Initial Study on Phytoextraction for Recovery of Metals from Sorted and Aged Waste-to-Energy Bottom Ash
Abstract
:1. Introduction
2. Material and method
2.1. Material
2.2. Cultivation Experiments
- Sunflowers in MIBA without fertilizer (SwoF)
- Sunflowers in MIBA with fertilizer (SF)
- Sunflowers in reference soil with fertilizer (Sref)
- Rapeseed in MIBA without fertilizer (RwoF)
- Rapeseed in MIBA with fertilizer (RF)
- Rapeseed in reference soil with fertilizer (Rref)
2.3. Chemical Analyses
3. Result and Discussion
3.1. Characterisation of Original MIBA
3.2. Plant Growth and Biomass
3.3. Metal Accumulation in Plants
3.4. Metal Contents in MIBA after Harvest
3.5. Potential for Recovery of Zn and Other Metals from MIBA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Report on the Critical Raw Materials for the EU, Report of the Ad Hoc Working Group on Defining Critical Raw Materials; European Commission: Brussels, Belgium, 2014; p. 41. [Google Scholar]
- Avfall Sverige. Svensk Avfallshantering 2018; Avfall Sverige: Malmö, Sweden, 2019. [Google Scholar]
- Blasenbauer, D.; Huber, F.; Lederer, J.; Quina, M.; Blanc-Biscarat, D.; Bogush, A.; Bontempi, E.; Blondeau, J.; Chimenos, J.M.; Dahlbo, H.; et al. Legal situation and current practice of waste incineration bottom ash utilisation in Europe. Waste Manag. 2020, 102, 868–883. [Google Scholar] [CrossRef] [PubMed]
- Arickx, S.; Van Gerven, T.; Vandecasteele, C. Accelerated carbonation for treatment of MSWI bottom ash. J. Hazard. Mater. 2006, 137, 235–243. [Google Scholar] [CrossRef]
- Freyssinet, P.; Piantone, P.; Azaroual, M.; Itard, Y.; Clozel-Leloup, B.; Guyonnet, D.; Baubron, J. Chemical changes and leachate mass balance of municipal solid waste bottom ash submitted to weathering. Waste Manag. 2002, 22, 159–172. [Google Scholar] [CrossRef]
- Klymko, T.; Dijkstra, J.J.; Van Zomeren, A. Guidance Document on Hazard Classification of MSWI Bottom Ash in ECN-E-17-024; Confederation of European Waste-to-Energy Plants: Düsseldorf, Germany, 2017. [Google Scholar]
- Tiberg, C.; Sjöstedt, C.; Fedje, K.K. Speciation of copper and zinc in MSWI bottom ash studied by XAS and geochemical modelling. Waste Manag. 2021, 119, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Fedje, K.K.; Strömvall, A.-M. Enhanced soil washing with copper recovery using chemical precipitation. J. Environ. Manag. 2019, 236, 68–74. [Google Scholar] [CrossRef]
- Barbaroux, R.; Plasari, E.; Mercier, G.; Simonnot, M.-O.; Morel, J.L.; Blais, J. A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale. Sci. Total Environ. 2012, 423, 111–119. [Google Scholar] [CrossRef]
- Delplanque, M.; Collet, S.; Del Gratta, F.; Schnuriger, B.; Gaucher, R.; Robinson, B.; Bert, V. Combustion of Salix used for phytoextraction: The fate of metals and viability of the processes. Biomass-Bioenergy 2013, 49, 160–170. [Google Scholar] [CrossRef]
- Rasmusen, E. Sambehandling Af RGA Og Scrubber Væske Fra Forbrændingsanlæg Med HALOSEP Processen, Miljøprojekt Nr. 1648; Danish EPA: Copenhagen, Denmark, 2015. [Google Scholar]
- Schlumberger, S.; Bühler, J. Metal Recovery in Fly and Filter Ash in Waste to Energy Plants. In Ash 2012; Strömberg, B., Ed.; Värmeforsk AB: Stockholm, Sweden, 2012. [Google Scholar]
- Fedje, K.K.; Andersson, S. Zinc recovery from Waste-to-Energy fly ash—A pilot test study. Waste Manag. 2020, 118, 90–98. [Google Scholar] [CrossRef]
- Odjegba, V.J.; Fasidi, I.O. Phytoremediation of heavy metals by Eichhornia crassipes. Environmentalist 2007, 27, 349–355. [Google Scholar] [CrossRef]
- Zhao, L.; Yuan, L.; Wang, Z.; Lei, T.; Yin, X. Phytoremediation of zinc-contaminated soil and zinc-biofortification for human nutrition. In Phytoremediation and Biofortification; Yin, X., Yuan, L., Eds.; Springer Briefs in Molecular Science: Dordrecht, The Netherlands, 2012; pp. 33–57. [Google Scholar]
- Wrobel, S. Sunflower yields as an indicator of zinc polluted soil detoxification. Fresenius Environ. Bull. 2010, 19, 330–334. [Google Scholar]
- Belouchrani, A.S.; Mameri, N.; Abdi, N.; Grib, H.; Lounici, H.; Drouiche, N. Phytoremediation of soil contaminated with Zn using Canola (Brassica napus L). Ecol. Eng. 2016, 95, 43–49. [Google Scholar] [CrossRef]
- Adesodun, J.K.; Atayese, M.O.; Agbaje, T.A.; Osadiaye, B.A.; Mafe, O.F.; Soretire, A. Phytoremediation Potentials of Sunflowers (Tithonia diversifolia and Helianthus annuus) for Metals in Soils Contaminated with Zinc and Lead Nitrates. Water Air Soil Pollut. 2009, 207, 195–201. [Google Scholar] [CrossRef]
- Fulekar, M.H. Phytoremediation of Heavy Metals by Helianthus annuus in Aquatic and Soil environment. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 392–404. [Google Scholar] [CrossRef]
- Varga, C.; Marian, M.; Mihaly-Cozmuta, L.; Mihaly-Cozmuta, A.; Mihalescu, L. Evaluation of the phytoremediation potential of the Salix caprea in tailing ponds. An. Univ. Oradea Fasc. Biol. 2009, 16, 141. [Google Scholar]
- Hauptvogl, M.; Kotrla, M.; Prčík, M.; Žaneta, P.; Kováčik, M.; Lošák, T. Phytoremediation Potential of Fast-Growing Energy Plants: Challenges and Perspectives—A Review. Pol. J. Environ. Stud. 2019, 29, 505–516. [Google Scholar] [CrossRef] [Green Version]
- Pulford, I.D.; Watson, C. Phytoremediation of heavy metal-contaminated land by trees—A review. Environ. Int. 2003, 29, 529–540. [Google Scholar] [CrossRef]
- Bilski, J.; Jacob, D.; McLean, K.; McLean, E.; Soumaila, F.; Lander, M. Agro-toxicological aspects of coal fly ash (FA) phytoremediation by cereal crops: Effects on plant germination, growth and trace elements accumulation. Adv. Biores. 2012, 3, 121–129. [Google Scholar] [PubMed]
- Krgovic, R.; Trifković, J.; Milojković-Opsenica, D.; Manojlovic, D.; Markovic, M.; Mutić, J. Phytoextraction of metals by Erigeron canadensis L. from fly ash landfill of power plant “Kolubara”. Environ. Sci. Pollut. Res. 2015, 22, 10506–10515. [Google Scholar] [CrossRef]
- Rosenkranz, T.; Kisser, J.; Wenzel, W.W.; Puschenreiter, M. Waste or substrate for metal hyperaccumulating plants—The potential of phytomining on waste incineration bottom ash. Sci. Total Environ. 2017, 575, 910–918. [Google Scholar] [CrossRef]
- Renova, A.B. Jordprodukter. 2019. Available online: https://www.renova.se/foretag/produkter-och-tjanster/jordprodukter/ (accessed on 10 December 2019).
- Granngården, A.B. Promagna 11-5-18. 2019. Available online: https://www.granngarden.se/godsel-promagna-11-5-18-25-kg/p/1196440 (accessed on 10 December 2019).
- Kassas, H.; Sharaf, M.; Abdou, M.M.N. Phytoremediation of zinc and copper. J. Eniviron. Sci. 2003, 7, 323. [Google Scholar]
- Angelova, V. Potential of rapeseed (Brassica napus L.) for phytoremediation of soils contaminated with heavy metals. J. Environ. Prot. Ecol. 2017, 18, 468–478. [Google Scholar]
- Arm, M. Handbook—Bottom Ash in Road and Public Construction (In Swedish; Handbok—Slaggrus I Väg—Och Anläggning-Sarbeten); Institue, S.G., Ed.; Swedish Geotechnical Institute: Linköping, Sweden, 2006. [Google Scholar]
- Serti, S.; Löfgren, M. Guidance for Classification of Incinceration Residues Using Calculation 2018:13 (In Swedish; Vägledning for Klassificering Av Förbränningsrester Med Beräkningsmetoder); Management, S.A.o.W., Ed.; Swedish Association of Waste Management: Malmö, Sweden, 2018. [Google Scholar]
- Tessier, A.; Campbell, P.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- ALS Scandinavia AB. Sequential Extraction, version 20-01-2018; ALS Scandinavia AB: Luleå, Sweden, 2018; Available online: www.alsglobal.se (accessed on 20 January 2018)In Swedish.
- Ozolinčius, R.; Varnagirytė-Kabašinskienė, I.; Stakėnas, V.; Mikšys, V. Effects of wood ash and nitrogen fertilization on Scots pine crown biomass. Biomass-Bioenergy 2007, 31, 700–709. [Google Scholar] [CrossRef]
- Zhang, Z.; He, F.; Zhang, Y.; Yu, R.; Li, Y.; Zheng, Z.; Gao, Z. Experiments and modelling of potassium release behavior from tablet biomass ash for better recycling of ash as eco-friendly fertilizer. J. Clean. Prod. 2018, 170, 379–387. [Google Scholar] [CrossRef]
- Drott, A.; Anderson, S.; Eriksson, H. Rules and Recommendations for Forest Fuel Extraction and Compensation Action, Report 2019/14 (In Swedish: Regler Och Rekommendationer för Skogsbränsleuttag Och Kompensationsåtgärder, Rapport 2019/14); Skogsstyrelsen, S.F.A., Ed.; Swedish Forest Agency: Jönköping, Sweden, 2019. [Google Scholar]
- Wong, M.H.; Bradshaw, A.D. A comparison of the toxicity of heavy metals, using root elongation of rye grass, lolium perenne. New Phytol. 1982, 91, 255–261. [Google Scholar] [CrossRef]
- Oosterbaan, R.J. Cropo tolerance to soil salinity, statistical analysis of data measured in farm lands. Int. J. Agric. Sci. 2018, 3, 57–66. [Google Scholar]
- Küpper, H.; Zhao, F.-J.; McGrath, S.P. Cellular Compartmentation of Zinc in Leaves of the Hyperaccumulator Thlaspi caerulescens. Plant Physiol. 1999, 119, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Yara, U.K. Phosphorus Deficiency-Oilseed Rape. 2020. Available online: https://www.yara.co.uk/crop-nutrition/oilseed-rape/nutrient-deficiencies-oilseed-rape/phosphorus-deficiency-oilseed-rape/ (accessed on 7 April 2020).
- Magdoff, F.; van Es, H. Building Soils for Better Crops Sustainable Soil Management, 3rd ed.; Handbook Series Book 10th ed.; Sustainable Agriculture Research and Education (SARE) and USDA’s National Institute of Food and Agriculture, University of Maryland and University of Vermont: Brentwood, CA, USA, 2019. [Google Scholar]
- Bot, A.; Benites, J. The Importance of Soil Organic Matter Key to Drought-Resistant Soil and Sustained Food Production; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005. [Google Scholar]
- Marchiol, L.; Assolari, S.; Sacco, P.; Zerbi, G. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ. Pollut. 2004, 132, 21–27. [Google Scholar] [CrossRef]
- Strömberg, B.; Svärd, S.H. Handbook for Fuel A08-819 (In Swedish: Bränslehandboken A08-819); Strömberg, B., Ed.; Värmeforsk: Stockholm, Sweden, 2012. [Google Scholar]
- Fennoscandian Mineral Deposits Application. Ore Deposits Database and Maps; Geological Survey of Finland: Espoo, Finland, 2020. [Google Scholar]
Reference Soil | MIBA | Fertilizer | |||||
---|---|---|---|---|---|---|---|
Element | Total Amounts | SD | Total Amounts | SD | Leaching (L/S 10) | SD | Total Amounts |
Al | 11,000 | - 1 | 59,000 | 7700 | na 2 | - | na |
As | 1.8 | 0.5 | 26 | 7 | 0.05 | 0.02 | na |
B | 8.5 | - | 200 | 30 | na | - | 500 |
Ba | 92 | 4.1 | 1700 | 260 | 1.1 | 0.05 | na |
Be | 0.6 | - | 1.4 | 0.20 | na | - | na |
Ca | 6317 | 878 | 130,000 | 1000 | na | - | na |
Cd | 0.13 | 0.04 | 2.5 | 0.6 | 0.003 | 0.001 | <55 3 |
Co | 7.3 | 0.5 | 39 | 24 | na | - | na |
Cr | 14 | 1.1 | 440 | 220 | 0.26 | 0.15 | na |
Cu | 27 | 4.3 | 3400 | 1500 | 3.2 | 0.15 | 300 |
Fe | 16,900 | - | 53,000 | 11,000 | na | - | 800 |
Hg | 0.032 | 0.004 | 0.025 | 0.002 | <0.001 | - | na |
K | 5087 | 147 | 11,000 | 1600 | na | - | 176,000 |
Mg | 4490 | 70 | 13,000 | 840 | na | - | 16,000 |
Mn | 330 | - | 1100 | 160 | na | - | 2500 |
Mo | 2.7 | 2.0 | 27 | 22 | 1.2 | 0.24 | 20 |
N | 2250 | 150 | na | na | na | - | 110,000 |
Na | 558 | - | 24,000 | 2100 | na | - | na |
Ni | 10 | 2.5 | 200 | 100 | 0.09 | 0.03 | na |
P | 919 | 269 | 4100 | 360 | na | - | 46,000 |
Pb | 15 | 1.9 | 1600 | 1300 | 0.23 | 0.20 | na |
S | 671 | 225 | 8900 | 210 | na | - | 100,000 |
Sb | 0.9 | 0.4 | 80 | 23 | 0.34 | 0.03 | na |
Se | <5.0 | - | na | - | 0.02 | 0.01 | na |
Si | na | - | 160,000 | 25,000 | na | - | na |
Sn | 1.5 | - | 200 | 110 | na | - | na |
Sr | 27 | - | 390 | - | na | - | na |
Ti | na | - | 8700 | 720 | na | - | na |
V | 26 | 1.5 | 48 | 4.4 | na | - | na |
Zn | 103 | 20 | 5000 | 1100 | 1.6 | 1.4 | na |
Cl− | na | - | na | - | 3200 | 360 | na |
F− | na | - | na | - | 2.7 | 0.55 | na |
SO42− | na | - | na | - | 10,700 | 3900 | na |
DOC | na | - | na | - | 220 | 64 | na |
pH | 6.8 | 0.05 | na | - | 9.4 | 1.0 | na |
TOC [%] | 6.8 | 1.4 | 1.2 | 0.1 | na | - | na |
Humus content [%] | 17.1 | 0.6 | na | - | na | - | na |
ANC [mol H+/kg DS] | na | - | 2.3 | 0.2 | na | - | na |
ECsw 4 [mS/m] | na | - | na | - | 820 | 38 | na |
Bulk density [kg/m3] | 700 | <1 | 1080 5 | - | na | - | na |
Plant | Biomass Above-Ground/Plant | Biomass Under-Ground/Plant |
---|---|---|
[g] | [g] | |
SwoF | 0.8 (0.1) | 0.2 (0.04) |
SF | 0.8 (<0.01) | 0.3 (<0.01) |
Sref | 118 (41) | 4.0 (0.3) |
RwoF | 0.1 1 (0.01) | - |
RF | 0.2 (0.02) | 0.1 (<0.01) |
Rref | 0.6 (0.01) | 0.4 (0.06) |
Sunflower | Rapeseed | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Above Ground | Root | Above Ground | Root | |||||||||||||||||||
Element | SwoF | sd | SF | sd | Sref | sd | SwoF | sd | SF | sd | Sref | sd | RwoF 1 | sd | RF | sd | Rref | sd | RF | sd | Rref | sd |
[mg/kg DS] | [mg/kg DS] | [mg/kg DS] | [mg/kg DS] | |||||||||||||||||||
Al | 450 | 46 | 370 | 41 | 46 | 13 | 2600 | 1000 | 1000 | 170 | 5600 | 640 | 5200 | - | 270 | 150 | 210 | 77 | 9100 | 580 | 3500 | 2300 |
As | 0.22 | <0.01 | 0.35 | 0.04 | 0.09 | 0.06 | 1.8 | 1.2 | 0.88 | 0.13 | 1.8 | 0.25 | 4.4 | - | 0.32 | 0.06 | 0.16 | 0.05 | 8.4 | 0.12 | 0.99 | 0.63 |
Ba | 16 | 2.7 | 10 | 1 | 2.5 | 0.67 | 76 | 54 | 33 | 2.6 | 55 | 8.2 | 190 | - | 11 | 2.8 | 12 | 0.1 | 330 | 42 | 39 | 23 |
Ca | 14,000 | 3200 | 21,000 | 3100 | 5100 | 1000 | 15,000 | 8300 | 9000 | 180 | 7400 | 10 | 39,000 | - | 30,000 | 300 | 22,000 | 300 | 61,000 | 2100 | 5100 | 1000 |
Cd | 0.05 | <0.01 | 0.07 | <0.01 | 0.01 | <0.01 | 0.35 | 0.16 | 0.21 | 0.04 | 0.16 | <0.01 | 0.82 | - | 0.09 | <0.01 | 0.04 | <0.01 | 1.3 | 0.07 | 0.08 | 0.04 |
Cl | 2200 | 140 | 3700 | 560 | 12,000 | 2000 | 11,000 | 4000 | 6700 | 390 | 7400 | 540 | 9100 | - | 12,000 | 1600 | 24,000 | 1000 | 4800 | 90 | 3000 | 670 |
Co | 0.35 | 0.01 | 0.46 | 0.08 | 0.04 | 0.01 | 2.1 | 1.5 | 1.2 | 0.1 | 3.5 | 0.68 | 6.8 | - | 0.59 | 0.17 | 0.41 | 0.03 | 10 | 0.25 | 2.3 | 1.7 |
Cr | 1.5 | 0.26 | 1.2 | 0.16 | 0.15 | 0.02 | 9.6 | 6.7 | 4.1 | 0.42 | 7.3 | 0.97 | 19 | - | 1.2 | 0.43 | 1.2 | 0.73 | 65 | 31 | 4.7 | 3.1 |
Cu | 12 | 0.35 | 16 | 1.9 | 8 | 0.97 | 180 | 120 | 110 | 30 | 36 | 7.9 | 430 | - | 39 | 7.9 | 10 | 4.8 | 570 | 19 | 11 | 6.1 |
Fe | 730 | 75 | 630 | 110 | 80 | 33 | 2100 | 1600 | 770 | 170 | 7900 | 1400 | 5200 | - | 200 | 77 | 260 | 72 | 7600 | 920 | 4700 | 3400 |
Hg | 0.02 | <0.01 | 0.02 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.05 | <0.01 | 0.01 | - | <0.01 | <0.01 | 0.02 | <0.01 | 0.02 | <0.01 | <0.02 | <0.02 |
K | 4400 | 400 | 4100 | 790 | 13,000 | 2700 | 21,000 | 6400 | 17,000 | 4600 | 16,000 | 3800 | 16,000 | - | 30,000 | 2500 | 29,000 | 1500 | 12,000 | 100 | 11,000 | 990 |
Mg | 1400 | 15 | 1600 | 45 | 940 | 44 | 2200 | 360 | 1200 | 55 | 2800 | 330 | 3000 | - | 2800 | 5 | 2900 | 130 | 2900 | 130 | 2400 | 960 |
Mn | 27 | 3.6 | 43 | 4.8 | 8.8 | 1 | 64 | 46 | 34 | 3.1 | 190 | 35 | 200 | - | 52 | 3.9 | 24 | 3 | 300 | 2 | 120 | 79 |
Mo | 0.78 | 0.06 | 1.3 | 0.03 | 0.15 | 0.06 | 5.1 | 2.6 | 5.2 | 0.9 | 2.2 | 0.6 | 8.1 | - | 3.9 | 0.18 | 11 | 1.6 | 9.5 | 0.16 | 1.7 | 0.23 |
Na | 1600 | 45 | 1500 | 25 | 300 | 71 | 5700 | 430 | 5600 | 1400 | 850 | 340 | 2100 | - | 1500 | 10 | 1200 | 75 | 1400 | 160 | 520 | 250 |
Ni | 1.2 | 0.08 | 1.3 | 0.11 | 0.19 | 0.05 | 13 | 11 | 5 | 0.39 | 5.2 | 0.9 | 31 | - | 3.7 | 0.73 | 2.3 | 0.19 | 52 | 5 | 4.8 | 1.8 |
P | 530 | 7.5 | 650 | 72 | 2300 | 270 | 480 | 230 | 340 | 2.5 | 2400 | 470 | 2600 | - | 3000 | 190 | 3400 | 290 | 3700 | 440 | 3000 | 720 |
Pb | 3 | 0.02 | 2.6 | 0.24 | 0.23 | 0.03 | 37 | 27 | 18 | 2 | 11 | 1.5 | 91 | - | 3.6 | 1.4 | 1.1 | 0.53 | 170 | 11 | 6.6 | 4.1 |
S | 1200 | 45 | 2500 | 60 | 820 | 40 | 4000 | 65 | 3700 | 890 | 1400 | 110 | 9300 | - | 13,000 | 50 | 7500 | 190 | 6700 | 310 | 2100 | 55 |
Se | <0.01 | <0.01 | <0.01 | <0.01 | <0.05 | <0.01 | <0.08 | <0.03 | <0.05 | <0.01 | 0.22 | 0.03 | 0.32 | - | 0.17 | 0.01 | <0.09 | <0.04 | 0.36 | 0.02 | <0.12 | <0.07 |
Sn | 0.52 | 0.02 | 0.3 | 0.02 | <0.02 | <0.01 | 4.8 | 3.8 | 1.9 | 0.45 | 0.27 | 0.03 | 4 | - | 0.4 | 0.14 | 0.09 | 0.02 | 7.5 | 0.65 | 0.15 | 0.06 |
V | 1.3 | 0.18 | 1.1 | 0.22 | 0.13 | 0.06 | 2.8 | 2.1 | 1.2 | 0.05 | 18 | 0.75 | 5.6 | - | 0.25 | 0.09 | 0.45 | 0.1 | 9 | 0.27 | 9.8 | 6.7 |
Zn | 59 | 1.2 | 88 | 7.5 | 16 | 0.35 | 460 | 28 | 110 | 18 | 88 | 8.2 | 700 | - | 100 | 1.7 | 38 | 8.9 | 1000 | 10 | 56 | 26 |
Element | Whole Plant Ash | Root Ash | Workable Ore |
---|---|---|---|
[%] | [%] | [%] | |
Co | 0.007 | 0.02 | 0.01–0.08 |
Cu | 0.42 | 0.95 | 0.14–2.6 |
Pb | 0.12 | 0.29 | 0.30–9.4 |
Zn | 0.78 | 1.7 | 0.31–12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karlfeldt Fedje, K.; Edvardsson, V.; Dalek, D. Initial Study on Phytoextraction for Recovery of Metals from Sorted and Aged Waste-to-Energy Bottom Ash. Soil Syst. 2021, 5, 53. https://doi.org/10.3390/soilsystems5030053
Karlfeldt Fedje K, Edvardsson V, Dalek D. Initial Study on Phytoextraction for Recovery of Metals from Sorted and Aged Waste-to-Energy Bottom Ash. Soil Systems. 2021; 5(3):53. https://doi.org/10.3390/soilsystems5030053
Chicago/Turabian StyleKarlfeldt Fedje, Karin, Viktoria Edvardsson, and David Dalek. 2021. "Initial Study on Phytoextraction for Recovery of Metals from Sorted and Aged Waste-to-Energy Bottom Ash" Soil Systems 5, no. 3: 53. https://doi.org/10.3390/soilsystems5030053
APA StyleKarlfeldt Fedje, K., Edvardsson, V., & Dalek, D. (2021). Initial Study on Phytoextraction for Recovery of Metals from Sorted and Aged Waste-to-Energy Bottom Ash. Soil Systems, 5(3), 53. https://doi.org/10.3390/soilsystems5030053