Soil Respiration Is Influenced by Seasonality, Forest Succession and Contrasting Biophysical Controls in a Tropical Dry Forest in Northwestern Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
Forest Succession Sites
2.2. Soil Respiration Measurements
2.3. Ecosystem Flux and Meteorological Measurements
2.4. Statistical Analyses
3. Results
3.1. Interannual and Seasonal Time Series
3.1.1. Precipitation
3.1.2. Soil Volumetric Water Content and Soil Temperature
3.1.3. Soil Respiration
3.2. Controlling Factors of RS
3.2.1. Ecosystem Flux and Meteorological Variations
3.2.2. Relationship between RS to Flux and Biophysical Controls
4. Discussion
4.1. Interannual and Seasonal Variation of RS along Succession in TDF
4.2. Responses of RS to Biophysical Controls
4.3. Relatability of SEM to Assess Cause–Effects on RS
4.4. Soil Respiration from Tropical Dry Forests in a Global Context
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Breecker, D.O.; McFadden, L.D.; Sharp, Z.D.; Martinez, M.; Litvak, M.E. Deep Autotrophic Soil Respiration in Shrubland and Woodland Ecosystems in Central New Mexico. Ecosystems 2012, 15, 83–96. [Google Scholar] [CrossRef]
- Xu, M.; Shang, H. Contribution of Soil Respiration to the Global Carbon Equation. J. Plant Physiol. 2016, 203, 16–28. [Google Scholar] [CrossRef]
- Rey, A. Mind the Gap: Non-biological Processes Contributing to Soil CO2 Efflux. Glob. Change Biol. 2015, 21, 1752–1761. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Xie, J.-B.; Wang, Y.-G.; Li, Y. Biotic and Abiotic Contribution to Diurnal Soil CO2 Fluxes from Saline/Alkaline Soils. Sci. Rep. 2020, 10, 5396. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Thomson, A. A Global Database of Soil Respiration Data. Biogeosciences 2010, 7, 1915–1926. [Google Scholar] [CrossRef]
- Muñoz-Rojas, M.; Lewandrowski, W.; Erickson, T.E.; Dixon, K.W.; Merritt, D.J. Soil Respiration Dynamics in Fire Affected Semi-Arid Ecosystems: Effects of Vegetation Type and Environmental Factors. Sci. Total Environ. 2016, 572, 1385–1394. [Google Scholar] [CrossRef]
- Raich, J.W.; Schlesinger, W.H. The Global Carbon Dioxide Flux in Soil Respiration and Its Relationship to Vegetation and Climate. Tellus B 1992, 44, 81–99. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, Y.; Chen, B.; Zhou, W.; Du, E.; Fang, J. Comparison of the Variation of Soil Respiration in Carbon Cycle in Temperate and Subtropical Forests and the Relationship with Climatic Variables. Polish J. Ecol. 2015, 63, 365–376. [Google Scholar] [CrossRef]
- Barba, J.; Cueva, A.; Bahn, M.; Barron-Gafford, G.A.; Bond-Lamberty, B.; Hanson, P.J.; Jaimes, A.; Kulmala, L.; Pumpanen, J.; Scott, R.L.; et al. Comparing Ecosystem and Soil Respiration: Review and Key Challenges of Tower-Based and Soil Measurements. Agric. For. Meteorol. 2018, 249, 434–443. [Google Scholar] [CrossRef]
- Davidson, E.A.; Richardson, A.D.; Savage, K.E.; Hollinger, D.Y. A Distinct Seasonal Pattern of the Ratio of Soil Respiration to Total Ecosystem Respiration in a Spruce-Dominated Forest. Glob. Change Biol. 2006, 12, 230–239. [Google Scholar] [CrossRef]
- Campuzano, E.F.; Delgado-Balbuena, J.; Flores-Renteria, D. Controlling Factors of Ecosystem and Soil Respiration in a Xeric Shrubland in the Chihuahuan Desert, Mexico. Terra Latinoam. 2021, 39, 1–14. [Google Scholar] [CrossRef]
- Castillo-Monroy, A.P.; Maestre, F.T.; Rey, A.; Soliveres, S.; García-Palacios, P. Biological Soil Crust Microsites Are the Main Contributor to Soil Respiration in a Semiarid Ecosystem. Ecosystems 2011, 14, 835–847. [Google Scholar] [CrossRef]
- Nghalipo, E.N.; Throop, H.L. Vegetation Patch Type Has a Greater Influence on Soil Respiration than Does Fire History on Soil Respiration in an Arid Broadleaf Savanna Woodland, Central Namibia. J. Arid Environ. 2021, 193, 104577. [Google Scholar] [CrossRef]
- Almagro, M.; Querejeta, J.I.; Boix-Fayos, C.; Martínez-Mena, M. Links between Vegetation Patterns, Soil C and N Pools and Respiration Rate under Three Different Land Uses in a Dry Mediterranean Ecosystem. J. Soils Sediments 2013, 13, 641–653. [Google Scholar] [CrossRef]
- Throop, H.L.; Seely, M.K.; Marufu, V.J.; Summer Drylands Program Participant. Multiple Scales of Spatial Heterogeneity Control Soil Respiration Responses to Precipitation across a Dryland Rainfall Gradient. Plant Soil 2020, 453, 423–443. [Google Scholar] [CrossRef]
- Waring, B.G.; Powers, J.S. Unraveling the Mechanisms Underlying Pulse Dynamics of Soil Respiration in Tropical Dry Forests. Environ. Res. Lett. 2016, 11, 105005. [Google Scholar] [CrossRef]
- Barnes, M.L.; Farella, M.M.; Scott, R.L.; Moore, D.J.P.; Ponce-Campos, G.E.; Biederman, J.A.; MacBean, N.; Litvak, M.E.; Breshears, D.D. Improved Dryland Carbon Flux Predictions with Explicit Consideration of Water-Carbon Coupling. Commun. Earth Environ. 2021, 2, 248. [Google Scholar] [CrossRef]
- Subke, J.-A.; Bahn, M. On the ‘Temperature Sensitivity’ of Soil Respiration: Can We Use the Immeasurable to Predict the Unknown? Soil Biol. Biochem. 2010, 42, 1653–1656. [Google Scholar] [CrossRef]
- Raich, J.W.; Tufekciogul, A. Vegetation and Soil Respiration: Correlations and Controls. Biogeochemistry 2000, 48, 71–90. [Google Scholar] [CrossRef]
- Cueva, A.; Robles-Zazueta, C.A.; Garatuza-Payan, J.; Yépez, E.A. Soil Respiration in Mexico: Advances and Future Directions. Terra Latinoam. 2016, 34, 253–269. [Google Scholar]
- Guan, C.; Chen, N.; Qiao, L.; Zhao, C. Photosynthesis Regulates the Diel Hysteresis Pattern between Soil Respiration and Soil Temperature in a Steppe Grassland. Geoderma 2022, 408, 115561. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Wang, C.; Gower, S.T. A Global Relationship between the Heterotrophic and Autotrophic Components of Soil Respiration? Glob. Change Biol. 2004, 10, 1756–1766. [Google Scholar] [CrossRef]
- Barron-Gafford, G.A.; Scott, R.L.; Jenerette, G.D.; Huxman, T.E. The Relative Controls of Temperature, Soil Moisture, and Plant Functional Group on Soil CO2 Efflux at Diel, Seasonal, and Annual Scales. J. Geophys. Res. Biogeosci. 2011, 116, G01023. [Google Scholar] [CrossRef]
- Vargas, R.; Baldocchi, D.D.; Bahn, M.; Hanson, P.J.; Hosman, K.P.; Kulmala, L.; Pumpanen, J.; Yang, B. On the Multi-temporal Correlation between Photosynthesis and Soil CO2 Efflux: Reconciling Lags and Observations. New Phytol. 2011, 191, 1006–1017. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Guo, D.; Zhang, C.; Niu, D.; Fu, H.; Wan, C. Contribution of Root Respiration to Total Soil Respiration in a Semi-Arid Grassland on the Loess Plateau, China. Sci. Total Environ. 2018, 627, 1209–1217. [Google Scholar] [CrossRef]
- Liu, X.; Liang, J.; Gu, L. Photosynthetic and Environmental Regulations of the Dynamics of Soil Respiration in a Forest Ecosystem Revealed by Analyses of Decadal Time Series. Agric. For. Meteorol. 2020, 282–283, 107863. [Google Scholar] [CrossRef]
- Tang, J.; Baldocchi, D.D.; Xu, L. Tree Photosynthesis Modulates Soil Respiration on a Diurnal Time Scale. Glob. Change Biol. 2005, 11, 1298–1304. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Epron, D.; Harden, J.; Harmon, M.E.; Hoffman, F.; Kumar, J.; David McGuire, A.; Vargas, R. Estimating Heterotrophic Respiration at Large Scales: Challenges, Approaches, and next Steps. Ecosphere 2016, 7, e01380. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Bronson, D.; Bladyka, E.; Gower, S.T. A Comparison of Trenched Plot Techniques for Partitioning Soil Respiration. Soil Biol. Biochem. 2011, 43, 2108–2114. [Google Scholar] [CrossRef]
- Conant, R.T.; Dalla-Betta, P.; Klopatek, C.C.; Klopatek, J.M. Controls on Soil Respiration in Semiarid Soils. Soil Biol. Biochem. 2004, 36, 945–951. [Google Scholar] [CrossRef]
- Verduzco, V.S.; Garatuza-Payán, J.; Yépez, E.A.; Watts, C.J.; Rodríguez, J.C.; Robles-Morua, A.; Vivoni, E.R. Variations of Net Ecosystem Production Due to Seasonal Precipitation Differences in a Tropical Dry Forest of Northwest Mexico: Carbon Exchange at a Tropical Dry Forest. J. Geophys. Res. Biogeosci. 2015, 120, 2081–2094. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Gavrichkova, O. Time Lag between Photosynthesis and Carbon Dioxide Efflux from Soil: A Review of Mechanisms and Controls. Glob. Chang. Biol. 2010, 16, 3386–3406. [Google Scholar] [CrossRef]
- Balogh, J.; Fóti, S.; Pintér, K.; Burri, S.; Eugster, W.; Papp, M.; Nagy, Z. Soil CO2 Efflux and Production Rates as Influenced by Evapotranspiration in a Dry Grassland. Plant Soil 2015, 388, 157–173. [Google Scholar] [CrossRef]
- Rubio, V.E.; Detto, M. Spatiotemporal Variability of Soil Respiration in a Seasonal Tropical Forest. Ecol. Evol. 2017, 7, 7104–7116. [Google Scholar] [CrossRef] [PubMed]
- Linares-Palomino, R.; Oliveira-Filho, A.T.; Pennington, R.T. Neotropical Seasonally Dry Forests: Diversity, Endemism, and Biogeography of Woody Plants. In Seasonally Dry Tropical Forests; Dirzo, R., Young, H.S., Mooney, H.A., Ceballos, G., Eds.; Island Press/Center for Resource Economics: Washington, DC, USA, 2011; pp. 3–21. [Google Scholar] [CrossRef]
- Portillo-Quintero, C.; Sanchez-Azofeifa, A.; Calvo-Alvarado, J.; Quesada, M.; do Espirito Santo, M.M. The Role of Tropical Dry Forests for Biodiversity, Carbon and Water Conservation in the Neotropics: Lessons Learned and Opportunities for Its Sustainable Management. Reg. Environ. Change 2015, 15, 1039–1049. [Google Scholar] [CrossRef]
- Allen, K.; Dupuy, J.M.; Gei, M.G.; Hulshof, C.; Medvigy, D.; Pizano, C.; Salgado-Negret, B.; Smith, C.M.; Trierweiler, A.; Van Bloem, S.J.; et al. Will Seasonally Dry Tropical Forests Be Sensitive or Resistant to Future Changes in Rainfall Regimes? Environ. Res. Lett. 2017, 12, 023001. [Google Scholar] [CrossRef]
- Santiago, L.S.; Silvera, K.; Andrade, J.L.; Dawson, T.E. Functional Strategies of Tropical Dry Forest Plants in Relation to Growth Form and Isotopic Composition. Environ. Res. Lett. 2017, 12, 115006. [Google Scholar] [CrossRef]
- Powers, J.S.; Becklund, K.K.; Gei, M.G.; Iyengar, S.B.; Meyer, R.; O’Connell, C.S.; Schilling, E.M.; Smith, C.M.; Waring, B.G.; Werden, L.K. Nutrient Addition Effects on Tropical Dry Forests: A Mini-Review from Microbial to Ecosystem Scales. Front. Earth Sci. 2015, 3, 34. [Google Scholar] [CrossRef]
- Pennington, R.T.; Lavin, M.; Oliveira-Filho, A. Woody Plant Diversity, Evolution, and Ecology in the Tropics: Perspectives from Seasonally Dry Tropical Forests. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 437–457. [Google Scholar] [CrossRef]
- Álvarez-Yépiz, J.C.; Búrquez, A.; Martínez-Yrízar, A.; Teece, M.; Yépez, E.A.; Dovciak, M. Resource Partitioning by Evergreen and Deciduous Species in a Tropical Dry Forest. Oecologia 2017, 183, 607–618. [Google Scholar] [CrossRef]
- Rankine, C.; Sánchez-Azofeifa, G.A.; Guzmán, J.A.; Espirito-Santo, M.M.; Sharp, I. Comparing MODIS and Near-Surface Vegetation Indexes for Monitoring Tropical Dry Forest Phenology along a Successional Gradient Using Optical Phenology Towers. Environ. Res. Lett. 2017, 12, 105007. [Google Scholar] [CrossRef]
- Austin, A.T.; Yahdjian, L.; Stark, J.M.; Belnap, J.; Porporato, A.; Norton, U.; Ravetta, D.A.; Schaeffer, S.M. Water Pulses and Biogeochemical Cycles in Arid and Semiarid Ecosystems. Oecologia 2004, 141, 221–235. [Google Scholar] [CrossRef]
- Anaya, C.A.; Jaramillo, V.J.; Martínez-Yrízar, A.; García-Oliva, F. Large Rainfall Pulses Control Litter Decomposition in a Tropical Dry Forest: Evidence from an 8-Year Study. Ecosystems 2012, 15, 652–663. [Google Scholar] [CrossRef]
- Schimel, J.P. Life in Dry Soils: Effects of Drought on Soil Microbial Communities and Processes. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 409–432. [Google Scholar] [CrossRef]
- Kuzyakov, Y. Priming Effects: Interactions between Living and Dead Organic Matter. Soil Biol. Biochem. 2010, 42, 1363–1371. [Google Scholar] [CrossRef]
- Jarvis, P.; Rey, A.; Petsikos, C.; Wingate, L.; Rayment, M.; Pereira, J.; Banza, J.; David, J.; Miglietta, F.; Borghetti, M.; et al. Drying and Wetting of Mediterranean Soils Stimulates Decomposition and Carbon Dioxide Emission: The “Birch Effect”. Tree Physiol. 2007, 27, 929–940. [Google Scholar] [CrossRef] [PubMed]
- Unger, S.; Máguas, C.; Pereira, J.S.; David, T.S.; Werner, C. The Influence of Precipitation Pulses on Soil Respiration—Assessing the “Birch Effect” by Stable Carbon Isotopes. Soil Biol. Biochem. 2010, 42, 1800–1810. [Google Scholar] [CrossRef]
- Maass, J.M.; Balvanera, P.; Castillo, A.; Daily, G.C.; Mooney, H.A.; Ehrlich, P.; Quesada, M.; Miranda, A.; Jaramillo, V.J.; García-Oliva, F.; et al. Ecosystem Services of Tropical Dry Forests: Insights from Long-Term Ecological and Social Research on the Pacific Coast of Mexico. Ecol. Soc. 2005, 10, art17. [Google Scholar] [CrossRef]
- Portillo-Quintero, C.A.; Sánchez-Azofeifa, G.A. Extent and Conservation of Tropical Dry Forests in the Americas. Biol. Conserv. 2010, 143, 144–155. [Google Scholar] [CrossRef]
- Sanchez-Azofeifa, A.; Powers, J.S.; Fernandes, G.W.; Quesada, M. (Eds.) Tropical Dry Forest Ecological Succession in Mexico: Synthesis of a Long-Term Study. In Tropical Dry Forests in the Americas; CRC Press: Boca Raton, FL, USA, 2013; pp. 35–52. [Google Scholar] [CrossRef]
- Álvarez-Yépiz, J.C.; Martínez-Yrízar, A.; Búrquez, A.; Lindquist, C. Variation in Vegetation Structure and Soil Properties Related to Land Use History of Old-Growth and Secondary Tropical Dry Forests in Northwestern Mexico. For. Ecol. Manag. 2008, 256, 355–366. [Google Scholar] [CrossRef]
- Álvarez-Yépiz, J.C.; Martínez-Yrízar, A.; Fredericksen, T.S. Special Issue: Resilience of Tropical Dry Forests to Extreme Disturbance Events. For. Ecol. Manag. 2018, 426, 1–6. [Google Scholar] [CrossRef]
- Figueroa, D.; Ortega-Fernández, P.; Abbruzzini, T.F.; Rivero-Villlar, A.; Galindo, F.; Chavez-Vergara, B.; Etchevers, J.D.; Campo, J. Effects of Land Use Change from Natural Forest to Livestock on Soil C, N and P Dynamics along a Rainfall Gradient in Mexico. Sustainability 2020, 12, 8656. [Google Scholar] [CrossRef]
- Rodtassana, C.; Unawong, W.; Yaemphum, S.; Chanthorn, W.; Chawchai, S.; Nathalang, A.; Brockelman, W.Y.; Tor-ngern, P. Different Responses of Soil Respiration to Environmental Factors across Forest Stages in a Southeast Asian Forest. Ecol. Evol. 2021, 11, 15430–15443. [Google Scholar] [CrossRef]
- Calvo-Rodriguez, S.; Kiese, R.; Sánchez-Azofeifa, G.A. Seasonality and Budgets of Soil Greenhouse Gas Emissions From a Tropical Dry Forest Successional Gradient in Costa Rica. J. Geophys. Res. Biogeosci. 2020, 125, e2020JG005647. [Google Scholar] [CrossRef]
- Álvarez-Yépiz, J.C.; Dovčiak, M.; Búrquez, A. Persistence of a Rare Ancient Cycad: Effects of Environment and Demography. Biol. Conserv. 2011, 144, 122–130. [Google Scholar] [CrossRef]
- Vargas, R.; Yépez, E.A.; Andrade, J.L.; Ángeles, G.; Arredondo, T.; Castellanos, A.E.; Delgado-Balbuena, J.; Garatuza-Payán, J.; González Del Castillo, E.; Oechel, W.; et al. Progress and Opportunities for Monitoring Greenhouse Gases Fluxes in Mexican Ecosystems: The MexFlux Network. Atmósfera 2013, 26, 325–336. [Google Scholar] [CrossRef]
- García, E. Modificaciones al Sistema de Clasificación Climática de Köppen, 16th ed.; Universidad Nacional Autónoma de México: Ciudad de Mexico, Mexico, 2004. [Google Scholar]
- Gochis, D.J.; Brito-Castillo, L.; Shuttleworth, W.J. Hydroclimatology of the North American Monsoon Region in Northwest Mexico. J. Hydrol. 2006, 316, 53–70. [Google Scholar] [CrossRef]
- Bojórquez, A.; Álvarez-Yépiz, J.C.; Búrquez, A.; Martínez-Yrízar, A. Understanding and Predicting Frost-induced Tropical Tree Mortality Patterns. Glob. Chang. Biol. 2019, 25, 3817–3828. [Google Scholar] [CrossRef]
- Nevescanin-Moreno, L.; Yépez, E.A.; Villanueva-Hernández, D.; González-Pelayo, M.A.; Johnson, K.; Garatuza-Payan, J.; Vargas, R. Reservorios de Carbono En Un Bosque Tropical Seco En El Noroeste de México. In Estado Actual del Conocimiento del Ciclo del Carbono y sus Interacciones en México: Síntesis a 2016. Serie Síntesis Nacionales; Paz, F., Torres, R., Eds.; Programa Mexicano del Carbono: Estado de México, Mexico, 2016; pp. 479–484. [Google Scholar]
- Sandoval-Aguilar, M.; De los Santos-Villalobos, S.; Peláez-Álvarez, A.; Coyotl-Barrios, T.; Garatuza-Payan, J.; Yépez, E.A. Función Microbiana Asociada al Carbono En Sitios de Sucesión Ecológica de Un Bosque Tropical Seco. In Estado Actual del Conocimiento del Ciclo del Carbono y sus Interacciones en México: Síntesis a 2014. Serie Síntesis Nacionales; Paz, F., Wong, J., Eds.; Programa Mexicano del Carbono: Estado de México, Mexico, 2015; pp. 620–626. [Google Scholar]
- Velez-Ruiz, A.M.; Nevescanin-Moreno, L.; Vargas-Terminel, M.L.; Flores-Espinoza, A.R.; Álvarez-Yépiz, J.C.; Yépez, E.A. Data on Litterfall Production and Meteorology at an Old-Growth Tropical Dry Forest in Northwestern Mexico. Data Br. 2020, 31, 105723. [Google Scholar] [CrossRef]
- Rojas-Robles, N.E. Tropical Dry Forest Contribution to Carbon and Water Cycles: An Ecosystem Functional Approach in Mexico. Ph.D. Dissertation, Instituto Tecnológico de Sonora, Ciudad Obregón, Mexico, 2020. [Google Scholar]
- Cueva, A.; Bullock, S.H.; López-Reyes, E.; Vargas, R. Potential Bias of Daily Soil CO2 Efflux Estimates Due to Sampling Time. Sci. Rep. 2017, 7, 11925. [Google Scholar] [CrossRef]
- Jian, J.; Steele, M.K.; Day, S.D.; Quinn Thomas, R.; Hodges, S.C. Measurement Strategies to Account for Soil Respiration Temporal Heterogeneity across Diverse Regions. Soil Biol. Biochem. 2018, 125, 167–177. [Google Scholar] [CrossRef]
- Huang, S.; Ye, G.; Lin, J.; Chen, K.; Xu, X.; Ruan, H.; Tan, F.; Chen, H.Y.H. Autotrophic and Heterotrophic Soil Respiration Responds Asymmetrically to Drought in a Subtropical Forest in the Southeast China. Soil Biol. Biochem. 2018, 123, 242–249. [Google Scholar] [CrossRef]
- Courtois, E.A.; Stahl, C.; Burban, B.; Van den Berge, J.; Berveiller, D.; Bréchet, L.; Soong, J.L.; Arriga, N.; Peñuelas, J.; Janssens, I.A. Automatic High-Frequency Measurements of Full Soil Greenhouse Gas Fluxes in a Tropical Forest. Biogeosciences 2019, 16, 785–796. [Google Scholar] [CrossRef]
- Rojas-Robles, N.E.; Garatuza-Payán, J.; Álvarez-Yépiz, J.C.; Sánchez-Mejía, Z.M.; Vargas, R.; Yépez, E.A. Environmental Controls on Carbon and Water Fluxes in an Old-Growth Tropical Dry Forest. J. Geophys. Res. Biogeosci. 2020, 125, e2020JG005666. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the Separation of Net Ecosystem Exchange into Assimilation and Ecosystem Respiration: Review and Improved Algorithm. Glob. Change Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Wutzler, T.; Lucas-Moffat, A.; Migliavacca, M.; Knauer, J.; Sickel, K.; Šigut, L.; Menzer, O.; Reichstein, M. Basic and Extensible Post-Processing of Eddy Covariance Flux Data with REddyProc. Biogeosciences 2018, 15, 5015–5030. [Google Scholar] [CrossRef]
- Vargas Terminel, M.L.; Yépez, E.A.; Tarin, T.; Robles Zazueta, C.A.; Garatuza Payán, J.; Rodríguez, J.C.; Watts, C.J.; Vivoni, E.R. Contribución Del Estrato Arbustivo a Los Flujos de Agua y CO2 de Un Matorral Subtropical En El Noroeste de México. Tecnol. Cienc. Agua 2020, 11, 130–170. [Google Scholar] [CrossRef]
- Shuttleworth, W.J. Terrestrial Hydrometeorology, 1st ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Shuttleworth, W.J. Putting the “Vap” into Evaporation. Hydrol. Earth Syst. Sci. 2007, 11, 210–244. [Google Scholar] [CrossRef] [Green Version]
- Chapin, F.S.; Matson, P.A.; Vitousek, P.M. Principles of Terrestrial Ecosystem Ecology; Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Yepez, E.A.; Scott, R.L.; Cable, W.L.; Williams, D.G. Intraseasonal Variation in Water and Carbon Dioxide Flux Components in a Semiarid Riparian Woodland. Ecosystems 2007, 10, 1100–1115. [Google Scholar] [CrossRef]
- Noy-Meir, I. Desert Ecosystems: Higher Trophic Levels. Annu. Rev. Ecol. Syst. 1974, 5, 195–214. [Google Scholar] [CrossRef]
- Yepez, E.A.; Huxman, T.E.; Ignace, D.D.; English, N.B.; Weltzin, J.F.; Castellanos, A.E.; Williams, D.G. Dynamics of Transpiration and Evaporation Following a Moisture Pulse in Semiarid Grassland: A Chamber-Based Isotope Method for Partitioning Flux Components. Agric. For. Meteorol. 2005, 132, 359–376. [Google Scholar] [CrossRef]
- Curiel Yuste, J.; Flores-Rentería, D.; García-Angulo, D.; Hereş, A.-M.; Bragă, C.; Petritan, A.-M.; Petritan, I.C. Cascading Effects Associated with Climate-Change-Induced Conifer Mortality in Mountain Temperate Forests Result in Hot-Spots of Soil CO2 Emissions. Soil Biol. Biochem. 2019, 133, 50–59. [Google Scholar] [CrossRef]
- Grace, J.B. Structural Equation Modeling and Natural Systems, 1st ed.; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar] [CrossRef]
- Flores-Rentería, D.; Rincón, A.; Morán-López, T.; Hereş, A.-M.; Pérez-Izquierdo, L.; Valladares, F.; Curiel Yuste, J. Habitat Fragmentation Is Linked to Cascading Effects on Soil Functioning and CO2 Emissions in Mediterranean Holm-Oak-Forests. PeerJ 2018, 6, e5857. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, P.F.; da Lima, J.R.d.S.; Antonino, A.C.D.; Souza, R.; de Souza, E.S.; Silva, J.R.I.; Alves, E.M. Seasonal Patterns of Carbon Dioxide, Water and Energy Fluxes over the Caatinga and Grassland in the Semi-Arid Region of Brazil. J. Arid Environ. 2017, 147, 71–82. [Google Scholar] [CrossRef]
- Adachi, M.; Bekku, Y.S.; Rashidah, W.; Okuda, T.; Koizumi, H. Differences in Soil Respiration between Different Tropical Ecosystems. Appl. Soil Ecol. 2006, 34, 258–265. [Google Scholar] [CrossRef]
- Hu, S.; Li, Y.; Chang, S.X.; Li, Y.; Yang, W.; Fu, W.; Liu, J.; Jiang, P.; Lin, Z. Soil Autotrophic and Heterotrophic Respiration Respond Differently to Land-Use Change and Variations in Environmental Factors. Agric. For. Meteorol. 2018, 250, 290–298. [Google Scholar] [CrossRef]
- Arellano-Martín, F.; Dupuy, J.M.; Us-Santamaría, R.; Andrade, J.L. Soil CO2 Efflux Fluctuates in Three Different Annual Seasons in a Semideciduous Tropical Forest in Yucatan, Mexico. Terra Latinoam. 2022, 40, 1–12. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, D.; Zhou, G.; Liu, J. Soil Respiration Associated with Forest Succession in Subtropical Forests in Dinghushan Biosphere Reserve. Soil Biol. Biochem. 2009, 41, 991–999. [Google Scholar] [CrossRef]
- Aryal, D.R.; De Jong, B.H.J.; Mendoza-Vega, J.; Ochoa-Gaona, S.; Esparza-Olguín, L. Soil Organic Carbon Stocks and Soil Respiration in Tropical Secondary Forests in Southern Mexico. In Global Soil Security; Field, D.J., Morgan, C.L.S., McBratney, A.B., Eds.; Progress in Soil Science; Springer International Publishing: Cham, Switzerland, 2017; pp. 153–165. [Google Scholar] [CrossRef]
- Duan, B.; Cai, T.; Man, X.; Xiao, R.; Gao, M.; Ge, Z.; Mencuccini, M. Different Variations in Soil CO2, CH4, and N2O Fluxes and Their Responses to Edaphic Factors along a Boreal Secondary Forest Successional Trajectory. Sci. Total Environ. 2022, 838, 155983. [Google Scholar] [CrossRef]
- Bojórquez, A.; Martínez-Yrízar, A.; Álvarez-Yépiz, J.C. A Landscape Assessment of Frost Damage in the Northmost Neotropical Dry Forest. Agric. For. Meteorol. 2021, 308–309, 108562. [Google Scholar] [CrossRef]
- Cable, J.M.; Ogle, K.; Lucas, R.W.; Huxman, T.E.; Loik, M.E.; Smith, S.D.; Tissue, D.T.; Ewers, B.E.; Pendall, E.; Welker, J.M.; et al. The Temperature Responses of Soil Respiration in Deserts: A Seven Desert Synthesis. Biogeochemistry 2011, 103, 71–90. [Google Scholar] [CrossRef]
- Leon, E.; Vargas, R.; Bullock, S.; Lopez, E.; Panosso, A.R.; La Scala, N. Hot Spots, Hot Moments, and Spatio-Temporal Controls on Soil CO2 Efflux in a Water-Limited Ecosystem. Soil Biol. Biochem. 2014, 77, 12–21. [Google Scholar] [CrossRef]
- Roby, M.C.; Scott, R.L.; Barron-Gafford, G.A.; Hamerlynck, E.P.; Moore, D.J.P. Environmental and Vegetative Controls on Soil CO2 Efflux in Three Semiarid Ecosystems. Soil Syst. 2019, 3, 6. [Google Scholar] [CrossRef]
- Carbone, M.S.; Still, C.J.; Ambrose, A.R.; Dawson, T.E.; Williams, A.P.; Boot, C.M.; Schaeffer, S.M.; Schimel, J.P. Seasonal and Episodic Moisture Controls on Plant and Microbial Contributions to Soil Respiration. Oecologia 2011, 167, 265–278. [Google Scholar] [CrossRef]
- Adair, E.C.; Reich, P.B.; Trost, J.J.; Hobbie, S.E. Elevated CO2 Stimulates Grassland Soil Respiration by Increasing Carbon Inputs Rather than by Enhancing Soil Moisture. Glob. Change Biol. 2011, 17, 3546–3563. [Google Scholar] [CrossRef]
- Biederman, J.A.; Scott, R.L.; Goulden, M.L.; Vargas, R.; Litvak, M.E.; Kolb, T.E.; Yepez, E.A.; Oechel, W.C.; Blanken, P.D.; Bell, T.W.; et al. Terrestrial Carbon Balance in a Drier World: The Effects of Water Availability in Southwestern North America. Glob. Chang. Biol. 2016, 22, 1867–1879. [Google Scholar] [CrossRef]
- Lebrija-Trejos, E.; Meave, J.A.; Poorter, L.; Pérez-García, E.A.; Bongers, F. Pathways, Mechanisms and Predictability of Vegetation Change during Tropical Dry Forest Succession. Plant Ecol. Evol. Syst. 2010, 12, 267–275. [Google Scholar] [CrossRef]
- Méndez-Alonzo, R.; Paz, H.; Zuluaga, R.C.; Rosell, J.A.; Olson, M.E. Coordinated Evolution of Leaf and Stem Economics in Tropical Dry Forest Trees. Ecology 2012, 93, 2397–2406. [Google Scholar] [CrossRef]
- Chai, Y.; Yue, M.; Wang, M.; Xu, J.; Liu, X.; Zhang, R.; Wan, P. Plant Functional Traits Suggest a Change in Novel Ecological Strategies for Dominant Species in the Stages of Forest Succession. Oecologia 2016, 180, 771–783. [Google Scholar] [CrossRef]
- Lasky, J.R.; Uriarte, M.; Muscarella, R. Synchrony, Compensatory Dynamics, and the Functional Trait Basis of Phenological Diversity in a Tropical Dry Forest Tree Community: Effects of Rainfall Seasonality. Environ. Res. Lett. 2016, 11, 115003. [Google Scholar] [CrossRef]
- Sanaphre-Villanueva, L.; Dupuy, J.M.; Andrade, J.L.; Reyes-García, C.; Jackson, P.C.; Paz, H. Patterns of Plant Functional Variation and Specialization along Secondary Succession and Topography in a Tropical Dry Forest. Environ. Res. Lett. 2017, 12, 055004. [Google Scholar] [CrossRef]
- Castro-López, J.A.; Robles-Morua, A.; Méndez-Barroso, L.A.; Garatuza-Payan, J.; Rojas-Robles, O.A.; Yépez, E.A. Water Isotope Variation in an Ecohydrologic Context at a Seasonally Dry Tropical Forest in Northwest Mexico. J. Arid Environ. 2022, 196, 104658. [Google Scholar] [CrossRef]
- Kalacska, M.; Sanchez-Azofeifa, G.A.; Calvo-Alvarado, J.C.; Quesada, M.; Rivard, B.; Janzen, D.H. Species Composition, Similarity and Diversity in Three Successional Stages of a Seasonally Dry Tropical Forest. For. Ecol. Manag. 2004, 200, 227–247. [Google Scholar] [CrossRef]
- Lebrija-Trejos, E.; Bongers, F.; Pérez-García, E.A.; Meave, J.A. Successional Change and Resilience of a Very Dry Tropical Deciduous Forest Following Shifting Agriculture: Tropical Very Dry Forest Secondary Succession. Biotropica 2008, 40, 422–431. [Google Scholar] [CrossRef]
- Ekblad, A.; Boström, B.; Holm, A.; Comstedt, A. Forest Soil Respiration Rate and Δ13C Is Regulated by Recent above Ground Weather Conditions. Oecologia 2005, 143, 136–142. [Google Scholar] [CrossRef]
- Alstad, K.P.; Lai, C.-T.; Flanagan, L.B.; Ehleringer, J.R. Environmental Controls on the Carbon Isotope Composition of Ecosystem-Respired CO2 in Contrasting Forest Ecosystems in Canada and the USA. Tree Physiol. 2007, 27, 1361–1374. [Google Scholar] [CrossRef] [PubMed]
- Carbone, M.S.; Winston, G.C.; Trumbore, S.E. Soil Respiration in Perennial Grass and Shrub Ecosystems: Linking Environmental Controls with Plant and Microbial Sources on Seasonal and Diel Timescales. J. Geophys. Res. Biogeosci. 2008, 113, G02022. [Google Scholar] [CrossRef]
- Cable, J.M.; Ogle, K.; Barron-Gafford, G.A.; Bentley, L.P.; Cable, W.L.; Scott, R.L.; Williams, D.G.; Huxman, T.E. Antecedent Conditions Influence Soil Respiration Differences in Shrub and Grass Patches. Ecosystems 2013, 16, 1230–1247. [Google Scholar] [CrossRef]
- Tarin, T.; Nolan, R.H.; Eamus, D.; Cleverly, J. Carbon and Water Fluxes in Two Adjacent Australian Semi-Arid Ecosystems. Agric. For. Meteorol. 2020, 281, 107853. [Google Scholar] [CrossRef]
- Novick, K.A.; Ficklin, D.L.; Stoy, P.C.; Williams, C.A.; Bohrer, G.; Oishi, A.C.; Papuga, S.A.; Blanken, P.D.; Noormets, A.; Sulman, B.N.; et al. The Increasing Importance of Atmospheric Demand for Ecosystem Water and Carbon Fluxes. Nat. Clim. Change 2016, 6, 1023–1027. [Google Scholar] [CrossRef]
- Fu, Z.; Ciais, P.; Prentice, I.C.; Gentine, P.; Makowski, D.; Bastos, A.; Luo, X.; Green, J.K.; Stoy, P.C.; Yang, H.; et al. Atmospheric Dryness Reduces Photosynthesis along a Large Range of Soil Water Deficits. Nat. Commun. 2022, 13, 989. [Google Scholar] [CrossRef] [PubMed]
- Bowling, D.R.; McDowell, N.G.; Bond, B.J.; Law, B.E.; Ehleringer, J.R. 13C Content of Ecosystem Respiration Is Linked to Precipitation and Vapor Pressure Deficit. Oecologia 2002, 131, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Roby, M.C.; Scott, R.L.; Moore, D.J.P. High Vapor Pressure Deficit Decreases the Productivity and Water Use Efficiency of Rain-Induced Pulses in Semiarid Ecosystems. J. Geophys. Res. Biogeosci. 2020, 125, e2020JG005665. [Google Scholar] [CrossRef]
- Quesada, M.; Sanchez-Azofeifa, G.A.; Alvarez-Añorve, M.; Stoner, K.E.; Avila-Cabadilla, L.; Calvo-Alvarado, J.; Castillo, A.; Espírito-Santo, M.M.; Fagundes, M.; Fernandes, G.W.; et al. Succession and Management of Tropical Dry Forests in the Americas: Review and New Perspectives. For. Ecol. Manag. 2009, 258, 1014–1024. [Google Scholar] [CrossRef]
- Wirth, C.; Gleixner, G.; Heimann, M. Old-Growth Forests: Function, Fate and Value—An Overview. In Old-Growth Forests; Wirth, C., Gleixner, G., Heimann, M., Eds.; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 2009; Volume 207, pp. 3–10. [Google Scholar] [CrossRef]
- Baldocchi, D.; Collineau, S. The Physical Nature of Solar Radiation in Heterogeneous Canopies: Spatial and Temporal Attributes. In Exploitation of Environmental Heterogeneity by Plants; Elsevier: Amsterdam, The Netherlands, 1994; pp. 21–71. [Google Scholar] [CrossRef]
- Maass, J.; Vose, J.M.; Swank, W.T.; Martínez-Yrízar, A. Seasonal Changes of Leaf Area Index (LAI) in a Tropical Deciduous Forest in West Mexico. For. Ecol. Manag. 1995, 74, 171–180. [Google Scholar] [CrossRef]
- Yu, L.; Wang, Y.; Wang, Y.; Sun, S.; Liu, L. Quantifying Components of Soil Respiration and Their Response to Abiotic Factors in Two Typical Subtropical Forest Stands, Southwest China. PLoS ONE 2015, 10, e0117490. [Google Scholar] [CrossRef]
- Badraghi, A.; Ventura, M.; Polo, A.; Borruso, L.; Giammarchi, F.; Montagnani, L. Soil Respiration Variation along an Altitudinal Gradient in the Italian Alps: Disentangling Forest Structure and Temperature Effects. PLoS ONE 2021, 16, e0247893. [Google Scholar] [CrossRef]
- Shipley, B. Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations and Causal Inference with R, 2nd ed.; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar] [CrossRef]
- Guan, C.; Chen, N.; Qiao, L.; Zhao, C. Contrasting Effects of Biological Soil Crusts on Soil Respiration in a Typical Steppe. Soil Biol. Biochem. 2022, 169, 108666. [Google Scholar] [CrossRef]
- Tian, Q.; Wang, D.; Tang, Y.; Li, Y.; Wang, M.; Liao, C.; Liu, F. Topographic Controls on the Variability of Soil Respiration in a Humid Subtropical Forest. Biogeochemistry 2019, 145, 177–192. [Google Scholar] [CrossRef]
- Li, J.; Pei, J.; Pendall, E.; Fang, C.; Nie, M. Spatial Heterogeneity of Temperature Sensitivity of Soil Respiration: A Global Analysis of Field Observations. Soil Biol. Biochem. 2020, 141, 107675. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Bowker, M.A.; Grace, J.B.; Powell, J.R. From Patterns to Causal Understanding: Structural Equation Modeling (SEM) in Soil Ecology. Pedobiologia 2015, 58, 65–72. [Google Scholar] [CrossRef]
- Reynolds, J.F.; Smith, D.M.S.; Lambin, E.F.; Turner, B.L.; Mortimore, M.; Batterbury, S.P.J.; Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; Herrick, J.E.; et al. Global Desertification: Building a Science for Dryland Development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef] [Green Version]
- Poulter, B.; Frank, D.; Ciais, P.; Myneni, R.B.; Andela, N.; Bi, J.; Broquet, G.; Canadell, J.G.; Chevallier, F.; Liu, Y.Y.; et al. Contribution of Semi-Arid Ecosystems to Interannual Variability of the Global Carbon Cycle. Nature 2014, 509, 600–603. [Google Scholar] [CrossRef]
- Ahlström, A.; Raupach, M.R.; Schurgers, G.; Smith, B.; Arneth, A.; Jung, M.; Reichstein, M.; Canadell, J.G.; Friedlingstein, P.; Jain, A.K.; et al. The Dominant Role of Semi-Arid Ecosystems in the Trend and Variability of the Land CO2 Sink. Science 2015, 348, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Niño, F.; Maya-Delgado, Y.; García-Calderón, N.E.; Olmedo, G.; Guevara, M.; Troyo-Diéguez, E. Spatial Distribution of Soil Carbon Storage in Desert Shrubland Ecosystems of Northwest Mexico. J. Arid Environ. 2020, 183, 104251. [Google Scholar] [CrossRef]
- Adachi, M.; Ishida, A.; Bunyavejchewin, S.; Okuda, T.; Koizumi, H. Spatial and Temporal Variation in Soil Respiration in a Seasonally Dry Tropical Forest, Thailand. J. Trop. Ecol. 2009, 25, 531–539. [Google Scholar] [CrossRef]
- Hanpattanakit, P.; Leclerc, M.Y.; Mcmillan, A.M.S.; Limtong, P.; Maeght, J.-L.; Panuthai, S.; Inubushi, K.; Chidthaisong, A. Multiple Timescale Variations and Controls of Soil Respiration in a Tropical Dry Dipterocarp Forest, Western Thailand. Plant Soil 2015, 390, 167–181. [Google Scholar] [CrossRef]
- Sheng, H.; Yang, Y.; Yang, Z.; Chen, G.; Xie, J.; Guo, J.; Zou, S. The Dynamic Response of Soil Respiration to Land-Use Changes in Subtropical China. Glob. Change Biol. 2010, 16, 1107–1121. [Google Scholar] [CrossRef]
- Vargas, R.; Allen, M.F. Diel Patterns of Soil Respiration in a Tropical Forest after Hurricane Wilma. J. Geophys. Res. Biogeosci. 2008, 113, G03021. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, R.; Hu, Y.; Yao, L.; Guo, S. Spatial Variations of Soil Respiration and Temperature Sensitivity along a Steep Slope of the Semiarid Loess Plateau. PLoS ONE 2018, 13, e0195400. [Google Scholar] [CrossRef]
- Tang, J.; Baldocchi, D.D. Spatial–Temporal Variation in Soil Respiration in an Oak–Grass Savanna Ecosystem in California and Its Partitioning into Autotrophic and Heterotrophic Components. Biogeochemistry 2005, 73, 183–207. [Google Scholar] [CrossRef]
Site | Soil Texture | Bulk Density (g cm−3) | pH | %C | %N | C:N | ||
---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | ||||||
(%) | ||||||||
OG | 41 | 33 | 26 | 1.70 ± 0.14 | 6.70 ± 0.07 | 2.34 ± 0.20 | 0.19 ± 0.01 | 12.68 ± 1.01 |
MS | 46 | 31 | 21 | 1.80 ± 0.13 | 7.23 ± 0.06 | 1.94 ± 0.41 | 0.11 ± 0.00 | 18.53 ± 0.28 |
ES | 55 | 25 | 19 | 1.91 ± 0.12 | 6.78 ± 0.10 | 2.48 ± 0.35 | 0.20 ± 0.02 | 12.15 ± 0.64 |
Variable | Description | Units | Source 1 |
---|---|---|---|
K | Global radiation | Wm−2 | Met |
Q* | Net radiation | Wm−2 | Met |
Tair | Air temperature | °C | Met |
VPD | Vapor pressure deficit | hPa | Met |
ET | Evapotranspiration | mm | EC |
GPP | Gross primary production | µmol CO2 m−2 s−1 | EC |
SWCsite 2,6 | Volumetric water content in site | m3 m−3 | Met |
TSsite 4,6 | Soil temperature in site | °C | Met |
TSplot 5,7 | Soil temperature by soil collar | °C | Ch |
SWCplot 3,7 | Volumetric water content by soil collar | m3 m−3 | Ch |
RS | Soil respiration | µmol CO2 m−2 s−1 | Ch |
Site | Annual | Dry Season (µmol CO2 m−2 s−1) | Wet Season |
---|---|---|---|
OG | 3.22 ± 0.16 A | 1.40 ± 0.08 A | 5.20 ± 0.25 A |
MS | 2.73 ± 0.17 A | 1.11 ± 0.07 B | 4.52 ± 0.26 A,B |
ES | 2.68 ± 0.17 A | 1.36 ± 0.08 A | 4.56 ± 0.32 B |
Site | RS (g C m−2) | |||
---|---|---|---|---|
2015 | 2016 | 2017 | 2019 | |
OG | 785.70 ± 21.66 A | 1005.89 ± 69.09 A | 712.87 ± 31.41 A | 970.76 ± 62.65 A |
MS | 618.16 ± 40.47 B | 753.77 ± 58.31 B | 665.32 ± 26.22 A | 837.38 ± 80.08 A |
ES | 728.35 ± 48.11 B | 786.33 ± 34.71 B | 681.19 ± 17.11 A | - |
Site | K (W m−2) | Q* (W m−2) | Tair (°C) | VPD (hPa) | ET (mm) | GPP (μmol CO2 m−2 s−1) | SWC (m3 m−3) | TS (°C) |
---|---|---|---|---|---|---|---|---|
OG | 673.27 ± 15.61 A | 456.40 ± 11.77 A | 30.01 ± 0.21 B | 26.77 ± 0.60 B | 4.14 ± 0.19 A | 13.48 ± 0.64 A | 0.20 ± 0.00 B | 25.84 ± 0.42 B |
MS | 490.14 ± 19.46 B | 336.59 ± 15.39 B | 28.92 ± 0.11 C | 27.03 ± 0.83 B | 2.89 ± 0.27 B | 5.57 ± 0.46 C | 0.18 ± 0.11 C | 26.96 ± 0.32 A |
ES | 752.86 ± 28.68 A | 387.16 ± 13.65 B | 30.65 ± 0.27 A | 29.92 ± 0.74 A | 4.55 ± 0.30 A | 8.85 ± 0.69 B | 0.37 ± 0.00 A | 27.57 ± 0.42 A |
Site | K (W m−2) | Q* (W m−2) | Tair (°C) | VPD (hPa) | ET (mm) | GPP (μmol CO2 m−2 s−1) | SWC (m3 m−3) | TS (°C) |
---|---|---|---|---|---|---|---|---|
OG | −0.05 * | 0.04 | 0.35 | −0.39 *** | 0.66 ** | 0.77 *** | 0.65 *** | 0.26 |
MS | 0.09 | 0.16 | 0.05 * | −0.39 *** | 0.57 | 0.43 | 0.64 ** | 0.29 |
ES | 0.25 | 0.30 | −0.20 ** | −0.30 ** | 0.67 ** | 0.65 ** | 0.27 | 0.16 |
Ecosystem Type | Country | Annual Cumulative RS (g C m−2) | Mean Annual Precipitation (mm) | Reference |
---|---|---|---|---|
Subtropical monsoon evergreen broadleaved forest | China | OG-1163 MS-592 ES-1023 | 1956 | Yan et al. [87] |
Tropical forest | Malaysia | OG-2242 MS-1672 | 1895 | Adachi et al. [84] |
Subtropical evergreen broadleaved forest | China | OG-1861 ± 214 MS-1259 ± 84 | 1664 | Sheng et al. [131] |
Tropical dry forest | Mexico | 1032 | 1650 | Vargas and Allen, [132] |
Tropical dry forest | Costa Rica | MS-742 ± 121 ES-856 ± 137 AP-722 ± 142 | 1500 | Calvo-Rodriguez et al. [56] |
Tropical dry dipterocarp forest | Thailand | 996 ± 56 | 1253 | Hanpattanakit et al. [130] |
Tropical dry forest | Mexico | OG-869 ± 142 MS-719 ± 97 ES-732 ± 53 | 724 | This study |
Semiarid loess plateau | China | 647 ± 169 | 560 | Sun et al. [133] |
Oak-grass savannah | USA | 488 | 559 | Tang and Baldocchi, [134] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Terminel, M.L.; Flores-Rentería, D.; Sánchez-Mejía, Z.M.; Rojas-Robles, N.E.; Sandoval-Aguilar, M.; Chávez-Vergara, B.; Robles-Morua, A.; Garatuza-Payan, J.; Yépez, E.A. Soil Respiration Is Influenced by Seasonality, Forest Succession and Contrasting Biophysical Controls in a Tropical Dry Forest in Northwestern Mexico. Soil Syst. 2022, 6, 75. https://doi.org/10.3390/soilsystems6040075
Vargas-Terminel ML, Flores-Rentería D, Sánchez-Mejía ZM, Rojas-Robles NE, Sandoval-Aguilar M, Chávez-Vergara B, Robles-Morua A, Garatuza-Payan J, Yépez EA. Soil Respiration Is Influenced by Seasonality, Forest Succession and Contrasting Biophysical Controls in a Tropical Dry Forest in Northwestern Mexico. Soil Systems. 2022; 6(4):75. https://doi.org/10.3390/soilsystems6040075
Chicago/Turabian StyleVargas-Terminel, Martha L., Dulce Flores-Rentería, Zulia M. Sánchez-Mejía, Nidia E. Rojas-Robles, Maritza Sandoval-Aguilar, Bruno Chávez-Vergara, Agustín Robles-Morua, Jaime Garatuza-Payan, and Enrico A. Yépez. 2022. "Soil Respiration Is Influenced by Seasonality, Forest Succession and Contrasting Biophysical Controls in a Tropical Dry Forest in Northwestern Mexico" Soil Systems 6, no. 4: 75. https://doi.org/10.3390/soilsystems6040075
APA StyleVargas-Terminel, M. L., Flores-Rentería, D., Sánchez-Mejía, Z. M., Rojas-Robles, N. E., Sandoval-Aguilar, M., Chávez-Vergara, B., Robles-Morua, A., Garatuza-Payan, J., & Yépez, E. A. (2022). Soil Respiration Is Influenced by Seasonality, Forest Succession and Contrasting Biophysical Controls in a Tropical Dry Forest in Northwestern Mexico. Soil Systems, 6(4), 75. https://doi.org/10.3390/soilsystems6040075