Sorption and Phase Associations of Chromate and Vanadate with Two Contrasting North Carolina Saprolites
Abstract
:1. Introduction
2. Material and Methods
2.1. Site Geology Description
2.2. Materials, Sample Collection, and Characterization
2.3. Chemical Extractions
2.4. Kinetic and Sorption Experiments
2.5. Aqueous Analysis
2.6. Bulk and Micro-Focused X-Ray Absorption Spectroscopy
3. Results
3.1. Saprolite Characterization
3.2. Kinetics of Chromium and Vanadium Sorption to Saprolite
3.3. Extent of Sorption of Chromium and Vanadium to Saprolite
3.4. Chemical Extractions of Native and Cr- and V-Loaded Saprolites
3.5. Bulk XANES and µ-XRF Analysis
4. Discussion
4.1. Controls on Cr Binding to Saprolites
4.2. Controls on V Binding to Saprolites
4.3. Significance for Groundwater Quality
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.Q.; Yu, Y.; Zhang, X.H.; Komorowski, J. Chromium-insulin reduces insulin clearance and enhances insulin signaling by suppressing hepatic insulin-degrading enzyme and proteasome protein expression in KKAy mice. Front. Endocrinol. 2014, 5, 99. [Google Scholar] [CrossRef] [PubMed]
- Jardine, P.M.; Fendorf, S.E.; Mayes, M.A.; Larsen, I.L.; Brooks, S.C.; Bailey, W.B. Fate and transport of hexavalent chromium in undisturbed heterogeneous soil. Environ. Sci. Technol. 1999, 33, 2939–2944. [Google Scholar] [CrossRef]
- Peel, H.R.; Balogun, F.O.; Bowers, C.A.; Miller, C.T.; Obeidy, C.S.; Polizzotto, M.L.; Tashnia, S.U.; Vinson, D.S.; Duckworth, O.W. Towards Understanding Factors Affecting Arsenic, Chromium, and Vanadium Mobility in the Subsurface. Water 2022, 14, 3687. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Gong, Y.; Gao, J.; Sun, T.; Liu, Y.; Oturan, N.; Oturan, M.A. The reduction of Cr(VI) to Cr(III) mediated by environmentally relevant carboxylic acids: State-of-the-art and perspectives. J. Hazard. Mater. 2019, 365, 205–226. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, S.M.; Alessi, D.S.; Tack, F.M.; Ok, Y.S.; Kim, K.-H.; Gustafsson, J.P.; Sparks, D.L.; Rinklebe, J. Redox chemistry of vanadium in soils and sediments: Interactions with colloidal materials, mobilization, speciation, and relevant environmental implications—A review. Adv. Colloid Interface Sci. 2019, 265, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Larsson, M.A.; Hadialhejazi, G.; Gustafsson, J.P. Vanadium sorption by mineral soils: Development of a predictive model. Chemosphere 2017, 168, 925–932. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Klein, E.M.; Vengosh, A. Global biogeochemical cycle of vanadium. Proc. Natl. Acad. Sci. USA. 2017, 114, E11092–E11100. [Google Scholar] [CrossRef]
- Vengosh, A.; Coyte, R.; Karr, J.; Harkness, J.S.; Kondash, A.J.; Ruhl, L.S.; Merola, R.B.; Dywer, G.S. Origin of Hexavalent Chromium in Drinking Water Wells from the Piedmont Aquifers of North Carolina. Environ. Sci. Technol. Lett. 2016, 3, 409–414. [Google Scholar] [CrossRef]
- Coyte, R.M.; McKinley, K.L.; Jiang, S.; Karr, J.; Dwyer, G.S.; Keyworth, A.J.; Davis, C.C.; Kondash, A.J.; Vengosh, A. Occurrence and distribution of hexavalent chromium in groundwater from North Carolina, USA. Sci. Total Environ. 2019, 711, 135135. [Google Scholar] [CrossRef]
- Coyte, R.M.; Vengosh, A. Factors Controlling the Risks of Co-occurrence of the Redox-Sensitive Elements of Arsenic, Chromium, Vanadium, and Uranium in Groundwater from the Eastern United States. Environ. Sci. Technol. 2020, 54, 4367–4375. [Google Scholar] [CrossRef]
- Gillispie, E.C.; Austin, R.E.; Rivera, N.A.; Bolich, R.; Duckworth, O.W.; Bradley, P.; Amoozegar, A.; Hesterberg, D.; Polizzotto, M.L. Soil Weathering as an Engine for Manganese Contamination of Well Water. Environ. Sci. Technol. 2016, 50, 9963–9971. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, T.R.; Austin, R.E.; Bradley, P.J.; Eaves, L.A.; Fry, R.C.; George, A.; Gray, K.M.; Osborne, J.A.; Stýblo, M.; Vinson, D.S.; et al. Geologic predictors of drinking water well contamination in North Carolina. PLoS Water 2024, 3, e0000194. [Google Scholar] [CrossRef]
- Wright, M.T.; Belitz, K. Factors controlling the regional distribution of vanadium in groundwater. Ground Water 2010, 48, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Yan, X.; Peacock, C.L.; Zhang, S.; Li, W.; Zhang, J.; Feng, X.; Liu, F.; Yin, H. Adsorption of Cr(VI) on Al-substituted hematites and its reduction and retention in the presence of Fe2+ under conditions similar to subsurface soil environments. J. Hazard. Mater. 2020, 390, 122014. [Google Scholar] [CrossRef]
- Landrot, G.; Ginder-Vogel, M.; Livi, K.; Fitts, J.P.; Sparks, D.L. Chromium(III) oxidation by three poorly-crystalline manganese(IV) oxides. 1. chromium(III)-oxidizing capacity. Environ. Sci. Technol. 2012, 46, 11594–11600. [Google Scholar] [CrossRef]
- Pan, C.; Liu, H.; Catalano, J.G.; Wang, Z.; Qian, A.; Giammar, D.E. Understanding the Roles of Dissolution and Diffusion in Cr(OH)3 Oxidation by Î-MnO2. ACS Earth Sp. Chem. 2019, 3, 357–365. [Google Scholar] [CrossRef]
- Oze, C.; Bird, D.K.; Fendorf, S. Genesis of hexavalent chromium from natural sources in soil and groundwater. Proc. Natl. Acad. Sci. USA 2007, 104, 6544–6549. [Google Scholar] [CrossRef]
- Liang, J.; Huang, X.; Yan, J.; Li, Y.; Zhao, Z.; Liu, Y.; Ye, J.; Wei, Y. A review of the formation of Cr(VI) via Cr(III) oxidation in soils and groundwater. Sci. Total Environ. 2021, 774, 145762. [Google Scholar] [CrossRef]
- Abernathy, J.; Schaefer, V.; Vessey, J.; Liu, H.; Ying, C. Oxidation of V(IV) by Birnessite: Kinetics and Surface Complexation. Environ. Sci. Technol. 2021, 55, 11703–11712. [Google Scholar] [CrossRef]
- Johnston, C.P.; Chrysochoou, M. Investigation of Chromate Coordination on Ferrihydrite by in Situ ATR-FTIR Spectroscopy and Theoretical Frequency Calculations. Environ. Sci. Technol. 2012, 46, 5851–5858. [Google Scholar] [CrossRef]
- Ding, Z.; Sun, G.; Fu, F.; Ye, C. Phase transformation of Cr(VI)-adsorbed ferrihydrite in the presence of Mn(II): Fate of Mn(II) and Cr(VI). J. Environ. Sci. 2022, 113, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Abernathy, M.J.; Schaefer, M.V.; Ramirez, R.; Garniwan, A.; Lee, I.; Zaera, F.; Polizzotto, M.L.; Ying, S.C. Vanadate Retention by Iron and Manganese Oxides. ACS Earth Sp. Chem. 2022, 6, 2041–2052. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, J.P. Vanadium geochemistry in the biogeosphere–speciation, solid-solution interactions, and ecotoxicity. Appl. Geochem. 2019, 102, 1–25. [Google Scholar] [CrossRef]
- Oze, C.; Fendorf, S.; Coleman, R.G. Chromium Geochemistry in Serpentinized Ultramafic Rocks and Serpentine Soils from the Franciscan Formation of California Organic Matter Mineralization and Metal Cycling During Flood Plain Evolution View Project Uranium Sequestration View Project. 2002. Available online: https://www.researchgate.net/publication/252099396 (accessed on 21 November 2024).
- Wisawapipat, W.; Kretzschmar, R. Solid Phase Speciation and Solubility of Vanadium in Highly Weathered Soils. Environ. Sci. Technol. 2017, 51, 8254–8262. [Google Scholar] [CrossRef]
- Scheinost, A.C.; Kretzschmar, R.; Pfister, S.; Roberts, D.R. Combining Selective Sequential Extractions, X-ray Absorption Spectroscopy, and Principal Component Analysis for Quantitative Zinc Speciation in Soil. Environ. Sci. Technol. 2002, 36, 5021–5028. [Google Scholar] [CrossRef]
- Eaves, L.A.; Keil, A.P.; Rager, J.E.; George, A.; Fry, R.C. Analysis of the novel NCWELL database highlights two decades of co-occurrence of toxic metals in North Carolina private well water: Public health and environmental justice implications. Sci. Total Environ. 2022, 812, 151479. [Google Scholar] [CrossRef]
- Eaves, L.; Keil, A.P.; Henry, A.; Fry, R.C. A Dataset Describing Well Water Metal/Metalloid Contamination of Private Wells in North Carolina, 1998–2019, V1 ed.; UNC Dataverse: Chapel Hill, NC, USA, 2021. [Google Scholar]
- Smith, S.M. National Geochemical Database—Reformatted Data from the National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) Program [Version 1.40]: US Geological Survey Open-File Report OF 97-492. 2006. Available online: http://pubs.usgs.gov/of/1997/ofr-97-0492/ (accessed on 3 June 2024).
- Vinson, D.S.; Vengosh, A.; Hirschfeld, D.; Dwyer, G.S. Relationships between radium and radon occurrence and hydrochemistry in fresh groundwater from fractured crystalline rocks, North Carolina (USA). Chem. Geol. 2009, 260, 159–171. [Google Scholar] [CrossRef]
- LaFayette, G.N.; Knappett, P.S.K.; Li, Y.; Loza-Aguirre, I.; Polizzotto, M.L. Geogenic sources and chemical controls on fluoride release to groundwater in the Independence Basin, Mexico. Appl. Geochem. 2020, 123, 104787. [Google Scholar] [CrossRef]
- Keon, N.E.; Swartz, C.H.; Brabander, D.J.; Harvey, C.; Hemond, H.F. Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environ. Sci. Technol. 2001, 35, 2778–2784. [Google Scholar] [CrossRef]
- Strawn, D.G. Sorption mechanisms of chemicals in soils. Soil Syst. 2021, 5, 13. [Google Scholar] [CrossRef]
- Balogun, F.O.; Aiken, M.L.; Namayandeh, A.; Duckworth, O.W.; Polizzotto, M.L. Dissolved Organic Carbon Diminishes Manganese Oxide-Driven Oxidation of Chromium. Chemosphere 2023, 344, 140424. [Google Scholar] [CrossRef] [PubMed]
- Polizzotto, M.L.; Harvey, C.F.; Li, G.; Badruzzman, B.; Ali, A.; Newville, M.; Sutton, S.; Fendorf, S. Solid-phases and desorption processes of arsenic within Bangladesh sediments. Chem. Geol. 2006, 228, 97–111. [Google Scholar] [CrossRef]
- Duckworth, O.W.; Akafia, M.M.; Andrews, M.Y.; Bargar, J.R. Siderophore-promoted dissolution of chromium from hydroxide minerals. Environ. Sci. Process. Impacts. 2014, 16, 1348–1359. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, A.H.; Peña, J.; Amor, M.; Duckworth, O.W. Cr(VI) uptake and reduction by biogenic iron (oxyhydr)oxides. Environ. Sci. Proc. Impacts 2018, 20, 1056–1068. [Google Scholar] [CrossRef]
- Manceau, A.; Marcus, M.A.; Grangeon, S. Determination of Mn valence states in mixed-valent manganates by XANES spectroscopy. Am. Mineral. 2012, 97, 816–827. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Gonzalez-Rodriguez, S.; Fernandez-Marcos, M.L. Sorption and desorption of vanadate, arsenate and chromate by two vol-canic soils of equatorial africa. Soil Syst. 2021, 5, 22. [Google Scholar] [CrossRef]
- Lilli, M.A.; Nikolaidis, N.P.; Karatzas, G.P.; Kalogerakis, N. Identifying the controlling mechanism of geogenic origin chromium release in soils. J. Hazard. Mater. 2019, 366, 169–176. [Google Scholar] [CrossRef]
- Choppala, G.; Kunhikrishnan, A.; Seshadri, B.; Park, J.H.; Bush, R.; Bolan, N. Comparative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils. J. Geochem. Explor. 2018, 184, 255–260. [Google Scholar] [CrossRef]
- Fendorf, S.E. Surface reactions of chromium in soils and waters. Geoderma 1995, 67, 55–71. [Google Scholar] [CrossRef]
- Johnston, C.P.; Chrysochoou, M. Mechanisms of chromate adsorption on hematite. Geochim. Cosmochim. Acta 2014, 138, 146–157. [Google Scholar] [CrossRef]
- Fendorf, S.; Wielinga, B.W.; Hansel, C.M. Chromium transformations in natural environments: The role of biological and abiological processes in chromium(vi) reduction. Int. Geol. Rev. 2000, 42, 691–701. [Google Scholar] [CrossRef]
- Agrawal, S.G.; Fimmen, R.L.; Chin, Y.P. Reduction of Cr(VI) to Cr(III) by Fe(II) in the presence of fulvic acids and in lacustrine pore water. Chem. Geol. 2009, 262, 328–335. [Google Scholar] [CrossRef]
- Joe-Wong, C.; Brown, G.E.J.; Maher, K. Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals. Environ. Sci. Technol. 2017, 51, 9817–9825. [Google Scholar] [CrossRef]
- Liao, W.; Ye, Z.; Yuan, S.; Cai, Q.; Tong, M.; Qian, A.; Cheng, D. Effect of Coexisting Fe(III) (oxyhydr)oxides on Cr(VI) Reduction by Fe(II)-Bearing Clay Minerals. Environ. Sci. Technol. 2019, 53, 13767–13775. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, F.; Xue, J.; Chen, S.; Wang, J.; Yang, Y. Enhanced removal of heavy metal ions from aqueous solution using manganese dioxide-loaded biochar: Behavior and mechanism. Sci. Rep. 2020, 10, 6067. [Google Scholar] [CrossRef]
- Larsson, M.A.; D’Amato, M.; Cubadda, F.; Raggi, A.; Öborn, I.; Kleja, D.B.; Gustafsson, J.P. Long-term fate and transformations of vanadium in a pine forest soil with added converter lime. Geoderma 2015, 259–260, 271–278. [Google Scholar] [CrossRef]
- Gäbler, H.-E.; Glüh, K.; Bahr, A.; Utermann, J. Quantification of vanadium adsorption by German soils. J. Geochem. Explor. 2009, 103, 37–44. [Google Scholar] [CrossRef]
- Vessey, C.J.; Lindsay, M.B.J. Aqueous Vanadate Removal by Iron(II)-Bearing Phases under Anoxic Conditions. Environ. Sci. Technol. 2020, 54, 4006–4015. [Google Scholar] [CrossRef]
- Kajjumba, G.W.; Aydın, S.; Güneysu, S. Adsorption isotherms and kinetics of vanadium by shale and coal waste. Adsorpt. Sci. Technol. 2018, 36, 936–952. [Google Scholar] [CrossRef]
- Baldermann, A.; Stamm, F.M. Effect of kinetics, pH, aqueous speciation and presence of ferrihydrite on vanadium (V) uptake by allophanic and smectitic clays. Chem. Geol. 2022, 607, 121022. [Google Scholar] [CrossRef]
- O’Loughlin, E.; Boyanov, M.; Kemner, K. Reduction of Vanadium (V) by Iron (II)-Bearing Minerals. Minerals 2021, 11, 316. [Google Scholar] [CrossRef]
Saprolite Property | UC | RL |
---|---|---|
pH | 7.7 | 5.9 |
* Total Cr (mmol/kg) | 1.04 ± 0.3 | <LOD |
* Total V (mmol/kg) | 6.5 ± 1.1 | 4.3 ± 0.6 |
* Total Fe (mg/kg) | 31,000 ± 577 | 74,210 ± 1856 |
* Total Mn (mg/kg) | 1100 ± 39 | 924 ± 36 |
Amorphous Fe (mg/kg) | 1140 ± 30 | 530 ± 20 |
Crystalline Fe (mg/kg) | 10,700 ± 900 | 15,000 ± 300 |
Amorphous Mn (mg/kg) | 100 ± 10 | 25 ± 1 |
Crystalline Mn (mg/kg) | 130 ± 12 | 32 ± 1 |
Fe oxidation state | 2.6 ± 0.3 | 2.9 ± 0.3 |
V oxidation state | 3.6 ± 0.4 | 3.9 ± 0.7 |
Cr oxidation state | 3 | 3 |
Mn oxidation state | 2/3 | 2/3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balogun, F.O.; Peel, H.R.; Austin, R.E.; Okunlola, I.G.; Vinson, D.S.; Duckworth, O.W.; Polizzotto, M.L. Sorption and Phase Associations of Chromate and Vanadate with Two Contrasting North Carolina Saprolites. Soil Syst. 2024, 8, 127. https://doi.org/10.3390/soilsystems8040127
Balogun FO, Peel HR, Austin RE, Okunlola IG, Vinson DS, Duckworth OW, Polizzotto ML. Sorption and Phase Associations of Chromate and Vanadate with Two Contrasting North Carolina Saprolites. Soil Systems. 2024; 8(4):127. https://doi.org/10.3390/soilsystems8040127
Chicago/Turabian StyleBalogun, Fatai O., Hannah R. Peel, Robert E. Austin, Ibrahim G. Okunlola, David S. Vinson, Owen W. Duckworth, and Matthew L. Polizzotto. 2024. "Sorption and Phase Associations of Chromate and Vanadate with Two Contrasting North Carolina Saprolites" Soil Systems 8, no. 4: 127. https://doi.org/10.3390/soilsystems8040127
APA StyleBalogun, F. O., Peel, H. R., Austin, R. E., Okunlola, I. G., Vinson, D. S., Duckworth, O. W., & Polizzotto, M. L. (2024). Sorption and Phase Associations of Chromate and Vanadate with Two Contrasting North Carolina Saprolites. Soil Systems, 8(4), 127. https://doi.org/10.3390/soilsystems8040127