Spatial Variability in the Speciation of Lead (Pb) and Other Metals Across Urban Lawns Is Linked to Post-Deposition Weathering Reactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Sample Collection and Processing
2.2. Sequential Extraction of Pb and Other Metals from Soils
2.3. Solid Phase Characterization
3. Results
3.1. Metal Speciation in Soils in Horizontal Transects and Depth Cores
3.1.1. Pb and Zn
3.1.2. Cr, Mn, Fe, Co, Cu, and Cd
3.1.3. Element Correlation Relationships
3.1.4. Changes in Speciation in Soils as a Function of Time Since Exterior Renovations
3.2. Soil Solid Properties
3.2.1. Soil Organic Content
3.2.2. Particle Size Distribution and Soil Mineralogy
4. Discussion
4.1. Dominant Controls on Pb and Zn Speciation and Distribution Around Urban Homes
4.2. Factors That Control Changes in Pb and Zn Speciation over Time
4.3. Anthropogenic Impacts on Other Trace Metals in Urban Soils
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, E.; Sheet, E. New Anti-knock Additives to Improve Gasoline Octane Number. J. Pet. Res. Stud. 2011, 3, 1–14. [Google Scholar]
- EESI. A Brief History of Octane in Gasoline: From Lead to Ethanol [Internet]. Environmental and Energy Study Institute. 2016. Available online: https://www.eesi.org (accessed on 10 September 2023).
- Collin, M.S.; Venkatraman, S.K.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.M.; Stacey, R.G.S.; Anusha, J.; Choudhary, R.; Lvov, V.; Tovar, G.I.; et al. Bioaccumulation of lead (Pb) and its effects on human: A review. J. Hazard. Mater. Adv. 2022, 7, 100094. [Google Scholar] [CrossRef]
- Rooney, A.A.; Boyles, A.L.; Taylor, K. NTP Monograph: Health Effects of Low Level Lead; National Toxicology Program: US Department of Health and Human Services: Washington, DC, USA, 2012.
- Gilbert, S.G.; Weiss, B. A rationale for lowering the blood lead action level from 10 to 2 μg/dL. NeuroToxicology 2006, 27, 693–701. [Google Scholar] [CrossRef]
- Egan, K.B.; Cornwell, C.R.; Courtney, J.G.; Ettinger, A.S. Blood lead levels in U.S. children ages 1–11 years, 1976–2016. Environ. Health Perspect. 2021, 129, 037003. [Google Scholar] [CrossRef]
- Brown, M.J.; Margolis, S. Lead in Drinking Water and Human Blood Lead Levels in the United States. Morbidity Mortality Wkly. Rep. 2012, 61, 1–9. [Google Scholar]
- Hauptman, M.; Niles, J.K.; Gudin, J.; Kaufman, H.W. Individual- and Community-Level Factors Associated with Detectable and Elevated Blood Lead Levels in US Children: Results from a National Clinical Laboratory. JAMA Pediatr. 2021, 175, 1252–1260. [Google Scholar] [CrossRef]
- Yeter, D.; Banks, E.C.; Aschner, M. Disparity in risk factor severity for early childhood blood lead among predominantly Afri-can-American black children: The 1999 to 2010 US NHANES. Int. J. Environ. Res. Public Health 2020, 17, 1552. [Google Scholar] [CrossRef]
- Mielke, H.W.; Anderson, J.C.; Berry, K.J.; Mielke, P.W.; Chaney, R.L.; Leech, M. Lead Concentrations in Inner-City Soils as a Factor in the Child Lead Problem. Am. J. Public Health 1983, 73, 1366–1369. [Google Scholar] [CrossRef] [PubMed]
- Wade, A.M.; Richter, D.D.; Craft, C.B.; Bao, N.Y.; Heine, P.R.; Osteen, M.C.; Tan, K.G. Urban-soil pedogenesis drives contrasting legacies of lead from paint and gasoline in city soil. Environ. Sci. Technol. 2021, 55, 7981–7989. [Google Scholar] [CrossRef]
- Brinkmann, R. Lead pollution in soils in Milwaukee county, Wisconsin. J. Environ. Sci. Health Part A Environ. Sci. Eng. Toxicol. 1994, 29, 909–919. [Google Scholar] [CrossRef]
- Mielke, H.W. Nature and extent of metal-contaminated soils in urban environments (keynote talk). Environ. Geochem. Health 2016, 38, 987–999. [Google Scholar] [CrossRef] [PubMed]
- Wilken, R.D. Metal Species. In Environmental Analysis, 3rd ed.; Kleibohmer, W., Ed.; Elsevier Science: Amsterdam, The Netherlands, 2021; pp. 263–275. [Google Scholar]
- Sowers, T.D.; Blackmon, M.D.; Wilkin, R.T.; Rovero, M.; Bone, S.E.; Jerden, M.L.; Nelson, C.M.; Bradham, K.D. Lead Speciation, Bioaccessibility, and Sources for a Contaminated Subset of House Dust and Soils Collected from Similar United States Residences. Environ. Sci. Technol. 2024, 58, 9339–9349. [Google Scholar] [CrossRef] [PubMed]
- Santoro, N.; Singer, D.M.; Mulvey, B.K.; Halasa, K.; Teutsch, N.; Shedleski, A.; Wood, M. Neighborhood-scale lead (Pb) speciation in Akron, Ohio (USA) soils: Primary sources, post-deposition diagenesis, and high concentrations of labile Pb. Environ. Geochem. Health 2024, 46, 164. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, S.; MacLean, L.C.W.; Rasmussen, P.E. Lead speciation in indoor dust: A case study to assess old paint contribution in a Canadian urban house. Environ. Geochem. Health. 2011, 33, 343–352. [Google Scholar] [CrossRef]
- Chaney, R.L.; Mielke, H.W. Speciation, Mobility and Bioavailability of Soil Lead. Environ. Geochem. Health 1989, 11, 105–129. Available online: https://www.researchgate.net/publication/284048911 (accessed on 31 January 2020).
- Mielke, H.W.; Powell, E.T.; Shah, A.; Gonzales, C.R.; Mielke, P.W. Environmental Health Perspectives • VOLUME [Internet]. Volume 109. 2001. Available online: http://ehpnet1.niehs.nih.gov/docs/2001/109p973-978mielke/abstract.html (accessed on 31 January 2020).
- Seyferth, D. The Rise and Fall of Tetraethyllead. Organometallics 2003, 22, 5154–5178. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef]
- Plumlee, G.S.; Morman, S.A.; Ziegler, T.L. The toxicological geochemistry of earth materials: An overview of processes and the interdisciplinary methods used to understand them. Rev. Miner. Geochem. 2006, 64, 5–57. [Google Scholar] [CrossRef]
- Casteel, S.W.; Weis, C.P.; Henningsen, G.M.; Brattin, W.J. Estimation of relative bioavailability of lead in soil and soil-like materials using young swine. Environ. Health Perspect. 2006, 114, 1162–1171. [Google Scholar] [CrossRef]
- Davis, A.; Drexler, J.W.; Ruby, M.V.; Nicholson, A. Micromineralogy of Mine Wastes in Relation to Lead Bioavailability, Butte, Montana. Environ. Sci. Technol. 1993, 27, 1415–1425. [Google Scholar] [CrossRef]
- Yan, K.; Dong, Z.; Naidu, R.; Liu, Y.; Li, Y.; Wijayawardena, A.; Sanderson, P.; Li, H.; Ma, L.Q. Comparison of in vitro models in a mice model and investigation of the changes in Pb speciation during Pb bioavailability assessments. J. Hazard. Mater. 2020, 388, 121744. [Google Scholar] [CrossRef] [PubMed]
- Hauptman, M.; Bruccoleri, R.; Woolf, A.D. An Update on Childhood Lead Poisoning. Clin. Pediatr. Emerg. Med. 2017, 18, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Mielke, H.W.; Reagan, P.L. Soil Is an Important Pathway of Human Lead Exposure. Environ. Health Perspect. 1998, 106, 217. [Google Scholar] [CrossRef]
- Mielke, H.W.; Gonzales, C.R.; Powell, E.T.; Laidlaw, M.A.S.; Berry, K.J.; Mielke, P.W., Jr.; Egendorf, S.P. The concurrent decline of soil lead and children’s blood lead in New Orleans. Proc. Natl. Acad. Sci. USA 2019, 116, 22058–22064. [Google Scholar] [CrossRef]
- Kabata-Pendias, H.A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-32714-1. [Google Scholar] [CrossRef]
- Sanchez, F.; Garrabrants, A.C.; Kosson, T.T.; Méhu, J.; Kosson, D.S. Evaluation of contaminant release mechanisms for stabilized/solidified wastes. In Studies in Environmental Science; Elsevier: Amsterdam, The Netherlands, 1997; pp. 787–802. [Google Scholar]
- Pueyo, M.; Mateu, J.; Rigol, A.; Vidal, M.; López-Sánchez, J.F.; Rauret, G. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environ. Pollut. 2008, 152, 330–341. [Google Scholar] [CrossRef]
- Cambier, P.; Philippe, C.; Charlatchka, R.; Bourgeois, S. Influence of Reducing Conditions on the Solubility of Divalent Trace Metals in Polluted Soils. 2014. Available online: https://www.researchgate.net/publication/240628173 (accessed on 1 December 2020).
- Shao, Y.; Lu, Y.; Luo, M.; Yang, K.; Zhou, G.; Zhao, C.; Cheng, H.; Xu, D.; Ma, L. Speciation Study on Pb in Different Particle Size Fractions by Sequential Extraction and XAFS Spectroscopy. Water Air Soil Pollut. 2021, 232, 1–11. [Google Scholar] [CrossRef]
- Peng, L.; Liu, P.; Feng, X.; Wang, Z.; Cheng, T.; Liang, Y.; Lin, Z.; Shi, Z. Kinetics of heavy metal adsorption and desorption in soil: Developing a unified model based on chemical speciation. Geochim. Cosmochim. Acta 2018, 224, 282–300. [Google Scholar] [CrossRef]
- Scheckel, K.G.; Ryan, J.A.; Allen, D.; Lescano, N.V. Determining speciation of Pb in phosphate-amended soils: Method limitations. Sci. Total Environ. 2005, 350, 261–272. [Google Scholar] [CrossRef]
- U.S. Census Bureau. United States Census Bureau. 2020. Available online: https://www.census.gov/ (accessed on 15 March 2023).
- Schuch, L.; Curtis, A.; Davidson, J. Reducing Lead Exposure Risk to Vulnerable Populations: A Proactive Geographic Solution. Ann. Assoc. Am. Geogr. 2017, 107, 606–624. [Google Scholar] [CrossRef]
- Muntau, H.; Quevauviller, P.; Griepink, B. Speciation of heavy metals in soils and sediments an account of the improvement and harmonization of extraction techniques undertaken under the auspices of the bcr of the commission of the european communities. Int. J. Environ. Anal. Chem. 1993, 51, 135–151. [Google Scholar]
- Dean, W.E. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. J. Sediment. Res. 1974, 44, 242–248. [Google Scholar]
- Konen, M.; Jacobs, P.; Burras, L.; Talaga, B.; Mason, J. Equations for Predicting Soil Organic Carbon Using Loss-on-Ignition for North Central, U.S. Soils. Soil Sci. Soc. Am. J. SSSAJ 2002, 66, 1878–1881. [Google Scholar] [CrossRef]
- Williams, J.C.; Basu, A.R.; Bhargava, O.N.; Ahluwalia, A.D.; Hannigan, R.E. Resolving original signatures from a sea of overprint—The geochemistry of the Gungri Shale (Upper Permian, Spiti Valley, India). Chem. Geol. 2012, 324, 59–72. [Google Scholar] [CrossRef]
- Christman, T.; Martin, J.; Myers, F.; Rasik, C.; Sainey, E.; Steigerwald-Dick, V. Evaluation of Background Metal Soil Concentrations in Cuyahoga County—Cleveland Area, OH-EPA Summary Report; Ohio EPA: Columbus, OH, USA, 2013. Available online: https://dam.assets.ohio.gov/image/upload/epa.ohio.gov/Portals/30/vap/docs/Evaluation%20of%20Background%20Metal%20Soil%20Concentrations.pdf (accessed on 29 October 2021).
- Filgueiras, A.V.; Lavilla, I.; Bendicho, C. Chemical sequential extraction for metal partitioning in environmental solid samples. J. Environ. Monit. 2002, 4, 823–857. [Google Scholar] [CrossRef]
- Ugwu, M.I.; Igbokwe, A.O. Sorption of Heavy Metals on Clay Minerals and Oxides: A Review. In Advanced Sorption Process Applications; IntechOpen: London, UK, 2019. [Google Scholar]
- Uddin, M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Fan, T.-T.; Cui, P.-X.; Sun, Q.; Zhou, D.-M.; Alves, M.E.; Wang, Y.-J. Combining Path Analysis and X-Ray Absorption Spectroscopy to Unravel the Zn Sorption Mechanism on Soils. Soil Sci. Soc. Am. J. 2018, 82, 796–802. [Google Scholar] [CrossRef]
- Kotoky, P.; Bora, B.J.; Baruah, N.K.; Baruah, J.; Baruah, P.; Borah, G.C. Chemical fractionation of heavy metals in soils around oil installations, Assam. Chem. Speciat. Bioavailab. 2003, 15, 115–126. [Google Scholar] [CrossRef]
- O’Reilly, S.; Hochella, M.F. Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides. Geochim. Cosmochim. Acta 2003, 67, 4471–4487. [Google Scholar] [CrossRef]
- Peli, M.; Bostick, B.C.; Barontini, S.; Lucchini, R.G.; Ranzi, R. Profiles and species of Mn, Fe and trace metals in soils near a ferromanganese plant in Bagnolo Mella (Brescia, IT). Sci. Total Environ. 2021, 755, 143123. [Google Scholar] [CrossRef]
- Kaste, J.M.; Friedland, A.J.; Miller, E.K. Potentially mobile lead fractions in montane organic-rich soil horizons. Water Air Soil Pollut. 2005, 167, 139–154. [Google Scholar] [CrossRef]
- Lu, A.; Zhang, S.; Shan, X.-Q. Time effect on the fractionation of heavy metals in soils. Geoderma 2005, 125, 225–234. [Google Scholar] [CrossRef]
- Ma, L.Q.; Rao, G.N. Effects of Phosphate Rock on Sequential Chemical Extraction of Lead in Contaminated Soils. J. Environ. Qual. 1997, 26, 788–794. [Google Scholar] [CrossRef]
- Clark, J.J.; Knudsen, A.C. Extent, Characterization, and Sources of Soil Lead Contamination in Small-Urban Residential Neighborhoods. J. Environ. Qual. 2013, 42, 1498–1506. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, J.; Winters, N.; Rozmyn, L.; Haskins, T.; Stark, J. Metals leaching from common residential and commercial roofing materials across four years of weathering and implications for environmental loading. Environ. Pollut. 2019, 255, 113262. [Google Scholar] [CrossRef]
- Galster, S.; Helmreich, B. Copper and Zinc as Roofing Materials—A Review on the Occurrence and Mitigation Measures of Runoff Pollution. Water 2022, 14, 291. [Google Scholar] [CrossRef]
- Laidlaw, M.A.; Filippelli, G.M. Resuspension of urban soils as a persistent source of lead poisoning in children: A review and new directions. Appl. Geochem. 2008, 23, 2021–2039. [Google Scholar] [CrossRef]
- Whiley, A.J. Copper and Zinc Loading Associated with Automotive Brake-Pad and Tire Wear: Puget Sound Basin [Internet]. Olympia, Washington; December 2011. Available online: www.ecy.wa.gov/biblio/1110087.html (accessed on 8 November 2020).
- Li, Q.; Wang, Y.; Li, Y.; Li, L.; Tang, M.; Hu, W.; Chen, L.; Ai, S. Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among diverse soil components. In Science of the Total Environment; Elsevier B.V.: Amsterdam, The Netherlands, 2022; Volume 825. [Google Scholar]
- Stone, M.; Marsalek, J. Trace metal composition and speciation in street sediment: Sault Ste. Marie, Canada. Water Air Soil Pollut. 1996, 87, 149–169. [Google Scholar] [CrossRef]
- EPA NWS. Managing Lead Contamination in Home Maintenance, Renovation and Demolition Practices: A Guide for Councils; NSW Environment Protection Authority: Sydney, Australia, 2003.
- Spanier, A.J.; Wilson, S.; Ho, M.; Hornung, R.; Lanphear, B.P. The contribution of housing renovation to children’s blood lead levels: A cohort study. Environ. Health 2013, 12, 72. [Google Scholar] [CrossRef]
- Farfel, M.R.; Chisolm, J.J. Health and Environmental Outcomes of Traditional and Modified Practices for Abatement of Residential Lead-Based Paint. Am. J. Public Health 1990, 80, 1240–1245. [Google Scholar] [CrossRef]
- Yin, X.; Gao, B.; Ma, L.Q.; Saha, U.K.; Sun, H.; Wang, G. Colloid-facilitated Pb transport in two shooting-range soils in Florida. J. Hazard. Mater. 2010, 177, 620–625. [Google Scholar] [CrossRef]
- Caporale, A.G.; Violante, A. Chemical Processes Affecting the Mobility of Heavy Metals and Metalloids in Soil Environments. Curr. Pollut. Rep. 2016, 2, 15–27. [Google Scholar] [CrossRef]
- Hunt, A. Relative bioaccessibility of Pb-based paint in soil. Environ. Geochem. Health 2016, 38, 1037–1050. [Google Scholar] [CrossRef]
- Haque, E.; Thorne, P.S.; Nghiem, A.A.; Yip, C.S.; Bostick, B.C. Lead (Pb) concentrations and speciation in residential soils from an urban community impacted by multiple legacy sources. J. Hazard. Mater. 2021, 416, 125886. [Google Scholar] [CrossRef] [PubMed]
- Coni, N.; Gipiela, M.L.; Oliveira, A.S.; Marcondes, P.V.P. Study of the Mechanical Properties of the Hot Dip Galvanized Steel and Galvalume®. J. Braz. Soc. Mech. Sci. Eng. 2009, 31, 319–326. [Google Scholar] [CrossRef]
- Zheng, R.; Carmeliet, J.; Hens, H.; Janssens, A.; Bogaerts, W. A hot box-cold box investigation of the corrosion behavior of highly insulated zinc roofing systems. J. Therm. Envel. Build. Sci. 2004, 28, 27–44. [Google Scholar] [CrossRef]
- Tack, F.; Singh, S.; Verloo, M. Leaching behaviour of Cd, Cu, Pb and Zn in surface soils derived from dredged sediments. Environ. Pollut. 1999, 106, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Tyler, G. Leaching rates of heavy metal ions in forest soil. Water Air Soil Pollut. 1978, 9, 137–148. [Google Scholar] [CrossRef]
- Kasich, J.; Taylor, M. Evaluation of Background Metal Soil Concentrations in Summit County-Akron Area Developed in Support of the Ohio Voluntary Action Program Summary Report *Generalized Soil Map for the State of Ohio Department of Natural Resources Evaluation of Background Metal Concentrations in Akron-Area Urban Soils Summary Report for Ohio EPA’s Voluntary Action Program. 2015. Available online: https://dam.assets.ohio.gov/image/upload/epa.ohio.gov/Portals/30/vap/docs/Toledo%20Background%20Summary%20Report_FINAL.pdf (accessed on 7 December 2021).
- Adamiec, E.; Jarosz-Krzemińska, E.; Wieszała, R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 2016, 188, 1–11. [Google Scholar] [CrossRef]
- Anasiei, I.; Mitrica, D.; Badea, I.-C.; Șerban, B.-A.; Trapp, J.; Storz, A.; Carcea, I.; Olaru, M.T.; Burada, M.; Constantin, N.; et al. Characterization of Complex Concentrated Alloys and Their Potential in Car Brake Manufacturing. Materials 2023, 16, 5067. [Google Scholar] [CrossRef]
- Reboredo, F.; Simões, M.; Jorge, C.; Mancuso, M.; Martinez, J.; Guerra, M.; Ramalho, J.C.; Pessoa, M.F.; Lidon, F. Metal content in edible crops and agricultural soils due to intensive use of fertilizers and pesticides in Terras da Costa de Caparica (Portugal). Environ. Sci. Pollut. Res. 2019, 26, 2512–2522. [Google Scholar] [CrossRef]
- Imperato, M.; Adamo, P.; Naimo, D.; Arienzo, M.; Stanzione, D.; Violante, P. Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ. Pollut. 2003, 124, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Mahanta, M.J.; Bhattacharyya, K.G. Total concentrations, fractionation and mobility of heavy metals in soils of urban area of Guwahati, India. Environ. Monit. Assess. 2011, 173, 221–240. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhu, F.; Chen, J.; Gan, H.; Guo, Y. Chemical fractionation of heavy metals in urban soils of Guangzhou, China. Environ. Monit. Assess. 2007, 134, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, C.; Tu, C. Distribution and sequential extraction of some heavy metals in urban soils of Guiyang City, China. Chin. J. Geochem. 2008, 27, 401–406. [Google Scholar] [CrossRef]
- Pavlović, D.; Pavlović, M.; Čakmak, D.; Kostić, O.; Jarić, S.; Sakan, S.; Đorđević, D.; Mitrović, M.; Gržetić, I.; Pavlović, P. Fractionation, Mobility, and Contamination Assessment of Potentially Toxic Metals in Urban Soils in Four Industrial Serbian Cities. Arch. Environ. Contam. Toxicol. 2018, 75, 335–350. [Google Scholar] [CrossRef]
- Davidson, C.M.; Urquhart, G.J.; Ajmone-Marsan, F.; Biasioli, M.; da Costa Duarte, A.; Díaz-Barrientos, E.; Grčman, H.; Hossack, I.; Hursthouse, A.S.; Madrid, L.; et al. Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonised sequential extraction procedure. Anal. Chim. Acta 2006, 565, 63–72. [Google Scholar] [CrossRef]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in soils and groundwater: A review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef]
- Abdu, N.; Agbenin, J.O.; Buerkert, A. Fractionation and mobility of cadmium and zinc in urban vegetable gardens of Kano, Northern Nigeria. Environ. Monit. Assess. 2012, 184, 2057–2066. [Google Scholar] [CrossRef]
- Burgio, L. Pigments, dyes and inks: Their analysis on manuscripts, scrolls and papyri. Archaeol. Anthr. Sci. 2021, 13, 194. [Google Scholar] [CrossRef]
- Hayat, M.T.; Nauman, M.; Nazir, N.; Ali, S.; Bangash, N. Environmental Hazards of Cadmium: Past, Present, and Future. In Cadmium Toxicity and Tolerance in Plants: From Physiology to Remediation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 163–183. [Google Scholar]
- U.S. Environmental Protection Agency. EPA Strengthens Safeguards to Protect Families and Children from Lead in Contaminated Soil at Residential Sites in Region 7. 2024. Available online: https://www.epa.gov/newsreleases/epa-strengthens-safeguards-protect-families-and-children-lead-contaminated-soil (accessed on 1 September 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nwoko, C.E.; Singer, D.M.; Tessin, A.C.; Izworski, R.; Heestand, C. Spatial Variability in the Speciation of Lead (Pb) and Other Metals Across Urban Lawns Is Linked to Post-Deposition Weathering Reactions. Soil Syst. 2024, 8, 113. https://doi.org/10.3390/soilsystems8040113
Nwoko CE, Singer DM, Tessin AC, Izworski R, Heestand C. Spatial Variability in the Speciation of Lead (Pb) and Other Metals Across Urban Lawns Is Linked to Post-Deposition Weathering Reactions. Soil Systems. 2024; 8(4):113. https://doi.org/10.3390/soilsystems8040113
Chicago/Turabian StyleNwoko, Chukwudi E., David M. Singer, Allyson C. Tessin, Rachel Izworski, and Chloe Heestand. 2024. "Spatial Variability in the Speciation of Lead (Pb) and Other Metals Across Urban Lawns Is Linked to Post-Deposition Weathering Reactions" Soil Systems 8, no. 4: 113. https://doi.org/10.3390/soilsystems8040113
APA StyleNwoko, C. E., Singer, D. M., Tessin, A. C., Izworski, R., & Heestand, C. (2024). Spatial Variability in the Speciation of Lead (Pb) and Other Metals Across Urban Lawns Is Linked to Post-Deposition Weathering Reactions. Soil Systems, 8(4), 113. https://doi.org/10.3390/soilsystems8040113