Effects of Four-Week Exposure to Salt Treatments on Germination and Growth of Two Amaranthus Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Germination
2.2. Plant Growth and Stress Treatments
2.3. Substrate Analysis
2.4. Photosynthetic Pigments
2.5. Statistical Analysis
3. Results
3.1. Effects of Salt Stress on Seed Germination
3.2. Substrate Analysis
3.3. Effects of Salinity on Plant Growth
3.4. Multivariate Analysis of the Growth Parameters
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bartels, D.; Sunkar, R. Drought and Salt Tolerance in Plants. Crit. Rev. Plant Sci. 2005, 24, 23–58. [Google Scholar] [CrossRef]
- Intergovernmental panel on climate change. In Proceeding of the 5th Assessment Report, WGII, Climate Change 2014: Impacts, Adaptation, and Vulnerability; IPCC: Cambridge, UK, 2014; Available online: http://www.ipcc.ch/report/ar5/wg2/ (accessed on 16 June 2022).
- Ghassemi, F.; Jakeman, A.J.; Nix, H.A. Salinisation of Land and Water Resources: Human Causes, Extent, Management and Case Studies; CAB International: University of New South Wales Press: Sydney, Australia, 1995. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corwin, D.L.; Yemoto, K. Salinity: Electrical Conductivity and Total Dissolved Solids. Methods Soil Anal. 2017, 2, 1442–1461. [Google Scholar] [CrossRef]
- Prasad, M.N.V.; Pietrzykowski, M. Climate Change and Soil Interactions; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Shanker, A.; Venkateswarlu, B. Abiotic Stress in Plants; Books on Demand: Norderstedt, Germany, 2021. [Google Scholar] [CrossRef]
- Zörb, C.; Geilfus, C.-M.; Dietz, K.-J. Salinity and crop yield. Plant Biol. 2019, 21, 31–38. [Google Scholar] [CrossRef]
- Koyro, H.W.; Lieth, H.; Said, S. Salt tolerance of Chenopodium quinoa Willd., grains of the Andes, influence of salinity on biomass production, yield, composition of reserves in the seeds, water and solute. In Mangroves and Halophytes, Restoration and Utilisation III. Tasks for Vegetation Sciences; Lieth, H., Garcia Sucre, M., Herzog, B., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 133–145. [Google Scholar]
- Machado, R.M.A.; Serralheiro, R.P. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef] [Green Version]
- English, J.P.; Colmer, T.D. Tolerance of extreme salinity in two stem-succulent halophytes (Tecticornia species). Funct. Plant Biol. 2013, 40, 897–912. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Duke, N.C. Halophytes-A resource for the future. Wetl. Ecol. Manag. 2001, 6, 455–456. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Plant salt tolerance: Adaptations in halophytes. Ann. Bot. 2015, 115, 327–331. [Google Scholar] [CrossRef] [Green Version]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef]
- Koyro, H.-W.; Geiler, N.; Hussin, S.; Huchzermeyer, B. Survival at extreme locations: Life strategies of halophytes–the long way from system ecology whole plant physiology, cell biochemistry and molecular aspects back to sustainable utilization at field sites. In Biosaline Agriculture and High Salinity Tolerance; Abdelly, C., Ötztürck, M., Ashraf, M., Grignon, C., Eds.; Birkhäuser Verlag: Basel, Switzerland, 2008; pp. 1–20. [Google Scholar]
- Den Ende, W.V.; Elesawe, S.K. Sucrose signaling pathways leading to fructan and anthocyanin accumulation: A dual function in abiotic and biotic stress responses? Environ. Exp. Bot. 2014, 108, 4–13. [Google Scholar] [CrossRef]
- Nikalje, G.C.; Srivastava, A.K.; Pandey, G.K.; Suprasanna, P. Halophytes in biosaline agriculture: Mechanism, utilization, and value addition. Land Degrad. Dev. 2017, 29, 1081–1095. [Google Scholar] [CrossRef]
- Liu, L.; Wang, B. Protection of Halophytes and Their Uses for Cultivation of Saline-Alkali Soil in China. Biology 2021, 10, 353. [Google Scholar] [CrossRef] [PubMed]
- Tıpırdamaz, R.; Karakas, S.; Dikilitas, M. Halophytes and the Future of Agriculture. Handb. Halophytes Mol. Ecosyst. Towards Biosaline Agric. 2021, 2020, 2225–2239. [Google Scholar] [CrossRef]
- Flowers, T.J.; Hajibagheri, M.A.; Clipson, N.J.W. Halophytes. Q. Rev. Biol. 1986, 61, 313–337. [Google Scholar] [CrossRef]
- Adolf, V.I.; Jacobsen, S.-E.; Shabala, S. Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environ. Exp. Bot. 2013, 92, 43–54. [Google Scholar] [CrossRef]
- Lin, P.-H.; Chao, Y.-Y. Different Drought-Tolerant Mechanisms in Quinoa (Chenopodium quinoa Willd.) and Djulis (Chenopodium formosanum Koidz.) Based on Physiological Analysis. Plants 2021, 10, 2279. [Google Scholar] [CrossRef]
- Jacobsen, S.-E.; Monteros, C.; Corcuera, L.; Bravo, L.; Christiansen, J.; Mujica, A. Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). Eur. J. Agron. 2007, 26, 471–475. [Google Scholar] [CrossRef]
- Koyro, H.-W.; Eisa, S.S. Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd. Plant Soil 2007, 302, 79–90. [Google Scholar] [CrossRef]
- Cai, Z.-Q.; Gao, Q. Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars. BMC Plant Biol. 2020, 20, 70. [Google Scholar] [CrossRef] [Green Version]
- Wouyou, A.; Gandonou, C.B.; Montcho, D.; Kpinkoun, J.; Kinsou, E.; Komlan, F.A.; Gnancadja, S.L. Salinity Resistance of Six Amaranth (Amaranthus sp.) Cultivars Cultivated in Benin at Germination Stage. Int. J. Plant Soil Sci. 2016, 11, 1–10. [Google Scholar] [CrossRef]
- Wouyou, A.; Gandonou, C.B.; Komlan, F.A.; Montcho, D.; Zanklan, A.S.; Lutts, S.; Gnancadja, S.L. Salinity Resistance of Five Amaranth (Amaranthus cruentus) Cultivars at Young Plants Stage. Int. J. Plant Soil Sci. 2017, 14, 1–11. [Google Scholar] [CrossRef]
- Estrada, Y.; Fernández-Ojeda, A.; Morales, B.; Egea-Fernández, J.M.; Flores, F.B.; Bolarín, M.C.; Egea, I. Unraveling the Strategies Used by the Underexploited Amaranth Species to Confront Salt Stress: Similarities and Differences With Quinoa Species. Front. Plant Sci. 2021, 12, 604481. [Google Scholar] [CrossRef] [PubMed]
- WFO, 2022. “Amaranthus L.” Plants of the World Online. Board of Trustees of the Royal Botanic Gardens, Kew. 2021. Available online: https://powo.science.kew.org/ (accessed on 10 February 2022).
- Thapa, R.; Blair, M.W. Morphological Assessment of Cultivated and Wild Amaranth Species Diversity. Agronomy 2018, 8, 272. [Google Scholar] [CrossRef] [Green Version]
- Das, S. Amaranthus: A Promising Crop of Future; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Raoik Mlakar, S.; Turinek, M.; Jakop, M.; Bavec, M.; Bavec, F. Grain amaranth as an alternative and perspective crop in temperate climate. J. Geog. 2010, 5, 135–145. [Google Scholar]
- Riggins, C.W.; de la Rosa, A.P.B.; Blair, M.W.; Espitia-Rangel, E. Editorial: Amaranthus: Naturally Stress-Resistant Resources for Improved Agriculture and Human Health. Front. Plant Sci. 2021, 12, 726875. [Google Scholar] [CrossRef]
- Assad, R.; Reshi, Z.A.; Jan, S.; Rashid, I. Biology of Amaranths. Bot. Rev. 2017, 83, 382–436. [Google Scholar] [CrossRef]
- Sans Elorza, M.; Dana Sánchez, E.D.; Sobrino Vesperinas, E. Atlas de las Plantas Alóctonas Invasoras en España; Dirección General para la Biodiversidad; Dirección General de la Biodiversidad, Ministerio de Medio Ambiente: Madrid, Spain, 2004. [Google Scholar]
- Akubugwo, I.E.; Obasi, N.A.; Chinyere, G.C.; Ugbogu, A.E. Nutritional and chemical value of Amaranthus hybridus L. leaves from Afikpo, Nigeria. Afr. J. Biotechnol 2007, 6, 2833–2839. [Google Scholar] [CrossRef] [Green Version]
- Oluwatosin, G.A.; Adeoyolanu, O.D.; Ojo, A.O.; Are, K.S.; Dauda, T.O.; Aduramigba-Modupe, V.O. Heavy Metal Uptake and Accumulation by Edible Leafy Vegetable (Amaranthus Hybridus, L.) Grown on Urban Valley Bottom Soils in Southwestern Nigeria. Soil Sediment Contam. Int. J. 2009, 19, 1–20. [Google Scholar] [CrossRef]
- Odjegba, V.J.; Chukwunwike, I.C. Physiological responses of Amaranthus hybridus L. under salinity stress. IJID 2012, 1, 742–748. [Google Scholar]
- Muriuki, E.N.; Sila, D.N.; Onyango, A. Nutritional diversity of leafy amaranth species grown in Kenya. J. Appl. Biosci. 2014, 79, 6818–6825. [Google Scholar] [CrossRef] [Green Version]
- Zheleznov, A.; Solonenko, L.; Zheleznova, N. Seed proteins of the wild and the cultivated Amaranthus species. Euphytica 1997, 97, 177–182. [Google Scholar] [CrossRef]
- Njoki, J.W.; Sila, D.N.; Onyango, A.N. Impact of processing techniques on nutrient and anti-nutrient content of grain amaranth (A. albus). Food Sci. Qual. Manag. 2014, 25, 10–17. [Google Scholar]
- Ellis, R.A.; Roberts, E.H. The quantification of aging and survival in orthodox seeds. Seed Sci. Technol. 1981, 9, 373–409. [Google Scholar]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants without Soil; California Agriculture Experiment Station, College of Agriculture, University of California: Berkeley, California, CA, USA, 1950; pp. 1–32. [Google Scholar]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Mwando, E.; Han, Y.; Angessa, T.T.; Zhou, G.; Hill, C.B.; Zhang, X.-Q.; Li, C. Genome-Wide Association Study of Salinity Tolerance During Germination in Barley (Hordeum vulgare L.). Front. Plant Sci. 2020, 11, 118. [Google Scholar] [CrossRef] [Green Version]
- Han, C.; Yang, P.F. Studies on the molecular mechanisms of seed germination. Proteomics 2015, 15, 1671–1679. [Google Scholar] [CrossRef]
- Vicente, O.; Boscaiu, M.; Naranjo, M.Á.; Estrelles, E.; Bellés, J.M.; Soriano, P. Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). J. Arid. Environ. 2004, 58, 463–481. [Google Scholar] [CrossRef]
- Gul, B.; Ansari, R.; Flowers, T.; Khan, M.A. Germination strategies of halophyte seeds under salinity. Environ. Exp. Bot. 2013, 92, 4–18. [Google Scholar] [CrossRef]
- Chapman, V.J. Salt Marshes and Salt Deserts of the World; Interscience Publishers: New York, NY, USA, 1960. [Google Scholar]
- Wang, L.; Huang, Z.; Baskin, C.C.; Baskin, J.M.; Dong, M. Germination of Dimorphic Seeds of the Desert Annual Halophyte Suaeda aralocaspica (Chenopodiaceae), a C4 Plant without Kranz Anatomy. Ann. Bot. 2008, 102, 757–769. [Google Scholar] [CrossRef] [Green Version]
- Redondo-Gómez, S.; Rubio-Casal, A.; Castillo, J.M.; Luque, C.; Álvarez, A.; Luque, T.; Figueroa, M. Influences of salinity and light on germination of three Sarcocornia taxa with contrasted habitats. Aquat. Bot. 2004, 78, 255–264. [Google Scholar] [CrossRef]
- Hao, J.-H.; Lv, S.-S.; Bhattacharya, S.; Fu, J.-G. Germination response of four alien congeneric Amaranthus species to envi-ronmental factors. PLoS ONE 2017, 12, e017029. [Google Scholar] [CrossRef]
- Khan, A.M.; Mobli, A.; Werth, J.A.; Chauhan, B.S. Germination and seed persistence of Amaranthus retroflexus and Amaranthus viridis: Two emerging weeds in Australian cotton and other summer crops. PLoS ONE 2022, 17, e0263798. [Google Scholar] [CrossRef]
- Cevheri, C.; Küçük, Ç. Effect of salt concentrations on Amarantus germination under in vitro. J. Biotechol. Res. 2018, 4, 1–3. [Google Scholar]
- Amukali, O.; Obadoni, B.O.; Mensah, J.K. Effects of different NaCl Concentrations on germination and seedling growth of Amaranthus hybridus and Celosia argentea. Afr. J. Environ. Sci. Technol. 2015, 9, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Weiss, D.; Ori, N. Mechanisms of Cross Talk between Gibberellin and Other Hormones. Plant Physiol. 2007, 144, 1240–1246. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, M.; Itoh, H.; Ueguchi-Tanaka, M.; Ashikari, M.; Matsuoka, M. The α-Amylase Induction in Endosperm during Rice Seed Germination Is Caused by Gibberellin Synthesized in Epithelium. Plant Physiol. 2002, 128, 1264–1270. [Google Scholar] [CrossRef] [Green Version]
- El-Hendawy, S.; Elshafei, A.; Al-Suhaibani, N.; Alotabi, M.; Hassan, W.; Dewir, Y.H.; Abdella, K. Assessment of the salt toler-ance of wheat genotypes during the germination stage based on germination ability parameters and associated SSR markers. J. Plant Interact. 2019, 14, 151–163. [Google Scholar] [CrossRef] [Green Version]
- Rao, N.K.; Shahid, M. Amaranth-Perspective as an alternative crop for saline areas. Biosalinity Newsl. 2014, 14, 4–5. [Google Scholar]
- Plazas, M.; González-Orenga, S.; Nguyen, H.T.; Morar, I.M.; Fita, A.; Boscaiu, M.; Prohens, J.; Vicente, O. Growth and antioxidant responses triggered by water stress in wild relatives of eggplant. Sci. Hortic. 2021, 293, 110685. [Google Scholar] [CrossRef]
- Mshelmbula, B.P.; Florence, L.; Midawa, S.M.; Yusuf, C.S. Genetic responds of two varieties of Amaranthus on different salinity concentrations grown in Mubi, Nigeria. Appl. Sci. Rep. 2017, 17, 63–71. [Google Scholar] [CrossRef]
- Babaie Zarch, M.; Mahmoodi, S.; Eslami, S.; Zamani, G. Evaluating the competition of tumble pigweed (Amaranthus albus L.), common purslane (Portulaca oleracea L.) and common millet (Panicum miliaceum L.) competition under salinity stress. Environ. Stresses Crop Sci. 2019, 12, 573–583. [Google Scholar] [CrossRef]
Variable | Factor A (Species) | Factor B (Treatment) | Interaction A × B |
---|---|---|---|
Stem Length | 22.13 *** | 16.65 *** | 2.15 ns |
Leaf no. | 197.210 *** | 40.45 *** | 4.50 ** |
Leaf Area | 12.10 ** | 3.73 * | 2.25 ns |
Leaf Dry Weight | 65.40 *** | 7.82 *** | 4.41 ** |
Root Dry Weight | 3.30 ns | 5.29 *** | 1.95 ns |
Leaf Water Content | 18.33 *** | 0.9 ns | 3.26 * |
Root Water Content | 7.45 *** | 3.45 * | 1.56 ns |
Chlorophyll a | 0.657 ns | 3.68 * | 3.59 * |
Chlorophyll b | 5.97 ns | 1.06 ns | 1.29 ns |
Carotenoids | 5.39 ns | 10.97 *** | 1.3 ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellache, M.; Allal Benfekih, L.; Torres-Pagan, N.; Mir, R.; Verdeguer, M.; Vicente, O.; Boscaiu, M. Effects of Four-Week Exposure to Salt Treatments on Germination and Growth of Two Amaranthus Species. Soil Syst. 2022, 6, 57. https://doi.org/10.3390/soilsystems6030057
Bellache M, Allal Benfekih L, Torres-Pagan N, Mir R, Verdeguer M, Vicente O, Boscaiu M. Effects of Four-Week Exposure to Salt Treatments on Germination and Growth of Two Amaranthus Species. Soil Systems. 2022; 6(3):57. https://doi.org/10.3390/soilsystems6030057
Chicago/Turabian StyleBellache, Manel, Leila Allal Benfekih, Natalia Torres-Pagan, Ricardo Mir, Mercedes Verdeguer, Oscar Vicente, and Monica Boscaiu. 2022. "Effects of Four-Week Exposure to Salt Treatments on Germination and Growth of Two Amaranthus Species" Soil Systems 6, no. 3: 57. https://doi.org/10.3390/soilsystems6030057
APA StyleBellache, M., Allal Benfekih, L., Torres-Pagan, N., Mir, R., Verdeguer, M., Vicente, O., & Boscaiu, M. (2022). Effects of Four-Week Exposure to Salt Treatments on Germination and Growth of Two Amaranthus Species. Soil Systems, 6(3), 57. https://doi.org/10.3390/soilsystems6030057