Managing Root Parasitic Weeds to Facilitate Legume Reintroduction into Mediterranean Rain-Fed Farming Systems
Abstract
:1. The Key Role of Legumes in Cropping Systems
2. Broomrape as a Major Constraint in Legume Production
3. Understanding Broomrape Biologic Features Relevant to Management
4. Management Strategies
5. A Focus on Resistance Breeding
5.1. Genetic Basis of Resistance
5.2. Focus on Mechanisms of Resistance Operative
5.3. Resistance to Herbicides
5.4. Potential Applications of Biotechnology in Broomrape Resistance Breeding
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ditzler, L.; van Apeldoorn, D.F.; Pellegrini, F.; Antichi, D.; Bàrberi, P.; Rossing, W.A.H. Current research on the ecosystem service potential of legume inclusive cropping systems in Europe. A review. Agron. Sustain. Dev. 2021, 41, 26. [Google Scholar] [CrossRef]
- Iannetta, P.P.M.; Hawes, C.; Begg, G.S.; Maaß, H.; Ntatsi, G.; Savvas, D.; Vasconcelos, M.; Hamann, K.; Williams, M.; Styles, D.; et al. A Multifunctional Solution for Wicked Problems: Value-Chain Wide Facilitation of Legumes Cultivated at Bioregional Scales Is Necessary to Address the Climate-Biodiversity-Nutrition Nexus. Front. Sustain. Food Syst. 2021, 5, 692137. [Google Scholar] [CrossRef]
- Reckling, M.; Bergkvist, G.; Watson, C.A.; Stoddard, F.L.; Zander, P.M.; Walker, R.L.; Pristeri, A.; Toncea, I.; Bachinger, J. Trade-offs between economic and environmental impacts of introducing legumes into cropping systems. Front. Plant Sci. 2016, 7, 669. [Google Scholar] [CrossRef] [PubMed]
- Jensen, E.S.; Peoples, M.B.; Boddey, R.M.; Gresshoff, P.M.; Henrik, H.N.; Alves, B.J.R.; Morrison, M.J. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron. Sustain. Dev. 2012, 32, 329–364. [Google Scholar] [CrossRef]
- Cusworth, G.; Garnett, T.; Lorimer, J. Legume dreams: The contested futures of sustainable plant-based food systems in Europe. Glob. Environ. Change 2021, 69, 102321. [Google Scholar] [CrossRef] [PubMed]
- Westhoek, H.J.; Rood, G.A.; van den Berg, M.; Janse, J.H.; Nijdam, D.S.; Reudink, M.A.; Stehfest, E.; Jnase, J. The protein puzzle: The consumption and production of meat, dairy and fish in the European Union. Eur. J. Nutr. Food Saf. 2011, 1, 123–144. [Google Scholar]
- Zander, P.; Amjath-Babu, T.S.; Preissel, S.; Reckling, M.; Bues, A.; Schläfke, N.; Kuhlman, T.; Bachinger, J.; Uthes, S.; Stoddard, F.; et al. Grain legume decline and potential recovery in European agriculture: A review. Agron. Sustain. Dev. 2016, 36, 26. [Google Scholar] [CrossRef]
- Foyer, C.H.; Lam, H.M.; Nguyen, H.T.; Siddique, K.H.M.; Varshney, R.K.; Colmer, T.D.; Cowling, W.; Bramley, H.; Mori, T.A.; Hodgson, J.M.; et al. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2016, 2, 16112. [Google Scholar] [CrossRef]
- Rubiales, D. Plant breeding is needed to meet agroecological requirements: Legume crops as case study. Outlook Agric. 2023, 52, 294–302. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Flores, F.; Rubiales, D. The effect of Orobanche crenata infection severity in faba bean, field pea and grass pea productivity. Front. Plant Sci. 2016, 7, 1409. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Reboud, X.; Gibot-Leclerc, S. Broomrape Weeds. Underground Mechanisms of Parasitism and Associated Strategies for their Control: A Review. Front. Plant Sci. 2016, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Aparicio, M.; Delavault, P.; Timko, M. Management of infection by parasitic weeds: A review. Plants 2020, 9, 1184. [Google Scholar] [CrossRef] [PubMed]
- Rubiales, D.; Fernández-Aparicio, M. Innovations in parasitic weeds management in legume crops. A review. Agron. Sustain. Dev. 2012, 32, 433–449. [Google Scholar] [CrossRef]
- Parker, C. Parasitic Weeds: A World Challenge. Weed Sci. 2012, 60, 269–276. [Google Scholar] [CrossRef]
- Das, T.K.; Ghosh, S.; Gupta, K.; Suman, S.; Biswaranjan, B.; Rishi, R. The weed Orobanche: Species distribution, diversity, biology and management. J. Res. Weed Sci. 2020, 3, 162–180. [Google Scholar] [CrossRef]
- Rubiales, D. Broomrape threat to agriculture. Outlooks Pest Manag. 2020, 31, 141–144. [Google Scholar] [CrossRef]
- Grenz, J.H.; Sauerborn, J. Mechanisms limiting the geographical range of the parasitic weed Orobanche crenata. Agric. Ecosyst. Environ. 2007, 122, 275e281. [Google Scholar] [CrossRef]
- Negewo, T.; Ahmed, S.; Tessema, T.; Tana, T. Biological Characteristics, Impacts, and Management of Crenate Broomrape (Orobanche crenata) in Faba Bean (Vicia faba): A Review. Front. Agron. 2022, 4, 708187. [Google Scholar] [CrossRef]
- Westwood, J.H. The physiology of the established parasite–host association. In Parasitic Orobanchaceae: Parasitic Mechanisms and Control Strategies; Joel, D.M., Gressel, J., Musselman, L.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 87–114. [Google Scholar]
- Aly, R.; Dubey, N. Weed Management for Parasitic Weeds. In Recent Advances in Weed Management; Chauhan, B., Mahajan, G., Eds.; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Yoder, J.I.; Scholes, J.D. Host plant resistance to parasitic weeds; recent progress and bottlenecks. Curr. Opin. Plant Biol. 2010, 13, 478–484. [Google Scholar] [CrossRef]
- Cartry, D.; Steinberg, C.; Gibot-Leclerc, S. Main drivers of broomrape regulation. A review. Agron. Sustain. Dev. 2021, 41, 17. [Google Scholar] [CrossRef]
- Oveisi, M.; Yousefi, A.R.; Gonzalez-Andujar, J.L. Spatial distribution and temporal stability of crenate broomrape (Orobanche crenata Forsk) in faba bean (Vicia faba L.): A long-term study at two localities. Crop Prot. 2010, 29, 717–720. [Google Scholar] [CrossRef]
- Ginman, E.; Prider, J.; Matthews, J.; Virtue, J.; Watling, J. Broomrape dispersal by sheep. Weed Biol. Manag. 2015, 15, 61–69. [Google Scholar] [CrossRef]
- Panetta, F. Evaluating the performance of weed containment programs. Divers. Distrib. 2012, 18, 1024–1032. [Google Scholar] [CrossRef]
- Hosseini, P.; Osipitan, O.; Mesgaran, M. Seed germination responses of broomrape species (Phelipanche ramosa and Phelipanche aegyptiaca) to various sanitation chemicals. Weed Technol. 2022, 36, 723–728. [Google Scholar] [CrossRef]
- Prider, J.N.; Ophel Keller, K.; McKay, A. Molecular diagnosis of parasite seed banks. In Parasitic Orobanchaceae: Parasitic Mechanisms and Control Strategies; Joel, D.M., Gressel, J., Musselman, L.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 357–368. [Google Scholar]
- Rolland, M.; Dupuy, A.; Pelleray, A.; Delavault, P. Molecular Identification of Broomrape Species from a Single Seed by High Resolution Melting Analysis. Front. Plant Sci. 2016, 7, 1838. [Google Scholar] [CrossRef]
- Grenz, J.H.; Manschadi, A.M.; Uygurc, F.N.; Sauerborn, J. Effects of environment and sowing date on the competition between faba bean (Vicia faba) and the parasitic weed Orobanche crenata. Field Crops Res. 2005, 93, 300–313. [Google Scholar] [CrossRef]
- Murdoch, A.J.; Kebreab, A. Germination ecophysiology. In Parasitic Orobanchaceae; Joel, D.M., Gressel, J., Musselman, L.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 195–219. [Google Scholar]
- Kebreab, E.; Murdoch, A.J. A quantitative model for loss of primary dormancy and induction of secondary dormancy in imbibed seeds of Orobanche spp. J. Exp. Bot. 1999, 50, 211–219. [Google Scholar] [CrossRef]
- Brun, G.; Braem, L.; Thoiron, S.; Gevaert, K.; Goormachting, S.; Delavault, P. Seed germination in parasitic plants: What insights can we expect from strigolactone research? J. Exp. Bot. 2018, 69, 2265–2280. [Google Scholar] [CrossRef]
- Xie, X.; Yoneyama, K.; Nomura, T.; Yoneyama, K. Evaluation and Quantification of Natural Strigolactones from Root Exudates. In Strigolactones: Methods in Molecular Biology; Prandi, C., Cardinale, F., Eds.; Humana: New York, NY, USA, 2021; Volume 2309. [Google Scholar] [CrossRef]
- Cimmino, A.; Masi, M.; Rubiales, D.; Evidente, A.; Fernández-Aparicio, M. Allelopathy for parasitic plant management. Nat. Prod. Commun. 2018, 13, 289–294. [Google Scholar] [CrossRef]
- Evidente, A.; Fernández-Aparicio, M.; Cimmino, A.; Rubiales, D.; Andolfi, A.; Motta, A. Peagol and peagoldione, two new strigolactone-like metabolites isolated from pea root exudates. Tetrahedron Lett. 2009, 50, 6955–6958. [Google Scholar] [CrossRef]
- Evidente, A.; Cimmino, A.; Fernández-Aparicio, M.; Andolfi, A.; Rubiales, D.; Motta, A. Polyphenols, Including the New Peapolyphenols A-C, from Pea Root Exudates Stimulate Orobanche foetida Seed Germination. J. Agric. Food Chem. 2010, 58, 2902–2907. [Google Scholar] [CrossRef] [PubMed]
- Evidente, A.; Cimmino, A.; Fernández-Aparicio, M.; Rubiales, D.; Andolfi, A.; Melck, D. Soyasapogenol B and trans-22-dehydrocampesterol from common vetch (Vicia sativa L.) root exudates stimulate broomrape seed germination. Pest Manag. Sci. 2011, 67, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Nosratti, I.; Mobli, A.; Mohammadi, G.; Yousefi, A.; Sabeti, P.; Chauhan, B. The problem of Orobanche spp. and Phelipanche spp. and their management in Iran. Weed Sci. 2020, 68, 555–564. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Westwood, J.H.; Rubiales, D. Agronomic, breeding, and biotechnological approaches to parasitic plant management through manipulation of germination stimulant levels in agricultural soils. Botany 2011, 89, 813–826. [Google Scholar] [CrossRef]
- Goldwasser, Y.; Rodenburg, J. Integrated agronomic management of parasitic weeds seed banks. In Parasitic Orobanchaceae; Joel, D.M., Gressel, J., Mussleman, L.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- López-Granados, F.; García-Torres, L. Effects of environmental factors on dormancy and germination of crenate broomrape (Orobanche crenata). Weed Sci. 1996, 44, 284–289. [Google Scholar] [CrossRef]
- Pérez-de-Luque, A.; Sillero, J.C.; Cubero, J.I.; Rubiales, D. Effect of sowing date and host resistance on the establishment and development of Orobanche crenata on faba bean and common vetch. Weed Res. 2004, 44, 282–288. [Google Scholar] [CrossRef]
- Rubiales, D.; Moral, A.; Flores, F. Agronomic Performance of Broomrape Resistant and Susceptible Faba Bean Accession. Agronomy 2022, 12, 1421. [Google Scholar] [CrossRef]
- López-Bellido, R.J.; Benítez-Vega, J.; López-Bellido, L. No-tillage improves broomrape control with glyphosate in faba-bean. Agron. J. 2009, 101, 1394–1399. [Google Scholar] [CrossRef]
- Eizenberg, H.; Lande, T.; Achdari, G.; Roichman, A.; Hershenhorn, J. Effect of Egyptian broomrape (Orobanche aegyptiaca) burial depth on parasitism dynamics and chemical control in tomato. Weed Sci. 2007, 51, 152–156. [Google Scholar] [CrossRef]
- Mauro, R.P.; Lo Monaco, A.; Lombardo, S.; Restuccia, A.; Mauromicale, G. Eradication of Orobanche/Phelipanche spp. seedbank by soil solarization and organic supplementation. Sci. Hortic. 2015, 193, 62–68. [Google Scholar] [CrossRef]
- Jain, R.; Foy, C.L. Nutrient effects on parasitism and germination of Egyptian broomrape (Orobanche aegyptiaca). Weed Technol. 1992, 6, 269–275. [Google Scholar] [CrossRef]
- Yoneyama, K.; Xie, X.; Kim, H.I.; Kisugi, T.; Nomura, T.; Sekimoto, H.; Yokota, T.; Yoneyama, K. How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 2012, 235, 1197–1207. [Google Scholar] [CrossRef]
- Westwood, J.H.; Foy, C.L. Influence of nitrogen on germination and early development of broomrape (Orobanche spp.). Weed Sci. 1999, 47, 2–7. [Google Scholar] [CrossRef]
- Midega, C.A.O.; Khan, Z.R.; Amudai, D.M.; Pittchar, J.; Pickett, J.A. Integrated management of Striga hermonthica and cereal stemborers in finger millet (Eleusine coracana (L.) Gaertn.) through intercropping with Desmodium intortum. Int. J. Pest Manag. 2010, 56, 145–151. [Google Scholar] [CrossRef]
- Pickett, J.A.; Hamilton, M.L.; Hooper, A.M.; Khan, A.R.; Midega, C.A.O. Companion cropping to manage parasitic plants. Annu. Rev. Phytopathol. 2010, 48, 161–177. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Aparicio, M.; Sillero, J.C.; Rubiales, D. Intercropping with cereals reduces infection by Orobanche crenata in legumes. Crop Prot. 2007, 26, 1166–1172. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Emeran, A.A.; Rubiales, D. Control of Orobanche crenata in legumes intercropped with fenugreek (Trigonella foenum-graecum). Crop Prot. 2008, 27, 653–659. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Emeran, A.A.; Rubiales, D. Inter-cropping with berseem clover (Trifolium alexandrinum) reduces infection by Orobanche crenata in legumes. Crop Prot. 2010, 29, 867–871. [Google Scholar] [CrossRef]
- Lins, R.D.; Colquhoun, J.B.; Mallory-Smith, C.A. Investigation of wheat as a trap crop for control of Orobanche minor. Weed Res. 2006, 46, 313–318. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Flores, F.; Rubiales, D. Recognition of root exudates by seeds of broomrape (Orobanche and Phelipanche) species. Ann. Bot. 2009, 103, 423–431. [Google Scholar] [CrossRef]
- Chai, M.; Zhu, X.; Cui, H.; Jiang, C.; Zhang, J.; Shi, L. Lily cultivars have allelopathic potential in controlling Orobanche aegyptiaca Persoon. PLoS ONE 2015, 10, e0142811. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, E.; Arslan, Z.F.; Tetik, Ö.; Eymirli, S. Using the possibilities of some trap, catch and Brassicaceae crops for controlling crenate broomrape a problem in lentil fields. Int. J. Plant Prod. 2016, 10, 53–62. [Google Scholar]
- Johnson, A.W.; Rosebery, G.; Parker, C. A novel approach to Striga and Orobanche control using synthetic germination stimulants. Weed Res. 1976, 16, 223–227. [Google Scholar] [CrossRef]
- Mwakaboko, A.S.; Zwanenburg, B. Strigolactone analogs derived from ketones using a working model for germination stimulants as a blueprint. Plant Cell Physiol. 2011, 52, 699–715. [Google Scholar] [CrossRef] [PubMed]
- Klein, O.; Kroschel, J. Biological control of Orobanche spp. with Phytomyza orobanchia, a review. Biocontrol 2002, 47, 245–277. [Google Scholar] [CrossRef]
- Dor, E.; Hershenhorn, J. The use of several phytopathogenic fungi for broomrape control. Phytoparasitica 2003, 31, 422. [Google Scholar]
- Barghouthi, S.; Salman, M. Bacterial inhibition of Orobanche aegyptiaca and Orobanche cernua radical elongation. Biocontrol Sci. Technol. 2010, 20, 423–435. [Google Scholar] [CrossRef]
- Watson, A.K. Biocontrol. In Parasitic Orobanchaceae; Joel, D.M., Gressel, J., Musselman, L.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Vurro, M.; Boari, A.; Evidente, A.; Andolfi, A.; Zermane, N. Natural metabolites for parasitic weed management. Pest Manag. Sci. 2009, 65, 566–571. [Google Scholar] [CrossRef]
- Cimmino, A.; Fernández-Aparicio, M.; Andolfi, A.; Basso, S.; Rubiales, D.; Evidente, A. Effect of fungal and plant metabolites on broomrapes (Orobanche and Phelipanche spp.) seed germination and radicle growth. J. Agric. Food Chem. 2014, 62, 10485–10492. [Google Scholar] [CrossRef]
- Vurro, M.; Boari, A.; Pilgeram, A.L.; Sands, D.C. Exogenous amino acids inhibit seed germination and tubercle formation by Orobanche ramosa (broomrape): Potential application for management of parasitic weeds. Biol. Control 2006, 36, 258–265. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Bernard, A.; Falchetto, L.; Marget, P.; Chauvel, B.; Steinberg, C.; Morris, C.E.; Gibot-Leclerc, S.; Boari, A.; Vurro, M.; et al. Investigation of amino acids as herbicides for control of Orobanche minor parasitism in red clover. Front. Plant Sci. 2017, 8, 842. [Google Scholar] [CrossRef]
- Joel, D.M. The long-term approach to parasitic weeds control: Manipulation of specific developmental mechanisms of the parasite. Crop Prot. 2000, 19, 753–758. [Google Scholar] [CrossRef]
- Kusumoto, D.; Goldwasser, Y.; Xie, X.; Yoneyama, K.; Takeuchi, Y. Resistance of red clover (Trifolium pratense) to the root parasitic plant Orobanche minor is activated by salicylate but not by jasmonate. Ann. Bot. 2007, 100, 537–544. [Google Scholar] [CrossRef]
- Pérez-de-Luque, A.; Jorrín, J.V.; Rubiales, D. Crenate broomrape control in pea by foliar application of benzothiadiazole (BTH). Phytoparasitica 2004, 32, 21–29. [Google Scholar] [CrossRef]
- Sillero, J.C.; Rojas-Molina, M.M.; Avila, C.M.; Rubiales, D. Induction of systemic acquired resistance against rust, ascochyta blight and broomrape in faba bean by exogenous application of salicylic acid and benzothiadiazole. Crop Prot. 2012, 34, 55–69. [Google Scholar] [CrossRef]
- Dadon, T.; Nun, N.B.; Mayer, A.M. A factor from Azospirillum brasilense inhibits germination and radicle growth of Orobanche aegyptiaca. Isr. J. Plant Sci. 2004, 52, 83–86. [Google Scholar] [CrossRef]
- Mabrouk, Y.; Simier, P.; Delavault, P.; Delgrange, S.; Sifi, B.; Zourgui, L.; Belhadj, O. Molecular and biochemical mechanisms of defence induced in pea by Rhizobium leguminosarum against Orobanche crenata. Weed Res. 2007, 47, 452–460. [Google Scholar] [CrossRef]
- Mishev, K.; Dobrev, P.I.; Lacek, J.; Filepová, R.; Yuperlieva-Mateeva, B.; Kostadinova, A.; Hristeva, T. Hormonomic Changes Driving the Negative Impact of Broomrape on Plant Host Interactions with Arbuscular Mycorrhizal Fungi. Int. J. Mol. Sci. 2021, 22, 13677. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; García-Garrido, J.M.; Ocampo, J.A.; Rubiales, D. Colonization of field pea roots by arbuscular mycorrhizal fungi reduces Orobanche and Phelipanche species seed germination. Weed Res. 2010, 50, 262–268. [Google Scholar] [CrossRef]
- López-Ráez, J.A.; Charnikhova, T.; Fernandez, I.; Bouwmeester, H.; Pozo, M.J. Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. J. Plant Physiol. 2011, 168, 294–297. [Google Scholar] [CrossRef]
- Renna, M.; Serio, F.; Santamaria, P. Crenate broomrape (Orobanche crenata Forskal): Prospects as a food product for human nutrition. Genet. Resour. Crop Evol. 2015, 62, 795–802. [Google Scholar] [CrossRef]
- Shi, R.; Zhang, C.; Gong, X.; Yang, M.; Ji, M.; Jiang, L.; Leonti, M.; Yao, R.; Li, M. The genus Orobanche as food and medicine: An ethnopharmacological review. J. Ethnopharmacol. 2020, 263, 113154. [Google Scholar] [CrossRef] [PubMed]
- García-Torres, L.; López-Granados, F. Control of broomrape (Orobanche crenata Forsk.) in broad bean (Vicia faba L.) with imidazolinones and other herbicides. Weed Res. 1991, 31, 227–235. [Google Scholar] [CrossRef]
- Eizenberg, H.; Hershenhorn, J.; Ephrath, J.H.; Kanampiu, F. Chemical Control. In Parasitic Orobanchaceae; Joel, D., Gressel, J., Musselman, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Eizenberg, H.; Aly, R.; Cohen, Y. Technologies for Smart Chemical Control of Broomrape (Orobanche spp. and Phelipanche spp.). Weed Sci. 2012, 60, 316–323. [Google Scholar] [CrossRef]
- Rubiales, D.; Pérez-de-Luque, A.; Cubero, J.I.; Sillero, J.C. Crenate broomrape (Orobanche crenata) infection in field pea cultivars. Crop Prot. 2003, 22, 865–872. [Google Scholar] [CrossRef]
- Pérez-de-Luque, A.; Flores, F.; Rubiales, D. Differences in crenate broomrape parasitism dynamics on three legume crops using a thermal time model. Front. Plant Sci. 2016, 7, 1910. [Google Scholar] [CrossRef] [PubMed]
- Pérez-de-Luque, A.; Rubiales, D. Nanotechnology for parasitic plant control. Pest Manag. Sci. 2009, 65, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.; Freckleton, R.P. Crop diversification and parasitic weed abundance: A global meta-analysis. Sci. Rep. 2022, 12, 19413. [Google Scholar] [CrossRef]
- Rubiales, D.; Pérez-de-Luque, A.; Sillero, J.C.; Román, B.; Kharrat, M.; Khalil, S.; Joel, D.M.; Riches, C.R. Screening techniques and sources of resistance against parasitic weeds in grain legumes. Euphytica 2006, 147, 187–199. [Google Scholar] [CrossRef]
- Rubiales, D. Legume breeding for broomrape resistance. Czech J. Genet. Plant Breed. 2014, 50, 144–150. [Google Scholar] [CrossRef]
- Rubiales, D. Can we breed for durable resistance to broomrapes? Phytopathol. Mediterr. 2018, 57, 170–185. [Google Scholar] [CrossRef]
- Velasco, L.; Pérez-Vich, B.; Fernández-Martínez, J.M. Research on resistance to sunflower broomrape: An integrated vision. OCL 2016, 23, D203. [Google Scholar] [CrossRef]
- Li, J.; Timko, M.P. Gene-for-gene resistance in Striga-cowpea associations. Science 2009, 325, 1094. [Google Scholar] [CrossRef]
- Molinero-Ruiz, L.; Delavault, P.; Pérez-Vich, B.; Pacureanu-Joita, M.; Bulos, M.; Altieri, E.; Domínguez, J. History of the race structure of Orobanche cumana and the breeding of sunflower for resistance to this parasitic weed: A review. Span. J. Agric. Res. 2015, 13, e10R01. [Google Scholar] [CrossRef]
- McDonald, B.A.; Linde, C. The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 2002, 124, 163–180. [Google Scholar] [CrossRef]
- Satovic, Z.; Joel, D.M.; Rubiales, D.; Cubero, J.I.; Román, B. Population genetics in weedy species of Orobanche. Australas. Plant Pathol. 2009, 38, 228–234. [Google Scholar] [CrossRef]
- Ennami, M.; Briache, F.Z.; Gaboun, F.; Abdelwahd, R.; Ghaouti, L.; Belqadi, L.; Westwood, J.; Mentag, R. Host differentiation and variability of Orobanche crenata populations from legume species in Morocco as revealed by cross-infestation and molecular analysis. Pest Manag. Sci. 2017, 73, 1753–1763. [Google Scholar] [CrossRef]
- Kharrat, M.; Halila, M.H.; Linke, K.H.; Haddar, T. First report of Orobanche foetida Poiret on faba bean in Tunisia. FABIS Newsl. 1992, 30, 46–47. [Google Scholar]
- Román, B.; Satovic, Z.; Alfaro, C.; Moreno, M.T.; Kharrat, M.; Pérez-de-Luque, A.; Rubiales, D. Host differentiation in Orobanche foetida Poir. Flora 2007, 202, 201–208. [Google Scholar] [CrossRef]
- Vaz Patto, M.C.; Díaz-Ruiz, R.; Satovic, Z.; Román, B.; Pujadas-Salvà, A.J.; Rubiales, D. Genetic diversity of Moroccan populations of Orobanche foetida: Evolving from parasitising wild hosts to crop plants. Weed Res. 2008, 28, 179–186. [Google Scholar] [CrossRef]
- Belay, G.; Tesfaye, K.; Hamwieh, A.; Ahmed, S.; Dejene, T.; de Oliveira Júnior, J.O.L. Genetic Diversity of Orobanche crenata Populations in Ethiopia Using Microsatellite Markers. Int. J. Genom. 2020, 2020, 3202037. [Google Scholar] [CrossRef] [PubMed]
- Rubiales, D.; Barilli, E.; Rispail, N. Breeding for Biotic Stress Resistance in Pea. Agriculture 2023, 13, 1825. [Google Scholar] [CrossRef]
- Román, B.; Torres, A.M.; Rubiales, D.; Cubero, J.I.; Satovic, Z. Mapping of quantitative trait loci controlling broomrape (Orobanche crenata Forsk.) resistance in faba bean (Vicia faba L.). Genome 2002, 45, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Ruiz, R.; Torres, A.M.; Satovic, Z.; Gutiérrez, M.V.; Cubero, J.I.; Román, B. Validation of QTLs for Orobanche crenata resistance in faba bean (Vicia faba L.) across environments and generations. Theor. Appl. Genet. 2010, 120, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, N.; Palomino, C.; Satovic, Z.; Ruiz-Rodríguez, M.D.; Vitale, S.; Gutiérrez, M.V.; Rubiales, D.; Kharrat, M.; Amri, M.; Emeran, A.; et al. QTLs for Orobanche spp. resistance in faba bean: Identification and validation across different environments. Mol. Breed. 2013, 32, 909–922. [Google Scholar] [CrossRef]
- Gutiérrez, N.; Torres, A.M. QTL dissection and mining of candidate genes for Ascochyta fabae and Orobanche crenata resistance in faba bean (Vicia faba L.). BMC Plant Biol. 2021, 21, 551. [Google Scholar] [CrossRef]
- Fondevilla, S.; Fernández-Aparicio, M.; Satovic, Z.; Emeran, A.A.; Torres, A.M.; Moreno, M.T.; Rubiales, D. Identification of quantitative trait loci for specific mechanisms of resistance to Orobanche crenata Forsk. in pea (Pisum sativum L.). Mol. Breed. 2010, 25, 259–272. [Google Scholar] [CrossRef]
- Delvento, C.; Arcieri, F.; Marcotrigiano, A.R.; Guerriero, M.; Fanelli, V.; Dellino, M.; Curci, P.L.; Bouwmeester, H.; Lotti, C.; Ricciardi, L.; et al. High-density linkage mapping and genetic dissection of resistance to broomrape (Orobanche crenata Forsk.) in pea (Pisum sativum L.). Front. Plant Sci. 2023, 14, 1216297. [Google Scholar] [CrossRef]
- Abd El-Fatah, B.E.S.; Nassef, D.M.T. Inheritance of faba bean resistance to Broomrape, genetic diversity and QTL mapping analysis. Mol. Biol. Rep. 2020, 47, 11–32. [Google Scholar] [CrossRef]
- Maalouf, F.; Khalil, S.; Ahmed, S.; Akintunde, A.N.; Kharrat, M.; El Shama’a, K.; Hajjar, S.; Malhotra, R.S. Yield stability of faba bean lines under diverse broomrape prone production environments. Field Crops Res. 2011, 124, 288–294. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Moral, A.; Kharrat, M.; Rubiales, D. Resistance against broomrapes (Orobanche and Phelipanche spp.) in faba bean (Vicia faba) based in low induction of broomrape seed germination. Euphytica 2012, 186, 897–905. [Google Scholar] [CrossRef]
- Rubiales, D.; Flores, F.; Emeran, A.A.; Kharrat, M.; Amri, M.; Rojas-Molina, M.M.; Sillero, J.C. Identification and multi-environment validation of resistance against broomrapes (Orobanche crenata and O. foetida) in faba bean (Vicia faba). Field Crops Res. 2014, 166, 58–65. [Google Scholar] [CrossRef]
- Rubiales, D.; Sillero, J.C.; Rojas-Molina, M.M. Characterization resistance mechanisms in faba bean (Vicia faba) against broomrape species (Orobanche and Phelipanche spp.). Front. Plant Sci. 2016, 7, 1747. [Google Scholar] [CrossRef]
- Briache, F.Z.; Ennami, M.; Mbasani-Mansi, J.; Gaboun, F.; Abdelwahd, R.; Fatemi, Z.E.A.; El-Rodeny, W.; Amri, M.; Triqui, Z.E.A.; Mentag, R. Field and controlled conditions screenings of some faba bean (Vicia faba L.) genotypes for resistance to the parasitic plant Orobanche crenata Forsk. and investigation of involved resistance mechanisms. J. Plant Dis. Prot. 2019, 126, 211–224. [Google Scholar] [CrossRef]
- Rubiales, D.; Moreno, M.T.; Sillero, J.C. Search for resistance to crenate broomrape (Orobanche crenata) in pea germplasm. Genet. Resour. Crop Evol. 2005, 52, 853–861. [Google Scholar] [CrossRef]
- Pérez-de-Luque, A.; Jorrín, J.; Cubero, J.I.; Rubiales, D. Orobanche crenata resistance and avoidance in pea (Pisum spp.) operate at different developmental stages of the parasite. Weed Res. 2005, 45, 379–387. [Google Scholar] [CrossRef]
- Pavan, S.; Schiavulli, A.; Marcotrigiano, A.R.; Bardaro, N.; Bracuto, V.; Ricciardi, F.; Charnikhova, T.; Lotti, C.; Bouwmeester, H.; Ricciardi, L. Characterization of low-strigolactone germplasm in pea (Pisum sativum L.) resistant to crenate broomrape (Orobanche crenata Forsk.). Mol. Plant-Microbe Interact. 2016, 29, 743–749. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Sillero, J.C.; Pérez-de-Luque, A.; Rubiales, D. Identification of sources of resistance to crenate broomrape (Orobanche crenata) in Spanish lentil (Lens culinaris) germplasm. Weed Res. 2008, 48, 85–94. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Sillero, J.C.; Rubiales, D. Resistance to broomrape in wild lentils (Lens spp.). Plant Breed. 2009, 128, 266–270. [Google Scholar] [CrossRef]
- En-nahli, Y.; Hejjaoui, K.; Mentag, R.; Es-safi, N.E.; Amri, M. Large Field Screening for Resistance to Broomrape (Orobanche crenata Forsk.) in a Global Lentil Diversity Panel (GLDP) (Lens culinaris Medik.). Plants 2023, 12, 2064. [Google Scholar] [CrossRef]
- Gil, J.; Martín, L.M.; Cubero, J.I. Genetics of resistance in Vicia sativa L. to Orobanche crenata Forsk. Plant Breed. 1987, 99, 134–143. [Google Scholar] [CrossRef]
- Goldwasser, Y.; Kleifeld, Y.; Plakhine, D.; Rubin, B. Variation in vetch (Vicia spp.) response to Orobanche aegyptiaca. Weed Sci. 1997, 45, 756–762. [Google Scholar] [CrossRef]
- Goldwasser, Y.; Plakhine, D.; Kleifeld, Y.; Zamski, E.; Rubin, B. The Differential Susceptibility of Vetch (Vicia spp.) to Orobanche aegyptiaca: Anatomical Studies. Ann. Bot. 2000, 85, 257–262. [Google Scholar] [CrossRef]
- Sillero, J.C.; Moreno, M.T.; Rubiales, D. Sources of resistance to crenate broomrape among species of Vicia. Plant Dis. 2005, 89, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Nadal, S.; Cubero, J.I.; Moreno, M.T. Sources of resistance to broomrape (Orobanche crenata Forsk.) in narbon vetch. Plant Breed. 2007, 126, 110–112. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Sillero, J.C.; Rubiales, D. Resistance to broomrape species (Orobanche spp.) in common vetch (Vicia sativa L.). Crop Prot. 2008, 28, 7–12. [Google Scholar] [CrossRef]
- González-Verdejo, C.I.; Fernández-Aparicio, M.; Córdoba, E.M.; López-Ráez, J.A.; Nadal, S. Resistance against Orobanche crenata in Bitter Vetch (Vicia ervilia) Germplasm Based on Reduced Induction of Orobanche Germination. Plants 2021, 10, 348. [Google Scholar] [CrossRef]
- Rubio, J.M.; Rubiales, D. Resistance to rusts and broomrape in one-flowered vetch (Vicia articulata). Euphytica 2021, 217, 9. [Google Scholar] [CrossRef]
- González-Verdejo, C.I.; Fernández-Aparicio, M.; Córdoba, E.M.; Nadal, S. Identification of Vicia ervilia Germplasm Resistant to Orobanche crenata. Plants 2020, 9, 1568. [Google Scholar] [CrossRef]
- Rubiales, D.; Pérez-de-Luque, A.; Joel, D.M.; Alcántara, C.; Sillero, J.C. Characterization of resistance in chickpea to broomrape (Orobanche crenata). Weed Sci. 2003, 51, 702–707. [Google Scholar] [CrossRef]
- Rubiales, D.; Alcántara, C.; Sillero, J.C. Variation in resistance to crenate broomrape (Orobanche crenata) in species of Cicer. Weed Res. 2004, 44, 27–32. [Google Scholar] [CrossRef]
- Brahmi, I.; Mabrouk, Y.; Brun, G.; Delavault, P.; Belhadj, O.; Simier, P. Phenotypical and biochemical characterisation of resistance for parasitic weed (Orobanche foetida Poir.) in radiation-mutagenised mutants of chickpea. Pest Manag. Sci. 2016, 72, 2330–2338. [Google Scholar] [CrossRef] [PubMed]
- Rubiales, D.; Alcántara, C.; Pérez-de-Luque, A.; Gil, J.; Sillero, J.C. Infection of chickpea (Cicer arietinum) by crenate broomrape (Orobanche crenata) as influenced by sowing date and weather conditions. Agronomie 2003, 23, 359–362. [Google Scholar] [CrossRef]
- Sillero, J.C.; Cubero, J.I.; Fernández-Aparicio, M.; Rubiales, D. Search for resistance to crenate broomrape (Orobanche crenata) in Lathyrus. Lathyrus Lathyrism Newsl. 2005, 4, 7–9. [Google Scholar]
- Fernández-Aparicio, M.; Flores, F.; Rubiales, D. Field response of Lathyrus cicera germplasm to crenate broomrape (Orobanche crenata). Field Crops Res. 2009, 113, 321–327. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Flores, F.; Rubiales, D. Escape and true resistance to crenate broomrape (Orobanche crenata Forsk.) in grass pea (Lathyrus sativus L.) germplasm. Field Crops Res. 2011, 125, 92–97. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Rubiales, D. Characterisation of resistance to crenate broomrape (Orobanche crenata Forsk.) in Lathyrus cicera L. Euphytica 2010, 173, 77–84. [Google Scholar] [CrossRef]
- Abdallah, F.; Kumar, S.; Amri, A.; Mentag, R.; Kehel, Z.; Mejri, R.K.; Triqui, Z.E.-A.; Hejjaoui, K.; Baum, M.; Amri, M. Wild Lathyrus species as a great source of resistance for introgression into cultivated grass pea (Lathyrus sativus L.) against broomrape weeds (Orobanche crenata Forsk. and Orobanche foetida Poir.). Crop Sci. 2021, 61, 263–276. [Google Scholar] [CrossRef]
- Rodríguez-Conde, M.F.; Moreno, M.T.; Cubero, J.I.; Rubiales, D. Characterization of the Orobanche—Medicago truncatula association for studying early stages of the parasite-host interaction. Weed Res. 2004, 44, 218–223. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Pérez-de-Luque, A.; Prats, E.; Rubiales, D. Variability of interactions between barrel medic (Medicago truncatula) genotypes and Orobanche species. Ann. Appl. Biol. 2008, 153, 117–126. [Google Scholar] [CrossRef]
- Rubiales, D.; Fernández-Aparicio, M.; Pérez-de-Luque, A.; Prats, E.; Castillejo, M.A.; Sillero, J.C.; Rispail, N.; Fondevilla, S. Breeding approaches for crenate broomrape (Orobanche crenata Forsk.) management in pea (Pisum sativum L.). Pest Manag. Sci. 2009, 65, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Fondevilla, S.; Flores, F.; Emeran, A.A.; Kharrat, M.; Rubiales, D. High productivity of dry pea genotypes resistant to crenate broomrape in Mediterranean environments. Agron. Sustain. Dev. 2017, 37, 61. [Google Scholar] [CrossRef]
- Rubiales, D.; Fondevilla, S.; Fernández-Aparicio, M. Development of pea breeding lines with resistance to Orobanche crenata derived from pea landraces and wild Pisum spp. Agronomy 2021, 11, 36. [Google Scholar] [CrossRef]
- Rubiales, D.; Osuna-Caballero, S.; González-Bernal, M.J.; Cobos, M.J.; Flores, F. Pea breeding lines adapted to autumn sowings in broomrape prone Mediterranean environments. Agronomy 2021, 11, 769. [Google Scholar] [CrossRef]
- Stam, R.; McDonald, B.A. When resistance gene pyramids are not durable—The role of pathogen diversity. Mol. Plant Pathol. 2018, 19, 521–524. [Google Scholar] [CrossRef] [PubMed]
- Niks, R.E.; Rubiales, D. Potentially durable resistance mechanisms in plants to specialised fungal pathogens. Euphytica 2002, 124, 201–216. [Google Scholar] [CrossRef]
- Rubiales, D. Parasitic plants, wild relatives and the nature of resistance. New Phytol. 2003, 160, 459–461. [Google Scholar] [CrossRef]
- Yoneyama, K.; Brewer, P.B. Strigolactones, how are they synthesized to regulate plant growth and development? Curr. Opin. Plant Biol. 2021, 63, 102072. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Yoneyama, K.; Rubiales, D. The role of strigolactones in host specificity of Orobanche and Phelipanche seed germination. Seed Sci. Res. 2011, 21, 55–61. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Kisugi, T.; Xie, X.; Rubiales, D.; Yoneyama, K. Low strigolactone root exudation: A novel mechanism of broomrape (Orobanche and Phelipanche spp.) resistance available for faba bean breeding. J. Agric. Food Chem. 2014, 62, 7063–7071. [Google Scholar] [CrossRef]
- Ejeta, G. Breeding for Striga resistance in sorghum: Exploitation of an intricate host-parasite biology. Crop Sci. 2007, 47, 216–227. [Google Scholar] [CrossRef]
- Dor, E.; Alperin, B.; Wininger, S.; Ben-Dor, B.; Somvanshi, V.S.; Koltai, H.; Kapulnik, Y.; Hershenhorn, J. Characterization of a novel tomato mutant resistant to Orobanche and Phelipanche spp. weedy parasites. Euphytica 2010, 171, 371–373. [Google Scholar] [CrossRef]
- Dor, E.; Yoneyama, K.; Wininger, S.; Kapulnik, Y.; Yoneyama, K.; Koltai, H.; Xie, X.; Hershenhorn, J. Strigolactone deficiency confers resistance in tomato line SL-ORT1 to the parasitic weeds Phelipanche and Orobanche spp. Phytopathology 2011, 101, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Galili, S.; Hershenhorn, J.; Smirnov, E.; Yoneyama, K.; Xie, X.; Amir-Segev, O.; Bellalou, A.; Dor, E. Characterization of a Chickpea Mutant Resistant to Phelipanche aegyptiaca Pers. and Orobanche crenata Forsk. Plants 2021, 10, 2552. [Google Scholar] [CrossRef] [PubMed]
- Bardaro, N.; Marcotrigiano, A.R.; Bracuto, V.; Mazzeo, R.; Pavan, S.; Ricciardi, L. Genetic analysis of resistance to Orobanche crenata (Forsk.) in a pea (Pisum sativum L.) low-strigolactone line. J. Plant Pathol. 2016, 98, 671–675. [Google Scholar] [CrossRef]
- Kokla, A.; Melnyk, C.W. Developing a thief: Haustoria formation in parasitic plants. Dev. Biol. 2018, 442, 53–59. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Masi, M.; Maddau, L.; Cimmino, A.; Evidente, M.; Rubiales, D.; Evidente, A. Induction of haustorium development by sphaeropsidones in radicles of the parasitic weeds Striga and Orobanche. A structure-activity relationship study. J. Agric. Food Chem. 2016, 64, 5188–5196. [Google Scholar] [CrossRef] [PubMed]
- Pérez-de-Luque, A.; Rubiales, D.; Cubero, J.I.; Press, M.C.; Scholes, J.; Yoneyama, K.; Takeuchi, Y.; Plakhine, D.; Joel, D.M. Interaction between Orobanche crenata and its host legumes: Unsuccessful haustorial penetration and necrosis of the developing parasite. Ann. Bot. 2005, 95, 935–942. [Google Scholar] [CrossRef]
- Goldwasser, Y.; Hershenhorn, J.; Plakhine, D.; Kleifeld, Y.; Rubin, B. Biochemical factors involved in vetch resistance to Orobanche aegyptiaca. Physiol. Mol. Plant Pathol. 1999, 54, 87–96. [Google Scholar] [CrossRef]
- Pérez-de-Luque, A.; Lozano, M.D.; Moreno, M.T.; Testillano, P.S.; Rubiales, D. Resistance to broomrape (Orobanche crenata) in faba bean (Vicia faba): Cell wall changes associated with pre-haustorial defensive mechanisms. Ann. Appl. Biol. 2007, 151, 89–98. [Google Scholar] [CrossRef]
- Lozano-Baena, M.D.; Prats, E.; Moreno, M.T.; Rubiales, D.; Pérez-de-Luque, A. Medicago truncatula as a model host for legumes-parasitic plants interactions: Two phenotypes of resistance for one defensive mechanism. Plant Physiol. 2007, 145, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.P.; Yadav, I.S. Herbicide Tolerant Food Legume Crops: Possibilities and Prospects, Herbicides—Properties, Synthesis and Control of Weeds; Hasaneen, M.N., Ed.; InTechOpen Ltd.: London, UK, 2012. [Google Scholar] [CrossRef]
- Abou-Khater, L.; Maalouf, F.; Patil, S.B.; Balech, R.; Nacouzi, D.; Rubiales, D.; Kumar, S. Identification of tolerance to metribuzin and imazethapyr herbicides in faba bean. Crop Sci. 2021, 61, 2593–2611. [Google Scholar] [CrossRef]
- Redlick, C.; Syrovy, L.D.; Duddu, H.S.N.; Benaragama, D.; Johnson, E.N.; Willenborg, C.J.; Shirtliffe, S.J. Developing an Integrated Weed Management System for Herbicide-Resistant Weeds Using Lentil (Lens culinaris) as a Model Crop. Weed Sci. 2017, 65, 778–786. [Google Scholar] [CrossRef]
- Balech, R.; Maalouf, F.; Patil, S.B.; Hejjaoui, K.; Abou-Khater, L.; Rajendran, K.; Rubiales, D.; Kumar, S. Evaluation of performance and stability of new sources for tolerant to post-emergence herbicides in lentil (Lens culinaris ssp. culinaris Medik). Crop Pasture Sci. 2022, 73, 1264–1278. [Google Scholar] [CrossRef]
- Rizwan, M.; Aslam, M.; Asghar, M.J.; Abbas, G.; Shah, T.M.; Shimelis, H. Pre-breeding of lentil (Lens culinaris Medik.) for herbicide resistance through seed mutagenesis. PLoS ONE 2017, 12, e0171846. [Google Scholar] [CrossRef] [PubMed]
- McMurray, L.; Preston, C.; Vandenberg, A.; Mao, D.; Oldach, K.; Meier, K.; Paull, J. Development of High Levels of Metribuzin Tolerance in Lentil. Weed Sci. 2019, 67, 83–90. [Google Scholar] [CrossRef]
- Gressel, J. Crops with target-site herbicide resistance for Orobanche and Striga control. Pest Manag. Sci. 2009, 65, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Gressel, J. Biotechnologies for directly generating crops resistant to parasites. In Parasitic Orobanchaceae; Joel, D., Gressel, J., Musselman, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Yoder, J.I.; Gunathilake, P.; Wu, B.; Tomilova, N.; Tomilov, A.A. Engineering host resistance against parasitic weeds with RNA interference. Pest Manag. Sci. 2009, 65, 460–466. [Google Scholar] [CrossRef]
- Atsmon, G.; Nehurai, O.; Kizel, F.; Eizenberg, H.; Lati, R.N. Hyperspectral imaging facilitates early detection of Orobanche cumana below-ground parasitism on sunflower under field conditions. Comput. Electron. Agric. 2022, 196, 106881. [Google Scholar] [CrossRef]
- Le Ru, A.; Ibarcq, G.; Boniface, M.C.; Baussart, A.; Muños, S.; Chabaud, M. Image analysis for the automatic phenotyping of Orobanche cumana tubercles on sunflower roots. Plant Methods 2021, 17, 80. [Google Scholar] [CrossRef]
- Parihar, A.K.; Kumar, J.; Gupta, D.S.; Lamichaney, A.; Naik, S.J.S.; Singh, A.K.; Dixit, G.P.; Gupta, S.; Toklu, F. Genomics enabled breeding strategies for major biotic stresses in pea (Pisum sativum L.). Front. Plant Sci. 2022, 13, 861191. [Google Scholar] [CrossRef]
- Jha, U.C.; Nayyar, H.; Parida, S.K.; Bakır, M.; von Wettberg, E.J.B.; Siddique, K.H.M. Progress of Genomics-Driven approaches for sustaining underutilized legume crops in the post-genomic Era. Front. Genet. 2022, 13, 831656. [Google Scholar] [CrossRef] [PubMed]
- Diakostefani, A.; Velissaris, R.; Cvijanovic, E.; Bulgin, R.; Pantelides, A.; Leitch, I.J.; Mian, S.; Morton, J.A.; Gomez, M.S.; Chapman, M.A. Genome resources for underutilised legume crops: Genome sizes, genome skimming and marker development. Genet. Resour. Crop Evol. 2023. [Google Scholar] [CrossRef]
- Kagale, S.; Close, T.J. Legumes: Embracing the genome era. Legume Sci. 2021, 3, e113. [Google Scholar] [CrossRef]
- Westwood, J.H.; Depamphilis, C.W.; Das, M.; Fernández-Aparicio, M.; Honaas, L.A.; Timko, M.P.; Wafula, E.K.; Wickett, N.J.; Yoder, J.I. The Parasitic Plant Genome Project: New Tools for Understanding the Biology of Orobanche and Striga. Weed Sci. 2012, 60, 295–300. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, J.; Ma, C.; Lei, Y.; Shen, G.; Jin, J.; Eaton, D.A.R.; Wu, J. Comparative genomics of orobanchaceous species with different parasitic lifestyles reveals the origin and stepwise evolution of plant parasitism. Mol. Plant 2022, 15, 1384–1399. [Google Scholar] [CrossRef]
- Castillejo, M.A.; Fernández-Aparicio, M.; Rubiales, D. Proteomic analysis by two-dimensional differential in gel electrophoresis (2D DIGE) of the early response of Pisum sativum to Orobanche crenata. J. Exp. Bot. 2012, 63, 107–119. [Google Scholar] [CrossRef]
- Die, J.V.; Román, B.; Nadal, S.; Dita, M.Á.; González-Verdejo, C.I. Expression analysis of Pisum sativum putative defence genes during Orobanche crenata infection. Crop Pasture Sci. 2009, 60, 490–498. [Google Scholar] [CrossRef]
- Aly, R.; Matzrafi, M.; Bari, V.K. Using biotechnological approaches to develop crop resistance to root parasitic weeds. Planta 2021, 253, 97. [Google Scholar] [CrossRef]
- Bhowmik, P.; Konkin, D.; Polowick, P.; Hodgins, C.L.; Subedi, M.; Xiang, D.; Yu, B.; Patterson, N.; Rajagopalan, N.; Babic, V.; et al. CRISPR/Cas9 gene editing in legume crops: Opportunities and challenges. Legume Sci. 2021, 3, e96. [Google Scholar] [CrossRef]
- Bari, V.K.; Nassar, J.A.; Kheredin, S.M.; Gal-On, A.; Ron, M.; Britt, A.; Steele, D.; Yoder, J.; Aly, R. CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 8 in tomato provides resistance against the parasitic weed Phelipanche aegyptiaca. Sci. Rep. 2019, 9, 11438. [Google Scholar] [CrossRef]
- Li, G.; Liu, R.; Xu, R.; Varshney, R.K.; Ding, H.; Li, M.; Yan, X.; Huang, S.; Li, J.; Wang, D.; et al. Development of an agrobacterium-mediated CRISPR/Cas9 system in pea (Pisum sativum L.). Crop J. 2023, 11, 132–139. [Google Scholar] [CrossRef]
- Ludvíková, M.; Griga, M. Pea transformation: History, current status and challenges. Czech J. Genet. Plant Breed. 2022, 58, 127–161. [Google Scholar] [CrossRef]
- Choudhury, A.; Rajam, M.V. Genetic transformation of legumes: An update. Plant Cell Rep. 2021, 40, 1813–1830. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubiales, D. Managing Root Parasitic Weeds to Facilitate Legume Reintroduction into Mediterranean Rain-Fed Farming Systems. Soil Syst. 2023, 7, 99. https://doi.org/10.3390/soilsystems7040099
Rubiales D. Managing Root Parasitic Weeds to Facilitate Legume Reintroduction into Mediterranean Rain-Fed Farming Systems. Soil Systems. 2023; 7(4):99. https://doi.org/10.3390/soilsystems7040099
Chicago/Turabian StyleRubiales, Diego. 2023. "Managing Root Parasitic Weeds to Facilitate Legume Reintroduction into Mediterranean Rain-Fed Farming Systems" Soil Systems 7, no. 4: 99. https://doi.org/10.3390/soilsystems7040099
APA StyleRubiales, D. (2023). Managing Root Parasitic Weeds to Facilitate Legume Reintroduction into Mediterranean Rain-Fed Farming Systems. Soil Systems, 7(4), 99. https://doi.org/10.3390/soilsystems7040099