Soil Carbon Sequestration in the Context of Climate Change Mitigation: A Review
Abstract
:1. Introduction
2. Bibliometric Analysis
3. Literature Review
3.1. Framework
3.2. Soil Organic Carbon
3.3. Indicators of Soil Organic Carbon
3.3.1. Climate
3.3.2. Topography
3.3.3. Origin of the Material
3.3.4. Organisms
Natural Vegetation
Land Use and Management
Soil Biota
3.3.5. Soil Properties
Soil Types
Soil Aggregation
Clay Content
Specific Surface Area
3.4. Organic Matter
3.5. Methods for Assessing CO2 Sequestration in Soil
4. Carbon Sequestration and Climate Change
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-Char Sequestration in Terrestrial Ecosystems—A Review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- European Environment Agency. Trends and Projections in Europe 2022; European Environment Agency: Luxembourg, 2022.
- European Environment Agency. What Are the Sources of Greenhouse Gas Emissions in the EU? Available online: https://www.eea.europa.eu/signals/signals-2022/infographics/what-are-the-sources-of/view (accessed on 22 June 2023).
- Agência Portuguesa do Ambiente Emissão de Gases de Efeito Estufa (Protocolo de Quioto, 2a Fase-Kt CO2eq) Por Setor de Emissão; Anual. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0009961&xlang=pt&contexto=bd&selTab=tab2 (accessed on 22 June 2023).
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Chen, Y., Goldfarb, L., Gomis, M.I., Matthews, J.B.R., Berger, S., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- IPCC. Land Use, Land-Use Change, and Forestry: Special Report; Watson, R.T., Noble, I., Bolin, B., Ravindranath, N.H., Leary, N., Canziani, O., Manning, M., Griggs, D., Joos, F., Stone, J., et al., Eds.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Solomon, D.; Lehmann, J.; Kinyangi, J.; Amelung, W.; Lobe, I.; Pell, A.; Riha, S.; Ngoze, S.; Verchot, L.; Mbugua, D.; et al. Long-Term Impacts of Anthropogenic Perturbations on Dynamics and Speciation of Organic Carbon in Tropical Forest and Subtropical Grassland Ecosystems. Glob. Chang. Biol. 2007, 13, 511–530. [Google Scholar] [CrossRef]
- Eurostat. Eurostat Regional Yearbook; Kotzeva, M., Brandmüller, T., Fohgrub, B., Önnerfors, Å., Eds.; Publications Office of the European Union: Luxembourg, 2021.
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating Physical and Chemical Properties of Highly Weathered Soils in the Tropics with Charcoal—A Review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration to Mitigate Climate Change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Vysna, V.; Maes, J.; Petersen, J.-E.; la Notte, A.; Vallecillo, S.; Aizpurua, N.; Ivits, E.; Teller, A. Accounting for Ecosystems and Their Services in the European Union; European Environment Agency: Luxembourg, 2021.
- Batjes, N.H. Mitigation of Atmospheric CO2 Concentrations by Increased Carbon Sequestration in the Soil. Biol. Fertil. Soils 1998, 27, 230–235. [Google Scholar] [CrossRef]
- Smith, P. Carbon Sequestration in Croplands: The Potential in Europe and the Global Context. Eur. J. Agron. 2004, 20, 229–236. [Google Scholar] [CrossRef]
- Guo, L.B.; Gifford, R.M. Soil Carbon Stocks and Land Use Change: A Meta Analysis. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Lal, R. Carbon Sequestration. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 815–830. [Google Scholar] [CrossRef]
- Lal, R.; Follett, R.F.; Stewart, B.A.; Kimble, J.M. Soil carbon sequestration to mitigate climate change and advance food security. Soil Sci. 2007, 172, 943–956. [Google Scholar]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Dorrepaal, E.; Toet, S.; van Logtestijn, R.S.P.; Swart, E.; van de Weg, M.J.; Callaghan, T.V.; Aerts, R. Undefined Carbon Respiration from Subsurface Peat Accelerated by Climate Warming in the Subarctic. Nature 2009, 460, 616–619. [Google Scholar] [CrossRef]
- Lal, R.; Monger, C.; Nave, L.; Smith, P. The Role of Soil in Regulation of Climate. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20210084. [Google Scholar] [CrossRef] [PubMed]
- Elbasiouny, H.; El-Ramady, H.; Elbehiry, F.; Rajput, V.D.; Minkina, T.; Mandzhieva, S. Plant Nutrition under Climate Change and Soil Carbon Sequestration. Sustainability 2022, 14, 914. [Google Scholar] [CrossRef]
- Fageria, N.K. Role of Soil Organic Matter in Maintaining Sustainability of Cropping Systems. Commun. Soil Sci. Plant. Anal. 2012, 43, 2063–2113. [Google Scholar] [CrossRef]
- Berner, R.; American, A.L.-S. Modeling the Geochemical Carbon Cycle. Sci. Am. 1989, 260, 74–81. [Google Scholar] [CrossRef]
- Kwiatkowska-Malina, J. Qualitative and quantitative soil organic matter estimation for sustainable soil management. J. Soils Sediments 2018, 18, 2801–2812. [Google Scholar] [CrossRef] [Green Version]
- Alongi, D.M.; Murdiyarso, D.; Fourqurean, J.W.; Kauffman, J.B.; Hutahaean, A.; Crooks, S.; Lovelock, C.E.; Howard, J.; Herr, D.; Fortes, M.; et al. Indonesia’s Blue Carbon: A Globally Significant and Vulnerable Sink for Seagrass and Mangrove Carbon. Wetl. Ecol. Manag. 2016, 24, 3–13. [Google Scholar] [CrossRef]
- Manning, D.; Renforth, P.; Lopez-Capel, E.; Robertson, S.; Ghazireh, N. Carbonate Precipitation in Artificial Soils Produced from Basaltic Quarry Fines and Composts: An Opportunity for Passive Carbon Sequestration. Int. J. Greenh. Gas Control 2013, 17, 209–317. [Google Scholar] [CrossRef] [Green Version]
- Barman, D.; Dash, S.K. Stabilization of Expansive Soils Using Chemical Additives: A Review. J. Rock Mech. Geotech. Eng. 2022, 14, 1319–1342. [Google Scholar] [CrossRef]
- Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.O.; Levis, S.; Lucht, W.; Sykes, M.T.; et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 2003, 9, 161–185. [Google Scholar] [CrossRef]
- Toochi, E.C. Carbon sequestration: How much can forestry sequester CO2? For. Res. Eng. Int. J. 2018, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Condron, L.; Stark, C.; O’callaghan, M.; Clinton, P.; Huang, Z. The Role of Microbial Communities in the Formation and Decomposition of Soil Organic Matter; Springer: Berlin/Heidelberg, Germany, 2010; pp. 81–118. [Google Scholar] [CrossRef]
- Palit, K.; Rath, S.; Chatterjee, S.; Das, S. Microbial Diversity and Ecological Interactions of Microorganisms in the Mangrove Ecosystem: Threats, Vulnerability, and Adaptations. Environ. Sci. Pollut. Res. 2022, 29, 32467–32512. [Google Scholar] [CrossRef] [PubMed]
- Malhi, Y.; Meir, P.; Brown, S. Forests, carbon and global climate. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2002, 360, 1567–1591. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Sanchez, M.-J.; de Vente, J.; Chotte, J.C.; Bernoux, M. Sustainable Land Management Contribution to Successful Land-Based Climate Change Adaptation and Mitigation: A Report of the Science-Policy Interface. 2017. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwig2I204er_AhW_aqQEHVUTCHwQFnoECBIQAQ&url=https%3A%2F%2Fwww.unccd.int%2Fsites%2Fdefault%2Ffiles%2Fdocuments%2F2017-09%2FUNCCD_Report_SLM.pdf&usg=AOvVaw3R5ofk2VUmyBHRPEykCzC_&opi=89978449 (accessed on 22 June 2023).
- Lal, R.; Negassa, W.; Lorenz, K. Carbon Sequestration in Soil. Curr. Opin. Environ. Sustain. 2015, 15, 79–86. [Google Scholar] [CrossRef]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; Van Groenigen, J.W.; Hungate, B.A.; Verheijen, F. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 2017, 12, 053001. [Google Scholar] [CrossRef]
- Six, J.; Frey, S.D.; Thiet, R.K.; Batten, K.M. Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems. Soil Sci. Soc. Am. J. 2006, 70, 555–569. [Google Scholar] [CrossRef]
- Schimel, D.S.; Braswell, B.H.; Holland, E.A.; McKeown, R.; Ojima, D.S.; Painter, T.H.; Parton, W.J.; Townsend, A.R. Climatic, Edaphic, and Biotic Controls over Storage and Turnover of Carbon in Soils. Glob. Biogeochem. Cycles 1994, 8, 279–293. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Huang, Y.; Ren, W.; Coyne, M.; Jacinthe, P.A.; Tao, B.; Hui, D.; Yang, J.; Matocha, C. Responses of Soil Carbon Sequestration to Climate-Smart Agriculture Practices: A Meta-Analysis. Glob. Chang. Biol. 2019, 25, 2591–2606. [Google Scholar] [CrossRef]
- Nolan, M.; Stanton, K.; Evans, K.; Pym, L.; Kaufman, B.; Duley, E. From the Ground up: Prioritizing Soil at the Forefront of Ecological Restoration. Restor. Ecol. 2021, 29, e13453. [Google Scholar] [CrossRef]
- Smith, K.A.; Conen, F. Impacts of Land Management on Fluxes of Trace Greenhouse Gases. Soil Use Manag. 2006, 20, 255–263. [Google Scholar] [CrossRef]
- Zerssa, G.; Feyssa, D.; Kim, D.-G.; Eichler-Löbermann, B. Challenges of Smallholder Farming in Ethiopia and Opportunities by Adopting Climate-Smart Agriculture. Agriculture 2021, 11, 192. [Google Scholar] [CrossRef]
- Kimble, J.; Follett, R.; Cole, C. The Potential of US Cropland to Sequester Carbon and Mitigate the Greenhouse Effect; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Kell, D.B. Breeding Crop Plants with Deep Roots: Their Role in Sustainable Carbon, Nutrient and Water Sequestration. Ann. Bot. 2011, 108, 407–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; Su, B.; Currie, W.S.; Dukes, J.S.; Finzi, A.; Hartwig, U.; Hungate, B.; McMurtrie, R.E.; Oren, R.; Parton, W.J.; et al. Progressive Nitrogen Limitation of Ecosystem Responses to Rising Atmospheric Carbon Dioxide. Bioscience 2004, 54, 731–739. [Google Scholar] [CrossRef] [Green Version]
- von Lützow, M.; Kögel-Knabner, I. Temperature Sensitivity of Soil Organic Matter Decomposition—What Do We Know? Biol. Fertil. Soils 2009, 46, 1–15. [Google Scholar] [CrossRef]
- Herold, N.; Schöning, I.; Michalzik, B.; Trumbore, S.; Schrumpf, M. Controls on Soil Carbon Storage and Turnover in German Landscapes. Biogeochemistry 2014, 119, 435–451. [Google Scholar] [CrossRef]
- Plante, A.F.; Conant, R.T.; Stewart, C.E.; Paustian, K.; Six, J. Impact of soil texture on the distribution of soil organic matter in physical and chemical fractions. Soil Sci. Soc. Am. J. 2006, 70, 287–296. [Google Scholar] [CrossRef]
- Fuss, S.; Lamb, W.F.; Callaghan, M.W.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; de Oliveira Garcia, W.; Hartmann, J.; Khanna, T.; et al. Negative Emissions—Part 2: Costs, Potentials and Side Effects. Environ. Res. Lett. 2018, 13, 063002. [Google Scholar] [CrossRef] [Green Version]
- Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.; Baritz, R.; Hagedorn, F.; Johnson, D.W.; Minkkinen, K.; Byrne, K.A. How Strongly Can Forest Management Influence Soil Carbon Sequestration? Geoderma 2007, 137, 253–268. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon Sequestration in Agricultural Soils via Cultivation of Cover Crops—A Meta-Analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization Mechanisms of Soil Organic Matter: Implications for C-Saturation of Soils. Plant. Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential Mechanisms for Achieving Agricultural Benefits from Biochar Application to Temperate Soils: A Review. Plant. Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Chaplot, V.; Bouahom, B.; Valentin, C. Soil Organic Carbon Stocks in Laos: Spatial Variations and Controlling Factors. Glob. Chang. Biol. 2010, 16, 1380–1393. [Google Scholar] [CrossRef]
- Pulleman, M.M.; Bouma, J.; van Essen, E.A.; Meijles, E.W. Soil Organic Matter Content as a Function of Different Land Use History. Soil Sci. Soc. Am. J. 2000, 64, 689–693. [Google Scholar] [CrossRef] [Green Version]
- Bronick, C.J.; Lal, R. Soil Structure and Management: A Review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Glaser, B.; Amelung, W. Pyrogenic Carbon in Native Grassland Soils along a Climosequence in North America. Glob. Biogeochem. Cycles 2003, 17, 33. [Google Scholar] [CrossRef]
- Tiessen, H.; Sampaio, E.V.S.B.; Salcedo, I.H. Organic Matter Turnover and Management in Low Input Agriculture of NE Brazil. Nutr. Cycl. Agroecosyst 2001, 61, 99–103. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil Organic Carbon Storage as a Key Function of Soils—A Review of Drivers and Indicators at Various Scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Gray, J.M.; Bishop, T.F.A.; Wilson, B.R. Factors Controlling Soil Organic Carbon Stocks with Depth in Eastern Australia. Soil Sci. Soc. Am. J. 2015, 79, 1741–1751. [Google Scholar] [CrossRef] [Green Version]
- Meier, I.C.; Leuschener, C. Variation of Soil and Biomass Carbon Pools in Beech Forests across a Precipitation Gradient. Glob. Chang. Biol. 2010, 16, 1035–1045. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Webster, R.; Bui, E.N.; Baldock, J.A. Baseline Map of Organic Carbon in Australian Soil to Support National Carbon Accounting and Monitoring under Climate Change. Glob. Chang. Biol. 2014, 20, 2953–2970. [Google Scholar] [CrossRef] [Green Version]
- Hobbie, S.E.; Schimel, J.P.; Trumbore, S.E.; Randerson, J.R. Controls over Carbon Storage and Turnover in High-latitude Soils. Glob. Chang. Biol. 2000, 6, 196–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doetterl, S.; Stevens, A.; Six, J.; Merckx, R.; van Oost, K.; Casanova Pinto, M.; Casanova-Katny, A.; Muñoz, C.; Boudin, M.; Zagal Venegas, E.; et al. Soil Carbon Storage Controlled by Interactions between Geochemistry and Climate. Nat. Geosci. 2015, 8, 780–783. [Google Scholar] [CrossRef]
- Conant, R.T.; Ryan, M.G.; Ågren, G.I.; Birge, H.E.; Davidson, E.A.; Eliasson, P.E.; Evans, S.E.; Frey, S.D.; Giardina, C.P.; Hopkins, F.M.; et al. Temperature and Soil Organic Matter Decomposition Rates—Synthesis of Current Knowledge and a Way Forward. Glob. Chang. Biol. 2011, 17, 3392–3404. [Google Scholar] [CrossRef]
- Jobbagy, E.G.; Jackson, R.B. The Vertical Distribution of Soil Organic Carbon and Its Relation to Climate and Vegetation. Ecol. Appl. 2000, 10, 423. [Google Scholar] [CrossRef]
- Sleutel, S.; de Neve, S.; Hofman, G. Assessing Causes of Recent Organic Carbon Losses from Cropland Soils by Means of Regional-Scaled Input Balances for the Case of Flanders (Belgium). Nutr. Cycl. Agroecosyst. 2007, 78, 265–278. [Google Scholar] [CrossRef]
- Olesen, J.E.; Bindi, M. Consequences of Climate Change for European Agricultural Productivity, Land Use and Policy. Eur. J. Agron. 2002, 16, 239–262. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Haney, R.L.; Honeycutt, C.W.; Arshad, M.A.; Schomberg, H.H.; Hons, F.M. Climatic Influences on Active Fractions of Soil Organic Matter. Soil Biol. Biochem. 2001, 33, 1103–1111. [Google Scholar] [CrossRef]
- Grimm, R.; Behrens, T.; Märker, M.; Elsenbeer, H. Soil Organic Carbon Concentrations and Stocks on Barro Colorado Island — Digital Soil Mapping Using Random Forests Analysis. Geoderma 2008, 146, 102–113. [Google Scholar] [CrossRef]
- Peng, M.H.; Hung, Y.C.; Liu, K.L.; Neoh, K.B. Landscape Configuration and Habitat Complexity Shape Arthropod Assemblage in Urban Parks. Sci. Rep. 2022, 10, 16043. [Google Scholar] [CrossRef]
- Lloyd, C.; Oliver, S. The Physics of Atmospheric Interaction. Prog. Mod. Hydrol. Past. Present. Future 2015, 5, 135–182. [Google Scholar] [CrossRef]
- Arnaez, J.; Lasanta, T.; Errea, M.P.; Ortigosa, L. Land abandonment, landscape evolution, and soil erosion in a Spanish Mediterranean mountain region: The case of Camero Viejo. Land Degrad. Dev. 2011, 22, 537–550. [Google Scholar] [CrossRef]
- Quinton, J.; University, L.; Govers, G.; Leuven, K.U.; Van Oost, K.; Louvain, U.C.; Bardgett, R. The Impact of Agricultural Soil Erosion on Biogeochemical Cycling. Nat. Geosci. 2010, 3, 311–314. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, B.; Skaggs, T.H. Spatio-Temporal Evolution and Time-Stable Characteristics of Soil Moisture within Remote Sensing Footprints with Varying Soil, Slope, and Vegetation. Adv. Water Resour. 2001, 24, 1051–1067. [Google Scholar] [CrossRef]
- Van Veen, J.A.; Liljeroth, E.; Lekkerkerk, L.J.A.; Van De Geijn, S.C. Carbon Fluxes in Plant-Soil Systems at Elevated Atmospheric CO2 Levels. Ecol. Appl. 1991, 1, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Berhe, A.; Harte, J.; Harden, J.; Torn, M.S. The Significance of the Erosion-Induced Terrestrial Carbon Sink. BioScience 2007, 57, 337–346. [Google Scholar] [CrossRef] [Green Version]
- Hanley, M.E.; Bouma, T.J.; Mossman, H.L. The Gathering Storm: Optimizing Management of Coastal Ecosystems in the Face of a Climate-Driven Threat. Ann. Bot. 2020, 125, 197–212. [Google Scholar] [CrossRef] [Green Version]
- Zinn, Y.L.; Lal, R.; Bigham, J.M.; Resck, D.V.S. Edaphic Controls on Soil Organic Carbon Retention in the Brazilian Cerrado: Texture and Mineralogy. Soil Sci. Soc. Am. J. 2007, 71, 1204–1214. [Google Scholar] [CrossRef]
- Acosta, J.; Martínez-Martínez, S.; Faz, A.; Arocena, J. Accumulations of Major and Trace Elements in Particle Size Fractions of Soils on Eight Different Parent Materials. Geoderma 2011, 161, 30–42. [Google Scholar] [CrossRef]
- Sollins, P.; Robertson, G.P.; Uehara, G. Nutrient Mobility in Variable- and Permanent-Charge Soils. Biogeochemistry 1988, 6, 181–199. [Google Scholar] [CrossRef]
- Hammitt, W.; Cole, D.; Monz, C. Wildland Recreation: Ecology and Management; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Wall, D.P.; O’Sullivan, L.; Creamer, R.; McLaughlin, M.J. Soil Fertility and Nutrient Cycling. In The Soils of Ireland; Springer: Berlin/Heidelberg, Germany, 2018; pp. 223–234. [Google Scholar] [CrossRef]
- Kome, G.; Enang, R.; Tabi, F.; Yerima, B.P.K. Influence of Clay Minerals on Some Soil Fertility Attributes: A Review. Open. J. Soil Sci. 2019, 9, 99010. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.W. The Effect of Parent Material and Soil Development on Nutrient Cycling in Temperate Ecosystems. Biogeochemistry 1988, 5, 71–97. [Google Scholar] [CrossRef]
- Siciliano, S.D.; Palmer, A.S.; Winsley, T.; Lamb, E.; Bissett, A.; Brown, M.V.; van Dorst, J.; Ji, M.; Ferrari, B.C.; Grogan, P.; et al. Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biol. Biochem. 2014, 78, 10–20. [Google Scholar] [CrossRef]
- Hamati, S.; Hamati, S.B.; Ward, D.; Rocha, O.; Rauschert, E.; Kooijman, E.; Heather Caldwell, A.; Chair, A.; Munro-Stasiuk, M. Ecophysiology of Juniperus Virginiana Encroachment in Ohio. 2022. Available online: https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=kent1651146580975921&disposition=inline (accessed on 22 June 2023).
- Mineo, L.; Majumdar, S.K. Ectomycorrhizae in Oaks (Quercus Alba, Q. Rubra) in Northeastern Pennsylvania Woodlands: Morphology, Frequency and Implied Physiology and Ecology. Concepts Mycorrhizal Res. 1996, 9, 315–331. [Google Scholar] [CrossRef]
- Eid, E.M.; Shaltout, K.H. Evaluation of Carbon Sequestration Potentiality of Lake Burullus, Egypt to Mitigate Climate Change. Egypt. J. Aquat. Res. 2013, 39, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Jandl, R.; Rodeghiero, M.; Martinez, C.; Cotrufo, M.F.; Bampa, F.; Van Wesemael, B.; Miglietta, F. Current status, uncertainty and future needs in soil organic carbon monitoring. Sci. Total Environ. 2014, 468, 376–383. [Google Scholar] [CrossRef]
- Grace, P.R.; Post, W.M.; Hennessy, K. The potential impact of climate change on Australia’s soil organic carbon resources. Carbon Balance Manag. 2006, 1, 1–10. [Google Scholar]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; McBratney, A.B.; Courcelles, V.D.R.D.; Singh, K.; et al. The Knowns, Known Unknowns and Unknowns of Sequestration of Soil Organic Carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- Xiong, X.; Grunwald, S.; Myers, D.B.; Kim, J.; Harris, W.G.; Comerford, N.B. Holistic Environmental Soil-Landscape Modeling of Soil Organic Carbon. Environ. Model. Softw. 2014, 57, 202–215. [Google Scholar] [CrossRef]
- Vasques, G.M.; Grunwald, S.; Comerford, N.B.; Sickman, J.O. Regional Modelling of Soil Carbon at Multiple Depths within a Subtropical Watershed. Geoderma 2010, 156, 326–336. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, W.K. Soil Compaction in Cropping Systems. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Balesdent, J.; Chenu, C.; Balabane, M. Relationship of Soil Organic Matter Dynamics to Physical Protection and Tillage. Soil Tillage Res. 2000, 53, 215–230. [Google Scholar] [CrossRef]
- Post, W.M.; Kwon, K.C. Soil Carbon Sequestration and Land-Use Change: Processes and Potential. Glob. Chang. Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Torn, M.S.; Trumbore, S.E.; Chadwick, O.A.; Vitousek, P.M.; Hendricks, D.M. Mineral Control of Soil Organic Carbon Storage and Turnover. Nature 1997, 389, 170–173. [Google Scholar] [CrossRef] [Green Version]
- Percival, H.J.; Parfitt, R.L.; Scott, N.A. Factors Controlling Soil Carbon Levels in New Zealand Grasslands Is Clay Content Important? Soil Sci. Soc. Am. J. 2000, 64, 1623–1630. [Google Scholar] [CrossRef]
- Amézketa, E. Soil Aggregate Stability: A Review. J. Sustain. Agric. 1999, 14, 83–151. [Google Scholar] [CrossRef]
- Hobley, E.; Wilson, B.; Wilkie, A.; Gray, J.; Koen, T. Drivers of Soil Organic Carbon Storage and Vertical Distribution in Eastern Australia. Plant. Soil 2015, 390, 111–127. [Google Scholar] [CrossRef]
- Schulten, H.-R.; Leinweber, P. New Insights into Organic-Mineral Particles: Composition, Properties and Models of Molecular Structure. Biol. Fertil. Soils 2000, 30, 399–432. [Google Scholar] [CrossRef]
- Hassink, J.; Whitmore, A.P.; Kubát, J. Size and Density Fractionation of Soil Organic Matter and the Physical Capacity of Soils to Protect Organic Matter. Eur. J. Agron. 1997, 7, 189–199. [Google Scholar] [CrossRef]
- Kaiser, K.; Guggenberger, G. The Role of DOM Sorption to Mineral Surfaces in the Preservation of Organic Matter in Soils. Org. Geochem. 2000, 31, 711–725. [Google Scholar] [CrossRef]
- Arrouays, D.; Saby, N.; Walter, C.; Lemercier, B.; Schvartz, C. Relationships between Particle-Size Distribution and Organic Carbon in French Arable Topsoils. Soil Use Manag. 2006, 22, 48–51. [Google Scholar] [CrossRef]
- Batjes, N.H. Total Carbon and Nitrogen in the Soils of the World. Eur. J. Soil Sci. 2014, 65, 10–21. [Google Scholar] [CrossRef]
- Sollins, P.; Homann, P.; Caldwell, B.A. Stabilization and Destabilization of Soil Organic Matter: Mechanisms and Controls. Geoderma 1996, 74, 65–105. [Google Scholar] [CrossRef]
- Rounsevell, M.D.A.; Evans, S.P.; Bullock, P. Climate Change and Agricultural Soils: Impacts and Adaptation. Clim. Chang. 1999, 43, 683–709. [Google Scholar] [CrossRef]
- IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry; Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., et al., Eds.; Institute for Global Environmental Strategies: Kanagawa, Japan, 2003. [Google Scholar]
- Paustian, K.; Collier, S.; Baldock, J.; Burgess, R.; Creque, J.; Delonge, M.; Dungait, J.; Ellert, B.; Frank, S.; Goddard, T.; et al. Quantifying Carbon for Agricultural Soil Management: From the Current Status toward a Global Soil Information System. Taylor Fr. 2019, 10, 567–587. [Google Scholar] [CrossRef] [Green Version]
- Baldocchi, D.; Valentini, R.; Running, S.; Oechel, W.; Dahlmanh, R.; Baldocchi, D. Strategies for Measuring and Modelling Carbon Dioxide and Water Vapour Fluxes over Terrestrial Ecosystems. Glob. Chang. Biol. 1996, 2, 159–168. [Google Scholar] [CrossRef]
- Benbi, D.K.; Richter, J. A Critical Review of Some Approaches to Modelling Nitrogen Mineralization. Biol. Fertil. Soils 2002, 35, 168–183. [Google Scholar] [CrossRef]
- Foley, W.J.; McIlwee, A.; Lawler, I.; Aragones, L.; Woolnough, A.P.; Berding, N. Ecological Applications of near Infrared Reflectance Spectroscopy—A Tool for Rapid, Cost-Effective Prediction of the Composition of Plant and Animal Tissues and Aspects of Animal Performance. Oecologia 1998, 116, 293–305. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. Methods Soil Anal. Part 3-Chem. Methods 1996, 5, 961–1010. [Google Scholar] [CrossRef]
- Chatterjee, A.; Lal, R.; Wielopolski, L.; Martin, M.Z.; Ebinger, M.H. Evaluation of Different Soil Carbon Determination Methods. CRC Crit. Rev. Plant. Sci. 2009, 28, 164–178. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. Methods Soil Anal. Part 3-Chem. Methods 1983, 5, 539–579. [Google Scholar] [CrossRef]
- Starr, G.C. Assessing Temporal Stability and Spatial Variability of Soil Water Patterns with Implications for Precision Water Management. Agric. Water Manag. 2005, 72, 223–243. [Google Scholar] [CrossRef]
- Tieszen, L.L.; Boutton, T.W. Stable Carbon Isotopes in Terrestrial Ecosystem Research. In Stable Isotopes in Ecological Research; Springer: New York, NY, USA, 1989; pp. 167–195. [Google Scholar] [CrossRef]
- Issa, S.; Dahy, B.; Ksiksi, T.; Saleous, N. Non-Conventional Methods as a New Alternative for the Estimation of Terrestrial Biomass and Carbon Sequestered. World J. Agric. Soil Sci. 2019, 4, 1–8. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Gitelson, A.A.; Schepers, J.S.; Walthall, C.L. Application of Spectral Remote Sensing for Agronomic Decisions. Agron. J. 2008, 100, S-117–S-131. [Google Scholar] [CrossRef] [Green Version]
- De Vente, J.; Poesen, J.; Verstraeten, G.; Govers, G.; Vanmaercke, M.; Rompaey, A.V.; Arabkhedri, M.; Boix-Fayos, C. Predicting Soil Erosion and Sediment Yield at Regional Scales: Where Do We Stand? Earth-Sci. Rev. 2013, 127, 16–29. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Q.; Hu, S.; Xiao, G.; Chen, X.; Wang, J.; Qi, Y.; Zhang, L.; Han, L. Research Progress and Prospects of Ecosystem Carbon Sequestration under Climate Change (1992–2022). Ecol. Indic. 2022, 145, 109656. [Google Scholar] [CrossRef]
- Post, W.M.; Izaurralde, R.C.; Jastrow, J.D.; McCarl, B.A.; Amonette, J.E.; Bailey, V.L.; Jardine, P.M.; West, T.O.; Zhou, J. Enhancement of Carbon Sequestration in US Soils. Bioscience 2004, 54, 895–908. [Google Scholar] [CrossRef] [Green Version]
- Raza, S.; Zamanian, K.; Ullah, S.; Kuzyakov, Y.; Virto, I.; Zhou, J. Inorganic Carbon Losses by Soil Acidification Jeopardize Global Efforts on Carbon Sequestration and Climate Change Mitigation. J. Clean. Prod. 2021, 315, 128036. [Google Scholar] [CrossRef]
- Le Quéré, C.; Andrew, R.M.; Canadell, J.G.; Sitch, S.; Korsbakken, J.I.; Peters, G.P.; Manning, A.C.; Boden, T.A.; Tans, P.P.; Houghton, R.A.; et al. Global Carbon Budget 2016. Earth Syst. Sci. Data 2016, 8, 605–649. [Google Scholar] [CrossRef] [Green Version]
- Cheddadi, R.; Guiot, J.; Jolly, D. The Mediterranean Vegetation: What If the Atmospheric CO2 Increased? Landsc. Ecol. 2001, 16, 667–675. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, F.; Chen, Y.; Yin, L. Interactive Impacts of Climate Change and Agricultural Management on Soil Organic Carbon Sequestration Potential of Cropland in China over the Coming Decades. Sci. Total Environ. 2022, 817, 153018. [Google Scholar] [CrossRef]
- Smith, P. Soils and Climate Change. Curr. Opin. Environ. Sustain. 2012, 4, 539–544. [Google Scholar] [CrossRef]
- Lal, R.; Bouma, J.; Brevik, E.; Dawson, L.; Field, D.J.; Glaser, B.; Hatano, R.; Hartemink, A.E.; Kosaki, T.; Lascelles, B.; et al. Soils and Sustainable Development Goals of the United Nations: An International Union of Soil Sciences Perspective. Geoderma Reg. 2021, 25, e00398. [Google Scholar] [CrossRef]
- Smith, P. Land Use Change and Soil Organic Carbon Dynamics. Nutr. Cycl. Agroecosyst. 2008, 81, 169–178. [Google Scholar] [CrossRef]
- Powlson, D.S.; Stirling, C.M.; Jat, M.L.; Gerard, B.G.; Palm, C.A.; Sanchez, P.A.; Cassman, K.G. Limited Potential of No-till Agriculture for Climate Change Mitigation. Nat. Clim. Chang. 2014, 4, 678–683. [Google Scholar] [CrossRef]
- Dimassi, B.; Cohan, J.-P.; Labreuche, J.; Mary, B. Changes in Soil Carbon and Nitrogen Following Tillage Conversion in a Long-Term Experiment in Northern France. Agric. Ecosyst. Environ. 2013, 169, 12–20. [Google Scholar] [CrossRef]
Reference | Citations | |
---|---|---|
(a) | Dungait, J.A.; Hopkins, D.W.; Gregory, A.S.; Whitmore, A.P. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob. Chang. Biol. 2012, 18, 1781–1796. | 942 |
McCormack, M.L.; Dickie, I.A.; Eissenstat, D.M.; Fahey, T.J.; Fernandez, C.W.; Guo, D.; Helmissari, H.-S.; Hobbie, E.A.; Iversen, C.M.; Jackson, R.B.; et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol. 2015, 207, 505–518. | 702 | |
Paustian K.A.O.J.H.; Andren, O.; Janzen, H.H.; Lal, R.; Smith, P.; Tian, G.; Woomer, P.L. Agricultural soils as a sink to mitigate CO2 emissions. Soil Use Manag. 1997, 13, 230–244. | 692 | |
Nair, P.R. Grand challenges in agroecology and land use systems. Front. Environ. Sci. 2014, 2, 1. | 522 | |
Fuss, S.; Lamb, W.F.; Callaghan, M.W.; Hilaire, J.; Creutzig, F.; Amann, T.; Minx, J.C. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 2018, 13, 063002. | 491 | |
(b) | Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. | 2803 |
Huang, L.; Wang, C.Y.; Tan, W.F.; Hu, H.Q.; Cai, C.F.; Wang, M.K. Distribution of organic matter in aggregates of eroded Ultisols, Central China. Soil Tillage Res. 2010, 108, 59–67. | 2560 | |
Lehmann, J.; Guant, G.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 403–427. | 2138 | |
Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. | 2137 | |
(c) | Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. | 2137 |
Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. | 1432 | |
Bowles, T.M.; Acosta-Martínez, V.; Calderón, F.; Jackson, L.E. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol. Biochem. 2014, 68, 252–262. | 1206 | |
Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 2004, 54, 547–560. | 978 | |
Olesen, J.E.; Bindi, M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 2002, 16, 239–262. | 972 | |
(d) | Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 403-427. | 2138 |
Hinsinger, P.; Bengough, A.G.; Vetterlein, D.; Young, I.M. Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 2009, 321, 117–152. | 965 | |
Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. Sustain. Agric. 2011, 2, 761–786. | 844 | |
Kimball, B.A.; Kobayashi, K.; Bindi, M. Responses of agricultural crops to free-air CO2 enrichment. Adv. Agron. 2002, 77, 293–368. | 758 | |
(e) | Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 403–427. | 2138 |
Jacobson, M.Z. Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2009, 2, 148-173. | 1198 | |
Wissing, L.; Kölbl, A.; Schad, P.; Bräuer, T.; Cao, Z.H.; Kögel-Knabner, I. Organic carbon accumulation on soil mineral surfaces in paddy soils derived from tidal wetlands. Geoderma 2014, 228, 90–103. | 554 | |
Smith, P. Carbon sequestration in croplands: the potential in Europe and the global context. Eur. J. Agron. 2004, 20, 229–236. | 431 | |
Thevenot, M.; Dignac, M.F.; Rumpel, C. Fate of lignins in soils: A review. Soil Biol. Biochem. 2010, 42, 1200–1211. | 398 | |
(f) | Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. | 2803 |
Githinji, L. Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Arch. Agron. Soil Sci. 2014, 60, 457–470. | 1894 | |
Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. | 1432 | |
Plante, A.F.; Conant, R.T.; Stewart, C.E.; Paustian, K.; Six, J. Impact of soil texture on the distribution of soil organic matter in physical and chemical fractions. Soil Sci. Soc. Am. J. 2006, 70, 287–296. | 1235 | |
Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 2004, 54, 547–560. | 978 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, C.I.D.; Brito, L.M.; Nunes, L.J.R. Soil Carbon Sequestration in the Context of Climate Change Mitigation: A Review. Soil Syst. 2023, 7, 64. https://doi.org/10.3390/soilsystems7030064
Rodrigues CID, Brito LM, Nunes LJR. Soil Carbon Sequestration in the Context of Climate Change Mitigation: A Review. Soil Systems. 2023; 7(3):64. https://doi.org/10.3390/soilsystems7030064
Chicago/Turabian StyleRodrigues, Cristina I. Dias, Luís Miguel Brito, and Leonel J. R. Nunes. 2023. "Soil Carbon Sequestration in the Context of Climate Change Mitigation: A Review" Soil Systems 7, no. 3: 64. https://doi.org/10.3390/soilsystems7030064
APA StyleRodrigues, C. I. D., Brito, L. M., & Nunes, L. J. R. (2023). Soil Carbon Sequestration in the Context of Climate Change Mitigation: A Review. Soil Systems, 7(3), 64. https://doi.org/10.3390/soilsystems7030064