [Google Scholar] [CrossRef]
- Blackmore, D.P.T.; Ellis, J.; Riley, P.J. Treatment of a vanadium-containing effluent by adsorption/coprecipitation with iron oxyhydroxide. Water Res. 1996, 30, 2512–2516. [Google Scholar] [CrossRef]
- Larsson, M.A.; Persson, I.; Sjostedt, C.; Gustafsson, J.P. Vanadate complexation to ferrihydrite: X-ray absorption spectroscopy and CD-MUSIC modelling. Environ. Chem. 2017, 14, 141–150. [Google Scholar] [CrossRef]
- Violante, A.; Gaudio, S.D.; Pigna, M.; Pucci, M.; Amalfitano, C. Sorption and desorption of arsenic by soil minerals and soils in the presence of nutrients and organics. In Soil Mineral Microbe-Organic Interactions: Theories and Applications; Springer: Berlin/Heidelberg, Germany, 2008; pp. 39–69. [Google Scholar] [CrossRef]
- Mandal, B.K.; Suzuki, K.T. Arsenic round the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Hue, N.V. Arsenic chemistry and remediation in Hawaiian soils. Int. J. Phytoremediat. 2013, 15, 105–116. [Google Scholar] [CrossRef]
- Biasioli, M.; Grcman, H.; Kralj, T.; Madrid, F.; Diaz-Barrientos, E.; Ajmone-Marsan, E. Potentially toxic elements contamination in urban soils: A comparison of three European cities. J. Environ. Qual. 2007, 36, 70–79. [Google Scholar] [CrossRef]
- Madrid, F.; Biasioli, M.; Ajmone-Marsan, F. Availability and bioaccessibility of metals in fine particles of some urban soils. Arch. Environ. Contam. Toxicol. 2008, 55, 21–32. [Google Scholar] [CrossRef]
- Franco-Uria, A.; Lopez-Mateo, C.; Roca, E.; Fernandez-Marcos, M.L. Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. J. Hazard. Mater. 2009, 165, 1008–1015. [Google Scholar] [CrossRef]
- Taylor, R.W.; Shen, S.Y.; Bleam, W.F.; Tu, S.I. Chromate removal by dithionite-reduced clays: Evidence from direct X-ray adsorption near edge spectroscopy (XANES) of chromate reduction at clay surfaces. Clays Clay Miner. 2000, 48, 648–654. [Google Scholar] [CrossRef]
- Fendorf, S.E. Surface-reactions of chromium in soils and waters. Geoderma 1995, 67, 55–71. [Google Scholar] [CrossRef]
- Mishra, S.; Bharagava, R.N. Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J. Environ. Sci. Health Part C 2016, 34, 1–32. [Google Scholar] [CrossRef]
- Eick, M.J.; Peak, J.D.; Brady, W.D. The effect of oxyanions on the oxalate-promoted dissolution of goethite. Soil Sci. Soc. Am. J. 1999, 63, 1133–1141. [Google Scholar] [CrossRef]
- Jiang, J.; Xu, R.K.; Wang, Y.; Zhao, A.Z. The mechanism of chromate sorption by three variable charge soils. Chemosphere 2008, 71, 1469–1475. [Google Scholar] [CrossRef]
- Perez, C.; Antelo, J.; Fiol, S.; Arce, F. Modeling oxyanion adsorption on ferralic soil, part 2: Chromate, selenate, molybdate, and arsenate adsorption. Environ. Toxicol. Chem. 2014, 33, 2217–2224. [Google Scholar] [CrossRef]
- Neall, V.E. Volcanic soils. In Land Use, Land Cover and Soil Sciences; Verheye, W.H., Ed.; EOLSS Publishers: Oxford, UK, 2009; Volume VII, pp. 23–45. [Google Scholar]
- Nanzyo, M. Unique properties of volcanic ash soils. Glob. Environ. Res. 2002, 6, 99–112. [Google Scholar]
- Pohl, W.L.; Biryabarema, M.; Lehmann, B. Early Neoproterozoic rare metal (Sn, Ta, W) and gold metallogeny of the Central Africa Region: A review. Appl. Earth Sci. 2013, 122, 66–82. [Google Scholar] [CrossRef]
- Haidula, A.F.; Ellmies, R.; Kayumba, F. Environmental Monitoring of Small-Scale Mining Areas in Rwanda; Rwanda Environment Management Authority: Windhoek, Namibia; Kigali, Rwanda, 2011; p. 26.
- Goldmann, S.; Melcher, F.; Gaebler, H.-E.; Dewaele, S.; De Clercq, F.; Muchez, P. Mineralogy and trace element chemistry of ferberite/reinite from tungsten deposits in central Rwanda. Minerals 2013, 3, 121–144. [Google Scholar] [CrossRef] [Green Version]
- Nieder, R.; Weber, T.K.D.; Paulmann, I.; Muwanga, A.; Owor, M.; Naramabuye, F.X.; Gakwerere, F.; Biryabarema, M.; Biester, H.; Pohl, W. The geochemical signature of rare-metal pegmatites in the Central Africa Region: Soils, plants, water and stream sediments in the Gatumba tin-tantalum mining district, Rwanda. J. Geochem. Explor. 2014, 144, 539–551. [Google Scholar] [CrossRef]
- Marcelot, G.; Dupuy, C.; Dostal, J.; Rancon, J.P.; Pouclet, A. Geochemistry of mafic volcanic rocks from the Lake Kivu (Zaire and Rwanda) section of the western branch of the African Rift. J. Volcanol. Geotherm. Res. 1989, 39, 73–88. [Google Scholar] [CrossRef]
- Rogers, N.W.; James, D.; Kelley, S.P.; De Mulder, M. The generation of potassic lavas from the Eastern Virunga province, Rwanda. J. Petrol. 1998, 39, 1223–1247. [Google Scholar] [CrossRef]
- Flügge, J.; Muwanga, A.; Trümper, K.; Zachmann, D.; Pohl, W. Exploratory geochemical assessment of stream water and sediment contamination in Gatumba tin and tantalum mining district, Rwanda. Zentralblatt für Geol. und Paläontologie 2007, 233, 246. [Google Scholar]
- Belay, I.G.; Tanaka, R.; Kitagawa, H.; Kobayashi, K.; Nakamura, E. Origin of ocean island basalts in the West African passive margin without mantle plume involvement. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Fitton, J.G.; Dunlop, H.M. The Cameroon Line, West-Africa, and its bearing on the origin of oceanic and continental alkali basalt. Earth Planet. Sci. Lett. 1985, 72, 23–38. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015; Volume 106. [Google Scholar]
- Fendorf, S.; Eick, M.J.; Grossl, P.; Sparks, D.L. Arsenate and chromate retention mechanisms on goethite: 1. Surface structure. Environ. Sci. Technol. 1997, 31, 315–320. [Google Scholar] [CrossRef]
- Goldberg, S.; Johnston, C.T. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J. Colloid Interface Sci. 2001, 234, 204–216. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, S.Z.; Shan, X.Q.; Feng, M.H.; Zhu, Y.G.; McLaren, R.G. Adsorption of arsenate on soils: Part 1: Laboratory batch experiments using 16 Chinese soils with different physiochemical properties. Environ. Pollut. 2005, 138, 278–284. [Google Scholar] [CrossRef]
- Johnston, C.P.; Chrysochoou, M. Mechanisms of Chromate, Selenate, and Sulfate Adsorption on Al-Substituted Ferrihydrite: Implications for Ferrihydrite Surface Structure and Reactivity. Environ. Sci. Technol. 2016, 50, 3589–3596. [Google Scholar] [CrossRef]
- Peacock, C.L.; Sherman, D.M. Vanadium(V) adsorption onto goethite (α-FeOOH) at pH 1.5 to 12: A surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta 2004, 68, 1723–1733. [Google Scholar] [CrossRef]
- García-Rodeja, E.; Nóvoa, J.C.; Pontevedra, X.; Martínez-Cortizas, A.; Buurman, P. Aluminium and iron fractionation of European volcanic soils by selective dissolution techniques. In Soils of Volcanic Regions in Europe; Arnalds, Ó., Óskarsson, H., Bartoli, F., Buurman, P., Stoops, G., García-Rodeja, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 325–351. [Google Scholar] [CrossRef]
- Parfitt, R.L.; Childs, C.W. Estimation of forms of Fe and Al—A review, and analysis of contrasting soils by dissolution and Mossbauer methods. Soil Res. 1988, 26, 121–144. [Google Scholar] [CrossRef]
- Sanchez, P.A.; Palm, C.A.; Buol, S.W. Fertility capability soil classification: A tool to help assess soil quality in the tropics. Geoderma 2003, 114, 157–185. [Google Scholar] [CrossRef]
- Blakemore, L.C. Acid Oxalate-Extractable Iron, Aluminium and Silicon; ICOMAND: Washington, DC, USA, 1983.
- Holmgren, G.G. A rapid citrate-dithionite extractable iron procedure. Soil Sci. Soc. Am. Proc. 1967, 31, 210–211. [Google Scholar] [CrossRef]
- Gonzalez-Rodriguez, S.; Fernandez-Marcos, M.L. Phosphate sorption and desorption by two contrasting volcanic soils of equatorial Africa. PeerJ 2018, 6, e5820. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Puls, R.W. Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process. Environ. Geol. 2000, 39, 753–759. [Google Scholar] [CrossRef]
- Mead, J.A. A comparison of the Langmuir, Freundlich and Temkin equations to describe phosphate adsorption properties of soils. Aust. J. Soil Res. 1981, 19, 333–342. [Google Scholar] [CrossRef]
- Goldberg, S. Equations and models describing adsorption processes in soils. In Chemical Processes in Soils; Tabatabai, M.A., Sparks, D.L., Eds.; Soil Science Society of America: Madison, WI, USA, 2005; pp. 489–517. [Google Scholar] [CrossRef]
- Gäbler, H.E.; Glüh, K.; Bahr, A.; Utermann, J. Quantification of vanadium adsorption by German soils. J. Geochem. Explor. 2009, 103, 37–44. [Google Scholar] [CrossRef]
- Naeem, A.; Westerhoff, P.; Mustafa, S. Vanadium removal by metal (hydr)oxide adsorbents. Water Res. 2007, 41, 1596–1602. [Google Scholar] [CrossRef]
- Russell, E.J.; Prescott, J.A. The reaction between dilute acids and the phosphorus compounds of the soil. J. Agric. Sci. 1916, 8, 65–110. [Google Scholar] [CrossRef] [Green Version]
- Skopp, J. Derivation of the Freundlich Adsorption Isotherm from Kinetics. J. Chem. Educ. 2009, 86, 1341. [Google Scholar] [CrossRef]
- Mikkonen, A.; Tummavuori, J. Retention of vanadium (V) by three Finnish mineral soils. Eur. J. Soil Sci. 1994, 45, 361–368. [Google Scholar] [CrossRef]
- Sun, W.; Li, X.; Padilla, J.; Elbana, T.A.; Selim, H.M. The Influence of Phosphate on the Adsorption-Desorption Kinetics of Vanadium in an Acidic Soil. J. Environ. Qual. 2019, 48, 686–693. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Zhang, S.Z.; Shan, X.Q.; Feng, M.H.; Zhu, Y.G.; McLaren, R.G. Adsorption of arsenate on soils: Part 2: Modeling the relationship between adsorption capacity and soil physiochemical properties using 16 Chinese soils. Environ. Pollut. 2005, 138, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Behera, R.K.; Rout, K.; Nayak, B.; Das, N.N. Removal of selenium and arsenic oxyanions using natural goethite-rich iron ore from Daitari, Orissa, India: Effect of heat treatment. Adsorpt. Sci. Technol. 2012, 30, 867–879. [Google Scholar] [CrossRef]
- Mansfeldt, T.; Overesch, M. Arsenic Mobility and Speciation in a Gleysol with Petrogleyic Properties: A Field and Laboratory Approach. J. Environ. Qual. 2013, 42, 1130–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustafsson, J.P. Modelling competitive anion adsorption on oxide minerals and an allophane-containing soil. Eur. J. Soil Sci. 2001, 52, 639–653. [Google Scholar] [CrossRef]
- Smith, E.; Naidu, R.; Alston, A.M. Arsenic in the soil environment: A review. In Advances in Agronomy; Donald, L.S., Ed.; Academic Press: Cambridge, MA, USA, 1998; Volume 64, pp. 149–195. [Google Scholar]
- Moreno-Jiménez, E.; Esteban, E.; Peñalosa, J. The fate of arsenic in soil-plant systems. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: New York, NY, USA, 2012; Volume 215, pp. 1–37. [Google Scholar]
- Campbell, K.M.; Nordstrom, D.K. Arsenic Speciation and Sorption in Natural Environments. Rev. Mineral. Geochem. 2014, 79, 185–216. [Google Scholar] [CrossRef]
- Smith, E.; Naidu, R.; Alston, A.M. Chemistry of inorganic arsenic in soils: II. Effect of phosphorus, sodium, and calcium on arsenic sorption. J. Environ. Qual. 2002, 31, 557–563. [Google Scholar] [CrossRef]
- Yolcubal, I.; Akyol, N.H. Adsorption and transport of arsenate in carbonate-rich soils: Coupled effects of nonlinear and rate-limited sorption. Chemosphere 2008, 73, 1300–1307. [Google Scholar] [CrossRef]
- Violante, A.; Pigna, M. Competitive sorption of arsenate and phosphate on different clay minerals and soils. Soil Sci. Soc. Am. J. 2002, 66, 1788–1796. [Google Scholar] [CrossRef]
- Fernández-Pazos, M.T.; Garrido-Rodriguez, B.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Fernández-Sanjurjo, M.J.; Núñez-Delgado, A.; Álvarez, E. Cr(VI) Adsorption and Desorption on Soils and Biosorbents. Water Air Soil Pollut. 2012, 224, 1366. [Google Scholar] [CrossRef]
- Saeki, K. Adsorption sequence of toxic inorganic anions on a soil. Bull. Environ. Contam. Toxicol. 2008, 81, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Fendorf, S.; Wielinga, B.W.; Hansel, C.M. Chromium Transformations in Natural Environments: The Role of Biological and Abiological Processes in Chromium(VI) Reduction. Int. Geol. Rev. 2010, 42, 691–701. [Google Scholar] [CrossRef]
Vitric Andosol | Silandic Andosol | |||||
---|---|---|---|---|---|---|
V in the equilibrating solution, mg L−1 | % V sorption | % V desorption with NaNO3 | % additional V desorption with phosphate | % V sorption | % V desorption with NaNO3 | % additional V desorption with phosphate |
2 | 99.8 ± 0.0 | 0.35 ± 0.15 | 0.15 ± 0.02 | 99.9 ± 0.0 | 0.32 ± 0.05 | 0.14 ± 0.01 |
4 | 99.9 ± 0.0 | 0.11 ± 0.07 | 0.06 ± 0.00 | 99.9 ± 0.0 | 0.14 ± 0.00 | 0.10 ± 0.00 |
10 | 99.9 ± 0.0 | 0.06 ± 0.01 | 0.06 ± 0.01 | 99.9 ± 0.0 | 0.11 ± 0.01 | 0.09 ± 0.01 |
20 | 99.7 ± 0.1 | 0.33 ± 0.03 | 0.18 ± 0.02 | 99.4 ± 0.1 | 0.38 ± 0.07 | 0.25 ± 0.03 |
40 | 98.5 ± 0.4 | 0.68 ± 0.03 | 0.27 ± 0.09 | 98.3 ± 0.6 | 0.67 ± 0.07 | 0.47 ± 0.06 |
60 | 98.2 ± 0.7 | 1.42 ± 0.16 | 0.25 ± 0.05 | 97.3 ± 0.4 | 1.24 ± 0.18 | 0.50 ± 0.07 |
100 | 95.7 ± 0.4 | 3.13 ± 0.02 | 0.24 ± 0.11 | 97.3 ± 0.5 | 2.71 ± 0.18 | 0.47 ± 0.04 |
As in the equilibrating solution, mg L−1 | % As sorption | % As desorption with NaNO3 | % additional As desorption with phosphate | % As sorption | % As desorption in NaNO3 | % additional As desorption with phosphate |
2 | 99.9 ± 0.1 | 0.00 ± 0.00 | 5.89 ± 0.01 | 99.8 ± 0.1 | 0.04 ± 0.03 | 7.25 ± 0.70 |
4 | 99.8 ± 0.1 | 0.06 ± 0.01 | 7.55 ± 0.58 | 99.7 ± 0.1 | 0.12 ± 0.03 | 9.26 ± 0.40 |
10 | 99.8 ± 0.0 | 0.08 ± 0.05 | 8.64 ± 0.54 | 99.6 ± 0.1 | 0.20 ± 0.10 | 9.86 ± 1.36 |
20 | 99.8 ± 0.2 | 0.10 ± 0.05 | 8.77 ± 0.31 | 99.7 ± 0.1 | 0.65 ± 0.10 | 11.1 ± 0.6 |
40 | 99.5 ± 0.2 | 0.33 ± 0.04 | 11.8 ± 0.26 | 98.9 ± 0.1 | 1.97 ± 0.03 | 28.7 ± 2.1 |
60 | 99.6 ± 0.1 | 0.89 ± 0.10 | 13.3 ± 0.74 | 97.4 ± 0.4 | 1.87 ± 0.32 | 33.3 ± 2.6 |
100 | 99.1 ± 0.7 | 2.21 ± 0.16 | 14.0 ± 1.32 | 94.8 ± 1.8 | 4.93 ± 0.57 | 33.9 ± 3.6 |
Cr in the equilibrating solution, mg L−1 | % Cr sorption | % Cr desorption with NaNO3 | % additional Cr desorption with phosphate | % Cr sorption | % Cr desorption in NaNO3 | % additional Cr desorption with phosphate |
2 | 97.1 ± 0.2 | 2.2 ± 0.1 | 2.1 ± 0.4 | 56.2 ± 1.6 | 34.7 ± 1.0 | 24.0 ± 1.6 |
4 | 94.1 ± 2.1 | 2.1 ± 0.2 | 2.5 ± 0.2 | 53.0 ± 0.7 | 30.1 ± 3.6 | 21.1 ± 4.3 |
10 | 95.9 ± 0.6 | 2.3 ± 0.1 | 2.2 ± 0.3 | 42.7 ± 3.2 | 37.8 ± 3.7 | 27.0 ± 0.9 |
20 | 46.9 ± 5.8 | 29.6 ± 2.8 | 16.6 ± 2.2 | 38.3 ± 2.4 | 36.9 ± 3.4 | 24.7 ± 2.1 |
40 | 35.6 ± 5.4 | 31.6 ± 3.7 | 18.5 ± 1.0 | 39.9 ± 4.1 | 33.4 ± 1.3 | 18.2 ± 0.5 |
60 | 28.8 ± 3.1 | 30.8 ± 2.2 | 18.2 ± 3.6 | 34.8 ± 5.5 | 30.3 ± 3.8 | 15.9 ± 3.1 |
100 | 19.0 ± 2.1 | 37.7 ± 7.6 | 20.2 ± 4.0 | 23.2 ± 1.2 | 30.9 ± 2.9 | 21.6 ± 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Rodriguez, S.; Fernandez-Marcos, M.L. Sorption and Desorption of Vanadate, Arsenate and Chromate by Two Volcanic Soils of Equatorial Africa. Soil Syst. 2021, 5, 22. https://doi.org/10.3390/soilsystems5020022
Gonzalez-Rodriguez S, Fernandez-Marcos ML. Sorption and Desorption of Vanadate, Arsenate and Chromate by Two Volcanic Soils of Equatorial Africa. Soil Systems. 2021; 5(2):22. https://doi.org/10.3390/soilsystems5020022
Chicago/Turabian StyleGonzalez-Rodriguez, Sara, and Maria Luisa Fernandez-Marcos. 2021. "Sorption and Desorption of Vanadate, Arsenate and Chromate by Two Volcanic Soils of Equatorial Africa" Soil Systems 5, no. 2: 22. https://doi.org/10.3390/soilsystems5020022
APA StyleGonzalez-Rodriguez, S., & Fernandez-Marcos, M. L. (2021). Sorption and Desorption of Vanadate, Arsenate and Chromate by Two Volcanic Soils of Equatorial Africa. Soil Systems, 5(2), 22. https://doi.org/10.3390/soilsystems5020022