Post-Wildfire Mobilization of Organic Carbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Overview
2.2. Sampling Region and Collection of Soil and Ash Samples
2.3. Measurement of Organic Carbon Mobility
2.4. Bulk Organic Carbon, Pyrogenic Organic Carbon
2.5. Specific Surface Area
2.6. Electron Paramagnetic Resonance
2.7. Synchrotron XRF and XANES Spectroscopy
2.8. XRD
2.9. Redox Reactivity Measurement
2.10. Statistical Analysis
3. Results
3.1. Mobility of OC in Ashes and Soils
3.2. Physicochemical Properties of Particles of Ashes and Soils
3.3. Physicochemical Properties of Mobile OC
3.3.1. UV
3.3.2. Redox Reactivity
4. Discussion
4.1. Impact of Chemical vs. Physical Properties of Ashes and Soils on the Mobility of OC
4.2. Role of Redox Reactions in the OC Mobility
4.3. Influences of Wildfire Properties
4.4. Implication on Watershed Functions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western US forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Uzun, H.; Zhang, W.B.; Olivares, C.I.; Erdem, C.U.; Coates, T.A.; Karanfil, T.; Chow, A.T. Effect of prescribed fires on the export of dissolved organic matter, precursors of disinfection by-products, and water treatability. Water Res. 2020, 187, 116385. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P.; Boschetti, L.; Zubkova, M.; Kolden, C.A. Global patterns of interannual climate-fire relationships. Glob. Change Biol. 2018, 24, 5164–5175. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.P.; Livneh, B.; McKinnon, K.A.; Hansen, W.D.; Mankin, J.S.; Cook, B.I.; Smerdon, J.E.; Varuolo-Clarke, A.M.; Bjarke, N.R.; Juang, C.S.; et al. Growing impact of wildfire on western US water supply. Proc. Natl. Acad. Sci. USA 2022, 119, e2114069119. [Google Scholar] [CrossRef] [PubMed]
- Lasslop, G.; Coppola, A.I.; Voulgarakis, A.; Yue, C.; Veraverbeke, S. Influence of Fire on the Carbon Cycle and Climate. Curr. Clim. Change Rep. 2019, 5, 112–123. [Google Scholar] [CrossRef]
- Jones, M.W.; Santín, C.; van der Werf, G.R.; Doerr, S.H. Global fire emissions buffered by the production of pyrogenic carbon. Nat. Geosci. 2019, 12, 742–747. [Google Scholar] [CrossRef]
- Santín, C.; Doerr, S.H.; Kane, E.S.; Masiello, C.A.; Ohlson, M.; De La Rosa, J.M.; Preston, C.M.; Dittmar, T. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob. Change Biol. 2016, 22, 76–91. [Google Scholar] [CrossRef]
- Prichard, S.J.; O’Neill, S.M.; Eagle, P.; Andreu, A.G.; Drye, B.; Dubowy, J.; Urbanski, S.; Strand, T.M. Wildland fire emission factors in North America: Synthesis of existing data, measurement needs and management applications. Int. J. Wildland Fire 2020, 29, 132. [Google Scholar] [CrossRef]
- Santín, C.; Doerr, S.H.; Preston, C.M.; González-Rodríguez, G. Pyrogenic organic matter production from wildfires: A missing sink in the global carbon cycle. Glob. Change Biol. 2015, 21, 1621–1633. [Google Scholar] [CrossRef] [PubMed]
- Bird, M.I.; Wynn, J.G.; Saiz, G.; Wurster, C.M.; McBeath, A. The Pyrogenic Carbon Cycle. Annu. Rev. Earth Planet. Sci. 2015, 43, 273–298. [Google Scholar] [CrossRef]
- Abney, R.B.; Berhe, A.A. Pyrogenic Carbon Erosion: Implications for Stock and Persistence of Pyrogenic Carbon in Soil. Front. Earth Sci. 2018, 6, 26. [Google Scholar] [CrossRef]
- Stephens, E.Z.; Homyak, P.M. Post-fire soil emissions of nitric oxide (NO) and nitrous oxide (N2O) across global ecosystems: A review. Biogeochemistry 2023, 165, 291–309. [Google Scholar] [CrossRef]
- Santos, F.; Wymore, A.S.; Jackson, B.K.; Sullivan, S.M.P.; Mcdowell, W.H.; Berhe, A.A. Fire severity, time since fire, and site-level characteristics influence streamwater chemistry at baseflow conditions in catchments of the Sierra Nevada, California, USA. Fire Ecol. 2019, 15, 3. [Google Scholar] [CrossRef]
- Thuile Bistarelli, L.; Poyntner, C.; Santín, C.; Doerr, S.H.; Talluto, M.V.; Singer, G.; Sigmund, G. Wildfire-Derived Pyrogenic Carbon Modulates Riverine Organic Matter and Biofilm Enzyme Activities in an In Situ Flume Experiment. ACS EST Water 2021, 1, 1648–1656. [Google Scholar] [CrossRef] [PubMed]
- Hutchins, R.H.S.; Tank, S.E.; Olefeldt, D.; Quinton, W.L.; Spence, C.; Dion, N.; Mengistu, S.G. Influence of Wildfire on Downstream Transport of Dissolved Carbon, Nutrients, and Mercury in the Permafrost Zone of Boreal Western Canada. J. Geophys. Res. Biogeosciences 2023, 128, e2023JG007602. [Google Scholar] [CrossRef]
- Abney, R.B.; Sanderman, J.; Johnson, D.; Fogel, M.L.; Berhe, A.A. Post-wildfire Erosion in Mountainous Terrain Leads to Rapid and Major Redistribution of Soil Organic Carbon. Front. Earth Sci. 2017, 5, 99. [Google Scholar] [CrossRef]
- Rhoades, C.C.; Nunes, J.P.; Silins, U.; Doerr, S.H. The influence of wildfire on water quality and watershed processes: New insights and remaining challenges. Int. J. Wildland Fire 2019, 28, 721–725. [Google Scholar] [CrossRef]
- Pellegrini, A.F.A.; Reich, P.B.; Hobbie, S.E.; Coetsee, C.; Wigley, B.; February, E.; Georgiou, K.; Terrer, C.; Brookshire, E.N.J.; Ahlström, A.; et al. Soil carbon storage capacity of drylands under altered fire regimes. Nat. Clim. Chang. 2023, 13, 1089–1094. [Google Scholar] [CrossRef]
- Staley, D.M.; Kean, J.W.; Cannon, S.H.; Schmidt, K.M.; Laber, J.L. Objective definition of rainfall intensity-duration thresholds for the initiation of post-fire debris flows in Southern California. Landslides 2013, 10, 547–562. [Google Scholar] [CrossRef]
- Ebel, B.A. Upper limits for post-wildfire floods and distinction from debris flows. Sci. Adv. 2024, 10, eadk5713. [Google Scholar] [CrossRef] [PubMed]
- Wehner, M.F.; Arnold, J.R.; Knutson, T.; Kunkel, K.E.; LeGrande, A.N. Chapter 8: Droughts, Floods, and Wildfires. In Climate Science Special Report: Fourth National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume I. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Knicker, H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 2007, 85, 91–118. [Google Scholar] [CrossRef]
- Neary, D.G. NForest Soil Disturbance: Implications of Factors Contributing to the Wildland Fire Nexus. Soil Sci. Soc. Am. J. 2019, 83, S228–S243. [Google Scholar] [CrossRef]
- Sánchez-García, C.; Santín, C.; Neris, J.; Sigmund, G.; Otero, X.L.; Manley, J.; González-Rodríguez, G.; Belcher, C.M.; Cerdà, A.; Marcotte, A.L.; et al. Chemical characteristics of wildfire ash across the globe and their environmental and socio-economic implications. Environ. Int. 2023, 178, 108065. [Google Scholar] [CrossRef] [PubMed]
- Rodela, M.H.; Chowdhury, I.; Hohner, A.K. Emerging investigator series: Physicochemical properties of wildfire ash and implications for particle stability in surface waters. Environ. Sci. Process. Impacts 2022, 24, 2129–2139. [Google Scholar] [CrossRef]
- Bladon, K.D.; Emelko, M.B.; Silins, U.; Stone, M. Wildfire and the Future of Water Supply. Environ. Sci. Technol. 2014, 48, 8936–8943. [Google Scholar] [CrossRef] [PubMed]
- Wagner, S.; Ding, Y.; Jaffe, R. A New Perspective on the Apparent Solubility of Dissolved Black Carbon. Front. Earth Sci. 2017, 5, 16. [Google Scholar] [CrossRef]
- Sánchez, R.A.; Meixner, T.; Roy, T.; Ferré, P.T.; Whitaker, M.; Chorover, J. Physical and biogeochemical drivers of solute mobilization and flux through the critical zone after wildfire. Front. Water 2023, 5, 1148298. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [PubMed]
- Bachelet, D.; Lenihan, J.M.; Neilson, R.P. The importance of climate change for future wildfire scenarios in the western United States. In Regional Impacts of Climate Change: Four Case Studies in the United States; Pew Center on Global Climate Change: Arlington, VA, USA, 2007. [Google Scholar]
- Cassell, B.A.; Scheller, R.M.; Lucash, M.S.; Hurteau, M.D.; Loudermilk, E.L. Widespread severe wildfires under climate change lead to increased forest homogeneity in dry mixed-conifer forests. Ecosphere 2019, 10, e02934. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture Forest Service. Beckwourth Complex Post-Fire BAER Assessment Report. Available online: https://www.fire.ca.gov/incidents/2021/7/4/beckwourth-complex (accessed on 25 November 2022).
- Institute, C.B. California Fire Perimeters (1898–2020). Available online: https://databasin.org/datasets/bf8db57ee6e0420c8ecce3c6395aceeb/ (accessed on 26 November 2022).
- Ellsworth, T.; Stamer, M. Caldor Fire Burned Area Emergency Response (BAER) Assessment Report Summary; U.S. Department of Agriculture Forest Service: Washington, DC, USA, 2021; pp. 4–16. [Google Scholar]
- U.S. Department of Agriculture Forest Service. Dixie Post-Fire BAER Assessment Report. Available online: https://www.fire.ca.gov/incidents/2021/7/13/dixie-fire/ (accessed on 25 November 2022).
- Samburova, V.; Schneider, E.; Rüger, C.P.; Inouye, S.; Sion, B.; Axelrod, K.; Bahdanovich, P.; Friederici, L.; Raeofy, Y.; Berli, M.; et al. Modification of Soil Hydroscopic and Chemical Properties Caused by Four Recent California, USA Megafires. Fire 2023, 6, 186. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture Forest Service. Available online: https://www.fs.usda.gov/detail/lpnf/home/?cid=fseprd570093 (accessed on 17 January 2025).
- Accardi-Dey, A.; Gschwend, P.M. Assessing the Combined Roles of Natural Organic Matter and Black Carbon as Sorbents in Sediments. Environ. Sci. Technol. 2002, 36, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Webb, M.S.; Mcnulty, I.; Eyberger, C.; Lai, B. The MicroAnalysis Toolkit: X-ray Fluorescence Image Processing Software. AIP Conf. Proc. 2011, 1365, 196–199. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Graulis, S.; Daškevi, A.; Merkys, A.; Chateigner, D.; Lutterotti, L.; Quirós, M.; Serebryanaya, N.R.; Moeck, P.; Downs, R.T.; Le Bail, A. Crystallography Open Database (COD): An open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res. 2012, 40, D420–D427. [Google Scholar] [CrossRef] [PubMed]
- Lokesh, S.; Kim, J.; Zhou, Y.; Wu, D.; Pan, B.; Wang, X.; Behrens, S.; Huang, C.-H.; Yang, Y. Anaerobic Dehalogenation by Reduced Aqueous Biochars. Environ. Sci. Technol. 2020, 54, 15142–15150. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, D.; Sowers, T.; Stuckey, J.W.; Wang, X.; Sparks, D.L.; Yang, Y. Formation and redox reactivity of ferrihydrite-organic carbon-calcium co-precipitates. Geochim. Cosmochim. Acta 2019, 244, 86–98. [Google Scholar] [CrossRef]
- Yang, G.; Wang, Z.; Xian, Q.; Shen, F.; Sun, C.; Zhang, Y.; Wu, J. Effects of pyrolysis temperature on the physicochemical properties of biochar derived from vermicompost and its potential use as an environmental amendment. RSC Adv. 2015, 5, 4117–4125. [Google Scholar] [CrossRef]
- Agbeshie, A.A.; Abugre, S.; Atta-Darkwa, T.; Awuah, R. A review of the effects of forest fire on soil properties. J. For. Res. 2022, 33, 1419–1441. [Google Scholar] [CrossRef]
- Sigmund, G.; Santin, C.; Pignitter, M.; Tepe, N.; Doerr, S.H.; Hofmann, T. Environmentally persistent free radicals are ubiquitous in wildfire charcoals and remain stable for years. Commun. Earth Environ. 2021, 2, 68. [Google Scholar] [CrossRef]
- Kluepfel, L.; Keiluweit, M.; Kleber, M.; Sander, M. Redox Properties of Plant Biomass-Derived Black Carbon (Biochar). Environ. Sci. Technol. 2014, 48, 5601–5611. [Google Scholar] [CrossRef] [PubMed]
- Uchimiya, M.; Stone, A.T. Reversible redox chemistry of quinones: Impact on biogeochemical cycles. Chemosphere 2009, 77, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.T.; McKnight, D.M.; Blunt-Harris, E.L.; Kolesar, S.E.; Lovley, D.R. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ. Sci. Technol. 1998, 32, 2984–2989. [Google Scholar] [CrossRef]
- Lokesh, S.; Lard, M.L.; Cook, R.L.; Yang, Y. Critical Role of Semiquinones in Reductive Dehalogenation. Environ. Sci. Technol. 2023, 57, 14218–14225. [Google Scholar] [CrossRef] [PubMed]
- Bento-Gonçalves, A.; Vieira, A.; Ubeda, X.; Martin, D. Fire and soils: Key concepts and recent advances. Geoderma 2012, 191, 3–13. [Google Scholar] [CrossRef]
- Johnston, S.G.; Karimian, N.; Burton, E.D. Fire Promotes Arsenic Mobilization and Rapid Arsenic(III) Formation in Soil via Thermal Alteration of Arsenic-Bearing Iron Oxides. Front. Earth Sci. 2019, 7, 463230. [Google Scholar] [CrossRef]
- Uchimiya, M.; Wartelle, L.H.; Klasson, K.T.; Fortier, C.A.; Lima, I.M. Influence of Pyrolysis Temperature on Biochar Property and Function as a Heavy Metal Sorbent in Soil. J. Agric. Food Chem. 2011, 59, 2501–2510. [Google Scholar] [CrossRef]
- Hall, S.J.; Silver, W.L.; Timokhin, V.I.; Hammel, K.E. Iron addition to soil specifically stabilized lignin. Soil Biol. Biochem. 2016, 98, 95–98. [Google Scholar] [CrossRef]
- Xu, W.Q.; Walpen, N.; Keiluweit, M.; Kleber, M.; Sander, M. Redox Properties of Pyrogenic Dissolved Organic Matter (pyDOM) from Biomass-Derived Chars. Environ. Sci. Technol. 2021, 55, 11434–11444. [Google Scholar] [CrossRef]
- Hurteau, M.D.; Westerling, A.L.; Wiedinmyer, C.; Bryant, B.P. Projected Effects of Climate and Development on California Wildfire Emissions through 2100. Environ. Sci. Technol. 2014, 48, 2298–2304. [Google Scholar] [CrossRef]
- Loudermilk, E.L.; Stanton, A.; Scheller, R.M.; Dilts, T.E.; Weisberg, P.J.; Skinner, C.; Yang, J. Effectiveness of fuel treatments for mitigating wildfire risk and sequestering forest carbon: A case study in the Lake Tahoe Basin. For. Ecol. Manag. 2014, 323, 114–125. [Google Scholar] [CrossRef]
- Bisiaux, M.M.; Edwards, R.; Heyvaert, A.C.; Thomas, J.M.; Fitzgerald, B.; Susfalk, R.B.; Schladow, S.G.; Thaw, M. Stormwater and Fire as Sources of Black Carbon Nanoparticles to Lake Tahoe. Environ. Sci. Technol. 2011, 45, 2065–2071. [Google Scholar] [CrossRef]
- Heron, T.; Strawn, D.G.; Dobre, M.; Cade-Menun, B.J.; Deval, C.; Brooks, E.S.; Piaskowski, J.; Gasch, C.; Crump, A. Soil Phosphorus Speciation and Availability in Meadows and Forests in Alpine Lake Watersheds with Different Parent Materials. Front. For. Glob. Change 2021, 3, 604200. [Google Scholar] [CrossRef]
- Goldberg, S.J.; Ball, G.I.; Allen, B.C.; Schladow, S.G.; Simpson, A.J.; Masoom, H.; Soong, R.; Graven, H.D.; Aluwihare, L.I. Refractory dissolved organic nitrogen accumulation in high-elevation lakes. Nat. Commun. 2015, 6, 6347. [Google Scholar] [CrossRef]
Fire | Burned Area (Acres) | Wildfire Period | Unburned to Low Severity | Medium Severity | High Severity | GPS Coordinates of Sampling Sites |
---|---|---|---|---|---|---|
Beckworth Fire (BF2) | 105,670 | 03 July 2021–22 Sep 2021 | 44% | 53% | 3% | 39°53′21.1″ N 120°12′02.9” W |
Caldor Fire (CF) | 221,952 | 14 August 2021–25 October 2021 | 47% | 40% | 13% | 38°50′37.0″ N 120°01′59.8″ W |
Dixie Fire (DF) | 963,309 | 3 July 2021–22 October 2021 | 45% | 30% | 25% | 39°58′41.9″ N 120°21′24.8″ W |
Dixie and Beckwourth fires (BF) | 3 July 2021–22 October 2021 | 39°56′56.0″N 120°18′18.2″W |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Numan, T.; Lokesh, S.; Shahriar, A.; Timilsina, A.; Lard, M.L.; Clark, J.; Raeofy, Y.; Zhao, Q.; Poulson, S.R.; Verburg, P.S.; et al. Post-Wildfire Mobilization of Organic Carbon. Soil Syst. 2025, 9, 11. https://doi.org/10.3390/soilsystems9010011
Numan T, Lokesh S, Shahriar A, Timilsina A, Lard ML, Clark J, Raeofy Y, Zhao Q, Poulson SR, Verburg PS, et al. Post-Wildfire Mobilization of Organic Carbon. Soil Systems. 2025; 9(1):11. https://doi.org/10.3390/soilsystems9010011
Chicago/Turabian StyleNuman, Travis, Srinidhi Lokesh, Abrar Shahriar, Anil Timilsina, Myron L. Lard, Justin Clark, Yasaman Raeofy, Qian Zhao, Simon R. Poulson, Paul S. Verburg, and et al. 2025. "Post-Wildfire Mobilization of Organic Carbon" Soil Systems 9, no. 1: 11. https://doi.org/10.3390/soilsystems9010011
APA StyleNuman, T., Lokesh, S., Shahriar, A., Timilsina, A., Lard, M. L., Clark, J., Raeofy, Y., Zhao, Q., Poulson, S. R., Verburg, P. S., Richardson, J. A., Cook, R. L., Samburova, V., & Yang, Y. (2025). Post-Wildfire Mobilization of Organic Carbon. Soil Systems, 9(1), 11. https://doi.org/10.3390/soilsystems9010011