Enzymatic Diagnostics of Soil Health of the European Part of Russia with Lead Contamination
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ladonin, D.V. Lead Isotopic Composition in Soils of the Impact Zone of the Cherepovets Steel Mill. Moscow Univ. Soil Sci. Bull. 2022, 77, 253–257. [Google Scholar] [CrossRef]
- Titov, A.F.; Kaznina, N.M.; Karapetyan, T.A.; Dorshakova, N.V. Effect of lead on living organisms. J. Gen. Biol. 2020, 81, 147–160. [Google Scholar] [CrossRef]
- Zubarev, V.A.; Mishchuk, S.N. Changes in the concentrations of heavy metals in soils in the south of the Middle Amur Lowland during long-term agricultural use. News Tomsk. Polytech. Univ. Georesources Eng. 2019, 330, 18–26. [Google Scholar]
- Voloshin, E.I.; Polosina, V.A.; Burina, M.V. The influence of chemicalization agents on the content of heavy metals, fluorine in soils and the quality of plant products in JSC Iskra and the agricultural firm Uchumskaya in the Uzhur region of Central Siberia. Bull. Krasn. State Agrar. Univ. 2020, 8, 18–26. [Google Scholar]
- Pobilat, A.E.; Kirichuk, A.A.; Baranova, O.V. Monitoring the content of heavy metals in agricultural crops in the South of Central Siberia. Probl. Reg. Ecol. 2023, 6, 56–62. [Google Scholar] [CrossRef]
- He, Z.L.; Yang, X.E.; Stoffella, P.J. Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol. 2005, 19, 125–140. [Google Scholar] [CrossRef]
- Gómez, V.; Molina-Roco, M.; Chichipe, E.; Morales Rojas, E. Trace Elements in Fertilizers Used in Peru. OnLine J. Biol. Sci. 2023, 23, 225. [Google Scholar] [CrossRef]
- Ivanova, Y.S.; Gorbachev, V.N. Soil contamination with heavy metals under the influence of unauthorized landfills (medical and environmental aspect). Ulyanovsk. J. Med. Biol. 2012, 1, 119–124. [Google Scholar]
- Makarov, O.A.; Strokov, A.S.; Tsvetnov, E.V.; Abdulkhanova, D.R.; Krasilnikova, V.S.; Shcherbakova, L.S. Assessment of damage from soil degradation and lands of the constituent entities of the Russian Federation. Agriculture 2020, 6, 3–6. [Google Scholar] [CrossRef]
- Kushwaha, A.; Hans, N.; Kumar, S.; Rani, R. A critical review on speciation, mobilization andtoxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol. Environ. Saf. 2018, 147, 1035–1045. [Google Scholar] [CrossRef]
- Ouabo, R.E.; Ogundiran, M.B.; Sangodoyin, A.Y.; Babalola, B.A. Ecological risk and human health implications of heavy metals contamination of surface soil in Ewaste recycling sites in Douala, Cameroun. J. Health Pollut. 2019, 9, 190310. [Google Scholar] [CrossRef] [PubMed]
- Baenguev, B.A.; Belogolova, G.A.; Chuparina, E.V.; Prosekin, S.N.; Dolgikh, P.G.; Pastukhov, M.V. Distribution of lead content and forms of its compounds in technogenic soil of Svirsk (Southern Baikal region). News Tomsk. Polytech. Univ. Georesource Eng. 2022, 333, 205–214. [Google Scholar] [CrossRef]
- Minnikova, T.; Kolesnikov, S.; Evstegneeva, N.; Timoshenko, A.; Tsepina, N. Estimation of the Enzymatic Activity of Haplic Chernozem under Contamination with Oxides and Nitrates of Ag, Bi, Te and Tl. Agronomy 2022, 12, 2183. [Google Scholar] [CrossRef]
- Minnikova, T.V.; Ruseva, A.S.; Kolesnikov, S.I. Assessment of enzymatic activity of oil-contaminated chernozem after bioremediation. News Timiryazev Agric. Acad. 2022, 5, 5–20. [Google Scholar] [CrossRef]
- Goswami, O.; Rouff, A.A. Soil Lead Concentration and Speciation in Community Farms of Newark, New Jersey, USA. Soil Syst. 2021, 5, 2. [Google Scholar] [CrossRef]
- Obrycki, J.F.; Perez-Guzman, L. The Utility and Futility of Soil Health Assessment. In Soil Health Series; American Society of Agronomy: Madison, WI, USA, 2021. [Google Scholar] [CrossRef]
- Minnikova, T.; Kolesnikov, S.; Revina, S.; Ruseva, A.; Gaivoronsky, V. Enzymatic Assessment of the State of Oil-Contaminated Soils in the South of Russia after Bioremediation. Toxics 2023, 11, 355. [Google Scholar] [CrossRef] [PubMed]
- Utobo, E.B.; Tewari, L. Soil enzymes as bioindicators of soil ecosystem status. Appl. Ecol. Environ. Res. 2014, 13, 147–169. [Google Scholar] [CrossRef]
- Acosta-Martínez, V.; Perez-Guzman, L.; Johnson, J.M.F. Simultaneous determination of β-glucosidase, β-glucosaminidase, acid phosphomonoesterase, and arylsulfatase activities in a soil sample for a biogeochemical cycling index. Appl. Soil Ecol. 2019, 142, 72–80. [Google Scholar] [CrossRef]
- Acosta-Martinez, V.; Cotton, J.; Slaughter, L.C.; Ghimire, R.; Roper, W. Soil Health Assessment to Evaluate Conservation Practices in SemiArid Cotton Systems at Producer Site Scale. Soil Syst. 2023, 7, 72. [Google Scholar] [CrossRef]
- Revina, S.; Minnikova, T.; Ruseva, A.; Kolesnikov, S.; Kutasova, A. Catalase activity as a diagnostic indicator of the health of oil-contaminated soils after remediation. Environ. Monit. Assess. 2024, 196, 449. [Google Scholar] [CrossRef]
- Reinersmann, T.; Herre, M.; Marschner, B.; Heinze, S. Soil Enzyme Activity Response to Substrate and Nutrient Additions on Undisturbed Forest Subsoil Samples. Soil Syst. 2023, 7, 57. [Google Scholar] [CrossRef]
- Polyak, Y.M.; Sukharevich, V.I. Soil enzymes and soil pollution: Biodegradation, bioremediation, bioindication. Agrochemistry 2020, 3, 83–93. [Google Scholar] [CrossRef]
- Mokrikov, G.; Minnikova, T.; Kazeev, K.; Kolesnikov, S. Use of soil enzyme activity in assessing the effect of No-Till in the South of Russia. Agron. Res. 2021, 19, 171–184. [Google Scholar] [CrossRef]
- Minnikova, T.V.; Kolesnikov, S.I.; Evstegneeva, N.A.; Timoshenko, A.N.; Tsepina, N.I.; Kazeev, K.S. Assessment of enzymatic activity of haplic chernozem soils contaminated with Ag, Bi, Te, and Tl. Eurasian Soil Sci. 2024, 57, 395–408. [Google Scholar] [CrossRef]
- Papa, S.; Alvarez-Romero, M. Biological Activities in Artificially Heavy-Metal-Contaminated Growing Substrates. Soil Syst. 2023, 7, 111. [Google Scholar] [CrossRef]
- Sevak, P.I.; Pushkar, B.K.; Kapadne, P.N. Lead pollution and bacterial bioremediation: A review. Environ. Chem. Lett. 2021, 19, 4463–4488. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, S.; Chen, Z.; Zhang, Y.; Cao, B. Phytoremediation of Toxic Lead from Contaminated Soil Using Neyraudia reynaudiana: Soil of Xuzhou as a Case Study. Agronomy 2024, 14, 118. [Google Scholar] [CrossRef]
- Marzadori, C.; Ciavatta, C.; Montecchio, D.; Gessa, C. Effects of lead pollution on different soil enzyme activities. Biol. Fertil. Soils 1996, 22, 53–58. [Google Scholar] [CrossRef]
- Zeng, L.S.; Liao, M.; Chen, C.L.; Huang, C.Y. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil-lead-rice (Oryza sativa L.) system. Ecotoxicol. Environ. Saf. 2007, 67, 67–74. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, J.; Yang, N.; Zhang, Q.; Zou, P. Effects of Lead and Water Stress on Soil Enzyme Activities from Two Plant Species. Nat. Environ. Pollut. Technol. 2014, 13, 31–36. [Google Scholar]
- Effron, D.; de la Horra, A.M.; Defrieri, R.L.; Fontanive, V.; Palma, R.M. Effect of Cadmium, Copper, and Lead on Different Enzyme Activities in a Native Forest Soil. Commun. Soil Sci. Plant Anal. 2004, 35, 1309–1321. [Google Scholar] [CrossRef]
- Novoselova, E.I.; Volkova, O.O.; Turyanova, R.R. Enzymatic transformation of organic residues in soils contaminated with heavy metals. Ecol. Urban Areas 2019, 1, 75–81. [Google Scholar] [CrossRef]
- Prokopchuk, V.F.; Chernositova, T.N.; Naumenko, A.V.; Khairulina, T.P. Methods for studying the composition, properties and regimes of soils: Workshop. In Blagoveshchensk: Far Eastern State Publishing House; Agrarian University: Yerevan, Armenia, 2018; 31p. [Google Scholar]
- Semendyaeva, N.V.; Marmulev, A.N.; Dobrotvorskaya, N.I. Methods for studying soils and soil cover: Textbook. In Novosibirsk State Agrarian University, SibNIIZIKh—Novosibirsk; Publishing House of NGAU: Novosibirsk, Novosibirsk Region, Russia, 2011; p. 202. [Google Scholar]
- Khaziev, F.K. Methods of Soil Enzymology; Nauka, M., Ed.; Wiley: Moscow, Russia, 2005; 252p. [Google Scholar]
- Kolesnikov, S.I.; Kazeev, K.S.; Akimenko, Y.V. Development of regional standards for pollutants in the soil using biological parameters. Environ. Monit. Assess. 2019, 191, 544–550. [Google Scholar] [CrossRef]
- Garcia-Ruiz, R.; Ochoa, V.; Hinojosa, M.B.; Carreira, J.A. Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biol. Biochem. 2008, 40, 2137–2145. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, J.; Xu, J.; Kong, X.; Zhao, L.; Zeng, D.H. Assessing the quality of oil contaminated saline soil using two composite indices. Ecol. Indic. 2013, 24, 105–112. [Google Scholar] [CrossRef]
- Galstyan, A.S. Enzymatic Activity of Soils in Armenia; Hayastan: Yerevan, Armenia, 1974; 275p. [Google Scholar]
- Khaziev, F.K. Functional role of enzymes in soil processes. Bull. Acad. Sci. Repub. Bashkortostan 2015, 20, 14–24. [Google Scholar]
- Wyszkowska, J.; Wyszkowski, M. Activity of soil dehydrogenases, urease, and acid and alkaline phosphatases in soil polluted with petroleum. J. Toxicol. Environ. Health 2010, 73, 1202–1210. [Google Scholar] [CrossRef]
- Belousova, E.N.; Belousov, A.A. The influence of soil protection technologies on the content of mobile organic matter and the enzymatic activity of the soil. Agrochemistry 2022, 5, 30–37. [Google Scholar] [CrossRef]
- Lapa, V.V.; Mikhailovskaya, N.A.; Barashenko, T.B.; Pogirnitskaya, T.V.; Dyusova, S.V. Biochemical and microbiological indicators for assessing the influence of anthropogenic load on soil fertility. Soil Sci. Agrochem. 2014, 2, 28–42. [Google Scholar]
- Marcinkeviciene, A.; Boguzas, V.; Balnyte, S.; Pupaliene, R.; Velicka, R. Influence of crop rotation, intermediate crops, and organic fertilizers on the soil enzymatic activity and humus content in organic farming systems. Eurasian Soil Sci. 2013, 46, 198–203. [Google Scholar] [CrossRef]
- Merkusheva, M.G.; Ubugunov, L.L.; Boloneva, L.N.; Lavrentieva, I.N. Sulfur in rain-fed and irrigated chestnut soils and assessment of the use of increasing doses of sulfur fertilizers (against the background of NPK) for potatoes. Agrochemistry 2023, 3, 20–28. [Google Scholar] [CrossRef]
- Chevychelov, A.V.; Levshakov, L.V.; Lazarev, V.I. The influence of fertilizers containing sulfur on the yield and grain quality of spring wheat in the conditions of the Kursk region. Int. J. Agric. 2019, 4, 54–57. [Google Scholar] [CrossRef]
- Aristarkhov, A.N. Sulfur in Russian agroecosystems: Monitoring the content in soils and the effectiveness of its use. Int. Agric. J. 2016, 5, 39–47. [Google Scholar]
- Błońska, E.; Lasota, J.; Gruba, P. Effect of temperate forest tree species on soil dehydrogenase and urease activities in relation to other properties of soil derived from loess and glaciofluvial sand. Ecol. Res. 2016, 31, 655–664. [Google Scholar] [CrossRef]
- Pajares, S.; Bohannan, B.J.M. Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils. Front. Microbiol. 2016, 7, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Naimi, O.I. Patterns of profile distribution of urease in ordinary chernozem in agrocenosis. Int. J. Humanit. Nat. Sci. 2019, 8, 12–14. [Google Scholar] [CrossRef]
- Nieder, R.; Benbi, D.K. Carbon and Nitrogen in the Terrestrial Environment; Springer: Dordrecht, The Netherlands, 2008; 430p. [Google Scholar]
- Semenov, V.M. Functions of carbon in the mineralization-immobilization turnover of nitrogen in soil. Agrochemistry 2020, 6, 78–96. [Google Scholar] [CrossRef]
- Vasbieva, M.T. Effect of long-term application of organic and mineral fertilizers on the organic carbon content and nitrogen regime of soddy-podzolic soil. Eurasian Soil Sci. 2019, 52, 1422–1428. [Google Scholar] [CrossRef]
- Mokrikov, G.V.; Minnikova, T.V.; Kazeev, K.S.; Kolesnikov, S.I. The influence of productive moisture reserves and the amount of precipitation on yields under the condition of direct sowing of agricultural crops in the Rostov region. Samara Sci. Bull. 2019, 8, 69–75. [Google Scholar] [CrossRef]
- Karaca, A.; Cetin, S.C.; Turgay, O.C.; Kizilkaya, R. Effects of Heavy Metals on Soil Enzyme Activities. In Soil Heavy Metals. Soil Biology; Springer: Berlin/Heidelberg, Germany, 2010; Volume 19. [Google Scholar] [CrossRef]
- Hong, Y.K.; Kim, J.W.; Lee, S.P.; Yang, J.E.; Kim, S.C. Heavy metal remediation in soil with chemical amendments and its impact on activity of antioxidant enzymes in Lettuce (Lactuca sativa) and soil enzymes. Appl. Biol. Chem. 2020, 63, 42. [Google Scholar] [CrossRef]
- Cherkasov, E.A.; Lobachev, D.A.; Zakharova, D.A. Content of mobile sulfur in soils of agricultural lands in the Ulyanovsk region. Bull. Ulyanovsk. State Agric. Acad. 2018, 1, 54–59. [Google Scholar] [CrossRef]
- Zvyagintsev, D.G. Biological activity of soils and scales for assessing some of its indicators. Eurasian Soil Sci. 1978, 6, 48–54. [Google Scholar]
- Gaponyuk, E.I.; Malakhov, S.V. Complex system of indicators of soils environmental monitoring. In Proceedings of the 4th All-Union Conference Gidrometeoizdat, Moscow, Russia, 14–16 May 1985; pp. 3–10. [Google Scholar]
- Tovstik, E.V.; Olkova, A.S. Assessment of the influence of factors of abiotic nature on the enzymatic activity of soil. Ecobiotech 2021, 4, 128–134. [Google Scholar] [CrossRef]
- Piletskaya, O.A.; Yachnaya, D.A. The influence of storage times and methods on changes in the activity of enzymes in the chernozem-like soil of the Zeya-Bureya Plain. Bull. Soil Inst. 2022, 112, 48–72. [Google Scholar] [CrossRef]
- Tsandekova, O.L.; Ufimtsev, V.I. Activity of soil hydrolytic enzymes in the phytogenic field of Acer negundo L. in conditions of disturbed floodplain communities. News Samara Sci. Cent. Russ. Acad. Sci. 2018, 20, 92–96. [Google Scholar] [CrossRef]
- Tsandekova, O.L.; Ufimtsev, V.I. Enzymatic activity of soil under ash-leaved maple plantations in floodplain forest biogeocenoses. Lesovedenie 2021, 4, 437–445. [Google Scholar] [CrossRef]
- Litvinovich, A. Degradation of well-cultivated soils in humid and arid regions. In Lap Lambert; Academic Publishing: Cambridge, MA, USA, 2011; 279p, ISBN 978-3-8454-2837-6. [Google Scholar]
- Semenkov, I.N.; Sharapova, A.V.; Lednev, S.A.; Koroleva, T.V. Fractional composition of metal and sulfur compounds in the upper layer of soil in zones affected by a coal mine waste heap (Central Russian forest-steppe). Arid. Ecosyst. 2023, 29, 118–127. [Google Scholar]
- Kulikova, A.K.; Dozorov, A.V.; Cherkasov, E.A.; Zakharova, D.A.; Smyvalov, V.S. Sulfur content in soils of the Ulyanovsk region, the yield of spring wheat and the balance of nutrients in leached chernozem when using sulfur-containing fertilizers. Int. J. Agric. 2019, 3, 50–54. [Google Scholar] [CrossRef]
- Prudnikova, E.Y.; Savin, I.Y.; Lebedeva, M.P.; Volkov, D.S.; Rogova, O.B.; Varlamov, E.B.; Abrosimov, K.N. Transformation of the surface layer in the arable soil horizon under the impact of atmospheric precipitation. Eurasian Soil Sci. 2021, 54, 1770–1781. [Google Scholar] [CrossRef]
- Sorokin, A.S.; Kust, G.S.; Abrosimov, K.N.; Lebedeva, M.P. Composition and structure of aggregates from compacted soil horizons in the southern steppe zone of European Russia. Eurasian Soil Sci. 2016, 49, 326–337. [Google Scholar] [CrossRef]
- Mikkelsen, R.; Norton, R. Sulfur in soils and sulfur-containing fertilizers. Int. Inst. Plant Nutr. 2014, 3, 6–9. [Google Scholar]
- Yudin, S.A.; Plotnikova, O.O.; Belobrov, V.P.; Lebedeva, M.P.; Abrosimov, K.N.; Ermolaev, N.R. Quantitative charactristics of the microstructure of typical chernozems using different agricultural technologies. Eurasian Soil Science. Eurasian Soil Sci. 2023, 6, 774–786. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Valentine, R.L. Reduction of Lead Oxide (PbO2) and Release of Pb(II) in Mixtures of Natural Organic Matter, Free Chlorine and Monochloramine. Environ. Sci. Technol. 2009, 43, 3872–3877. [Google Scholar] [CrossRef] [PubMed]
- Pourrut, B.; Shahid, M.; Dumat, C.; Winterton, P.; Pinelli, E. Lead uptake, toxicity, and detoxification in plants. Rev. Environ. Contam. Toxicol. 2011, 213, 113–136. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.H.; Chafik, Y.; Lebrun, M.; Sferra, G.; Bourgerie, S.; Scippa, G.; Morabito, D.; Trupiano, D. Lead Toxicity and Tolerance in Plants: Insights from Omics Studies. In Heavy Metal Toxicity and Tolerance in Plants: A Biological, Omics, and Genetic Engineering Approach; Wiley: Hoboken, NJ, USA, 2023. [Google Scholar] [CrossRef]
- Popov, A.I.; Konoplina, L.Y.; Komolkina, N.A.; Prilepa, S.V.; Sazanova, E.V.; Kholostov, G.D. Component composition of soil organic matter. Sci. Herit. 2021, 65, 11–19. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. Int. Sch. Res. Not. 2011, 402647. [Google Scholar] [CrossRef]
- Darma, A.; Ibrahim, S.; Sani, A.; Zandi, P.; Yang, J. Appraisal of lead (Pb) contamination and potential exposure risk associated with agricultural soils and some cultivated plants in gold mines. Environ. Syst. Res. 2022, 11, 14. [Google Scholar] [CrossRef]
- Mosina, L.V.; Dovletyarova, E.A.; Efremova, S.Y.; Norvosuren, Z. Ecological danger of soil pollution with heavy metals (using the example of lead). News Penza State Pedagog. Univ. 2012, 29, 383–386. [Google Scholar]
- Rafikova, G.F.; Kuzina, E.V.; Korshunova, T.Y. The influence of bioremediation on the biological activity of leached chernozem contaminated with oil and lead. Eurasian Soil Sci. 2022, 3, 354–369. [Google Scholar] [CrossRef]
- Ananyeva, Y.S.; Shpis, T.E. The influence of lead contamination on the biological properties of leached chernozem. Bull. Altai State Agrar. Univ. 2010, 72, 29–32. [Google Scholar]
- Yeboah, J.O.; Shi, G.; Shi, W. Effect of Heavy Metal Contamination on Soil Enzymes Activities. J. Geosci. Environ. Prot. 2021, 9, 135–154. [Google Scholar] [CrossRef]
- Zheng, L.; Li, Y.; Shang, W.; Dong, X.; Tang, Q.; Cheng, H. The inhibitory effect of cadmium and/or mercury on soil enzyme activity, basal respiration, and microbial community structure in coal mine-affected agricultural soil. Ann. Microbiol. 2019, 69, 849–859. [Google Scholar] [CrossRef]
- Donkova, R.; Deribeeva, D.; Nedyalkova, K. Enzyme activity of Chromic Luvisols under different degree of erosion and land use. Eurasian J. Soil Sci. 2017, 6, 37–43. [Google Scholar] [CrossRef]
- Korotchenko, I.S.; Kirienko, N.N. Enzymatic activity of leached chernozem contaminated with copper. Bull. Krasn. State Agrar. Univ. 2014, 3, 103–109. [Google Scholar]
- Korotchenko, I.S. Phytotoxicity and Enzymatic activity of leached chernozem due to contamination with heavy metals. Bull. Krasn. State Agrar. Univ. 2011, 5, 109–115. [Google Scholar]
- Ciarkowska, K. Enzyme Activities in Soils Contaminated with Heavy Metals in Varying Degrees. In Heavy Metal Contamination of Soils. Soil Biology; Sherameti, I., Varma, A., Eds.; Springer: Cham, Switzerland, 2015; Volume 44. [Google Scholar] [CrossRef]
- Golia, E.E.; Kantzou, O.D.; Chartodiplomenou, M.A.; Papadimou, S.G.; Tsiropoulos, N.G. Study of Potentially Toxic Metal Adsorption in a Polluted Acid and Alkaline Soil: Influence of Soil Properties and Levels of Metal Concentration. Soil Syst. 2023, 7, 16. [Google Scholar] [CrossRef]
- Vitkovskaya, S.E.; Yakovlev, O.N.; Shavrina, K.F. The influence of increasing doses of dolomite flour on the acid-base properties of sod-podzolic soil. Agrochemistry 2016, 7, 3–11. [Google Scholar]
- Vitkovskaya, S.E.; Shavrina, K.F. Dynamics of acidity of sod-podzolic soil depending on the dose of lime ameliorant. Agrophysics 2021, 1, 1–6. [Google Scholar] [CrossRef]
- Ivanov, A.I.; Sukhanov, P.A.; Ivanova, Z.A.; Yakovleva, T.I. Agroecological significance of the cultivation of sandy soddy-podzolic soils with Pb and Cd contamination. Agrochemistry 2019, 4, 70–78. [Google Scholar] [CrossRef]
- Porfido, C.; Gattullo, C.E.; Allegretta, I.; Fiorentino, N.; Terzano, R.; Fagnano, M.; Spagnuolo, M. Investigating Lead Bioavailability in a Former Shooting Range by Soil Microanalyses and Earthworms Tests. Soil Syst. 2022, 6, 25. [Google Scholar] [CrossRef]
- Plekhanova, I.O.; Zolotareva, O.A. Assessment and regulation of the ecological state of soils contaminated with heavy metals. Agrochemistry 2021, 7, 83–94. [Google Scholar]
- Plekhanova, I.O.; Kulikov, V.O.; Shabaev, V.P. Influence of rhizosphere bacteria on the fractional composition of heavy metal compounds in the soil-plant system. Eurasian Soil Sci. 2022, 9, 1179–1186. [Google Scholar]
No | Type of Soil (WRB, 2022) | Place of Selection | Coordinates | Soil Granulometric Composition, % | Corg, % | pH | CEC, mg × eq/100 g Soil | ||
---|---|---|---|---|---|---|---|---|---|
Clay | Sand | Silt | |||||||
Soils of meadow | |||||||||
1. | Voronic Chernozems Pachic (VCP) | Stavropol Territory, Kochubeevsky district, st. Barsukovskaya | 44°47′43.93″ N 41°51′3.70″ E | 22 | 38 | 40 | 3.59 | 8.2 | 23.0 |
2. | Haplic Solonchaks Aridic (HSA) | Saline and alkaline soils, Republic of Kalmykia, Yashkul district, Utta village | 46°18′33.96″ N 45°51′34.98″ E | 14 | 79 | 14 | 1.75 | 7.4 | 21.7 |
Soils of dry steppes and semi-deserts | |||||||||
3. | Haplic Kastanozems Chromic (HKC) | Rostov region, Remontnensky district, Privolny village | 46°42′41.92″ N 43°17′49.24″ E | 11 | 5 | 84 | 0.51 | 8.1 | 28.5 |
4. | Endosalic Calcisols Yermic (ECY) | Republic of Kalmykia, Yashkul district, Khulkhuta village | 46°12′4.89″ N 45°25′32.07″ E | 14 | 72 | 14 | 0.30 | 8.0 | 21.7 |
Soils of steppe | |||||||||
5. | Voronic Chernozems Pachic (typical) (VCP(typ.)) | Voronezh region, Kashira district, Mosalskoe village | 51°22′15.40″ N 39°32′50.20″ E | 43 | 28 | 29 | 8.87 | 7.6 | 54.5 |
6. | Voronic Chernozems Pachic (ordinary) (VCP(ord.)) | Voronezh region, Bogucharsky district, Filonovo village | 50° 3′5.41″ N 40°25′59.22″ E | 30 | 29 | 41 | 6.26 | 7.8 | 51.2 |
7. | Voronic Chernozems Pachic (leached) (VCP(leach)) | Tula region, Volovsky district, Zapovednoe village | 53°25′57.89″ N 38°10′11.54″ E | 30 | 39 | 31 | 7.79 | 7.4 | 49.5 |
8. | Luvic Phaeozems Albic (LPA) | Tula region, Venevsky district, Ulyanovka village | 54°23′54.78″ N 54°23′54.78″ E | 31 | 38 | 31 | 6.00 | 7.3 | 31.7 |
9. | Haplic Chernozems Pachic (HCP) | Rostov region, Millerovsky district, st. Malchevskaya | 49°1′59.58″ N 40°27′27.81″ E | 42 | 37 | 21 | 3.47 | 7.2 | 47.7 |
10. | Greyic Phaeozems Albic (GPA) | Moscow region, Kashira urban district, Zlobino village | 54°44′1.19″ N 38°5′41.17″ E | 18 | 60 | 22 | 5.35 | 7.4 | 17.4 |
Soils of broad-leaved forests and forest-steppes | |||||||||
11. | Luvic Stagnosols Dystric (illuvial-ferrugenous) (LSD(ill.-ferr.)) | Moscow region, Stupinsky district, Tutykhino village | 54°52′38.14″ N 37°59′47.60″ E | 1 | 95 | 4 | 2.41 | 5.4 | 9.1 |
12. | Luvic Stagnosols Dystric (LSD) | Moscow region, Domodedovo urban district, village of the Podmoskovye sanatorium | 55°21′42.48″ N 37°46′32.05″ E | 16 | 64 | 20 | 6.70 | 5.2 | 13.4 |
No | Enzyme | Method |
---|---|---|
Class of oxidoreductases | ||
1. | Catalase activity (H2O2:H2O2-oxidoreductase, EC 1.11.1.6.) | By the volume of oxygen released during the decomposition of hydrogen peroxide (according to A.Sh. Galstyan), ml O2 in 1 g of soil per 1 min |
2. | Activity of dehydrogenases (substrate: NAD (P)-oxidoreductase, EC 1.1.1) | For the reduction of tetrazolium salts into formazan (according to A.Sh. Galstyan, modified by F.Kh. Khaziev), mg triphenylformazan in 1 g of soil in 24 h |
3. | Cysteine reductase activity (cysteine NAD(P)-oxidoreductase EC 1.8.1) | The method is based on the oxidation of sulfur of the sulfhydryl group of cysteine into the sulfide group of cystine with a colorimetric end (according to A.Sh. Galstyan, A.D. Antonyan (1981), mg of formazan per 10 g in 2 h |
Class of hydrolases | ||
4. | Activity of β-fructofuranosidase (invertase, sucrase, EC 3.2.1.26) | According to the amount of glucose during the hydrolysis of sucrose, colorimetrically using Felling’s reagent (according to F.Kh. Khaziev (2005)), mg of glucose in 1 g of soil in 24 h |
5. | Urease activity (urea-amidohydrolase, EC 3.5.1.5.) | According to the amount of ammonia formed with Nessler’s reagent during the hydrolysis of urea (according to F.Kh. Khaziev (2005)), mg NH3 per g of soil per 24 h |
6. | Phosphatase activity (phosphohydrolase of orthophosphoric acid monoesters. EC 3.1.3.1-2) | According to the change in the content of nitrophenols with the formation of organic phosphorus and mineral substrates (according to Tabatabai and Dick (2002)), μg of p-nitrophenol in 1 g of soil per 1 h |
Type of Soil | DEH | INV | URE | CAT | CYST | PHOS |
---|---|---|---|---|---|---|
VCP | 2 | 4 | 3 | 5 | 1 | 6 |
HSA | 2 | 3 | 4 | 6 | 1 | 5 |
HKC | 3 | 5 | 2 | 6 | 1 | 4 |
ECY | 4 | 4 | 2 | 5 | 1 | 6 |
VCP(typ.) | 2 | 4 | 5 | 3 | 1 | 6 |
VCP(ord.) | 2 | 5 | 3 | 4 | 1 | 6 |
VCP(leach) | 2 | 3 | 4 | 5 | 1 | 6 |
LPA | 3 | 5 | 4 | 3 | 1 | 6 |
HCP | 4 | 2 | 6 | 5 | 1 | 3 |
GPA | 3 | 4 | 2 | 5 | 1 | 6 |
LSD(ill.-ferr.) | 6 | 4 | 3 | 3 | 1 | 5 |
LSD | 3 | 4 | 5 | 3 | 1 | 6 |
Type of Soil | DEH | INV | URE | CAT | CYST | PHOS |
---|---|---|---|---|---|---|
VCP | 6 | 1 | 3 | 4 | 5 | 2 |
HSA | 5 | 3 | 4 | 2 | 3 | 1 |
HKC | 4 | 2 | 6 | 5 | 3 | 1 |
ECY | 5 | 2 | 4 | 1 | 3 | 1 |
VCP(typ.) | 6 | 5 | 2 | 1 | 4 | 3 |
VCP(ord.) | 6 | 1 | 4 | 5 | 3 | 2 |
VCP(leach) | 3 | 4 | 5 | 2 | 6 | 1 |
LPA | 4 | 3 | 4 | 5 | 1 | 2 |
HCP | 6 | 3 | 4 | 5 | 1 | 2 |
GPA | 1 | 2 | 3 | 5 | 4 | 2 |
LSD(ill.-ferr.) | 4 | 2 | 5 | 5 | 1 | 3 |
LSD | 5 | 3 | 1 | 5 | 2 | 4 |
Enzyme Activity | Element/Enzyme Cycle | |||||
---|---|---|---|---|---|---|
Carbone (C) | Nitrogen (N) | Oxygen (O) | Sulfur (S) | Phosphorus (P) | ||
DEH | INV | URE | CAT | CYST | PHOS | |
Meadow soils | ||||||
very strong | >30 | >50 | >12 | >8 | >280 | >110 |
strong | 19–30 | 35–50 | 8–12 | 5–8 | 180–250 | 80–110 |
weak | 15–19 | 20–35 | 6–8 | 2–5 | 40–180 | 60–80 |
very weak | <15 | <20 | <6 | <2 | <40 | <60 |
Saline and alkaline soils | ||||||
very strong | >30 | >45 | >15 | >4 | >600 | >160 |
strong | 20–30 | 25–45 | 12–15 | 2–4 | 350–600 | 130–160 |
weak | 10–20 | 15–25 | 8–12 | 1–2 | 120–350 | 110–130 |
very weak | <10 | <15 | <8 | <1 | <120 | <110 |
Dry steppes and semi-deserts | ||||||
very strong | >18 | >15 | >10 | >8 | >500 | >65 |
strong | 15–18 | 12–15 | 8–10 | 5–8 | 200–500 | 50–65 |
weak | 11–15 | 9–12 | 4–8 | 3–5 | 50–200 | 30–50 |
very weak | <11 | <9 | <4 | <3 | <50 | <30 |
Real steppes | ||||||
very strong | >35 | >40 | >20 | >12 | >250 | >250 |
strong | 25–35 | 25–40 | 18–20 | 10–12 | 120–250 | 150–250 |
weak | 15–25 | 18–25 | 12–18 | 6–10 | 20–120 | 100–150 |
very weak | <15 | <18 | <12 | <6 | <20 | <100 |
Soils of broad-leaved forests and forest-steppes | ||||||
very strong | >25 | >45 | >30 | >5 | >400 | >230 |
strong | 18–25 | 25–45 | 20–30 | 2–5 | 150–400 | 150–230 |
weak | 9–18 | 15–25 | 12–20 | 1–2 | 25–150 | 90–150 |
very weak | <9 | <15 | <12 | <1 | <25 | <90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minnikova, T.; Kolesnikov, S.; Kuzina, A.; Trufanov, D.; Khrapay, E.; Trushkov, A. Enzymatic Diagnostics of Soil Health of the European Part of Russia with Lead Contamination. Soil Syst. 2024, 8, 76. https://doi.org/10.3390/soilsystems8030076
Minnikova T, Kolesnikov S, Kuzina A, Trufanov D, Khrapay E, Trushkov A. Enzymatic Diagnostics of Soil Health of the European Part of Russia with Lead Contamination. Soil Systems. 2024; 8(3):76. https://doi.org/10.3390/soilsystems8030076
Chicago/Turabian StyleMinnikova, Tatiana, Sergey Kolesnikov, Anna Kuzina, Dmitry Trufanov, Ekaterina Khrapay, and Anatoly Trushkov. 2024. "Enzymatic Diagnostics of Soil Health of the European Part of Russia with Lead Contamination" Soil Systems 8, no. 3: 76. https://doi.org/10.3390/soilsystems8030076
APA StyleMinnikova, T., Kolesnikov, S., Kuzina, A., Trufanov, D., Khrapay, E., & Trushkov, A. (2024). Enzymatic Diagnostics of Soil Health of the European Part of Russia with Lead Contamination. Soil Systems, 8(3), 76. https://doi.org/10.3390/soilsystems8030076