Pyrogenic Transformation and Carbon Sequestration in Forested Bog Soils of the Middle Taiga in Northeastern European Russia
Abstract
1. Introduction
2. Materials and Methods
2.1. Area Description and Soil Sampling
2.2. Radiocarbon Dating of Peat Samples
2.3. Botanical Composition of Peat Sediments
2.4. Analysis of the Amount of Macroscopic Charcoal Particles and Dendrochronology
2.5. Carbon and Nitrogen Content Analysis
2.6. CP/MAS 13C NMR Spectroscopy
2.7. Polycyclic Aromatic Hydrocarbon Determination
2.8. Statistics
3. Results
3.1. Age Models and Chronologies of Peat Development
3.2. Macroscopic Charcoal Particles Analysis Results
3.3. Carbon and Nitrogen Analysis Results
3.4. Results of Polycyclic Aromatic Hydrocarbon Analysis
3.5. CP/MAS 13C NMR Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bryanin, S.; Kondratova, A.; Abramova, E. Litter decomposition and nutrient dynamics in fire-affected larch forests in the Russian Far East. Forests 2020, 11, 882. [Google Scholar] [CrossRef]
- Doerr, S.H.; Santín, C.; Mataix-Solera, J. Fire effects on soil. In Encyclopedia of Soils in the Environment, 2nd ed.; Academic Press: Oxford, UK, 2023; pp. 448–457. [Google Scholar] [CrossRef]
- Dymov, A.A. Soil Successions in Boreal Forests of the Komi Republic; GEOS Publishing: Moscow, Russia, 2020; p. 336. (In Russian) [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z. Northern peatland carbon stocks and dynamics: A review. Biogeosciences 2012, 9, 4071–4085. [Google Scholar] [CrossRef]
- Elbasiouny, H.; El-Ramady, H.; Elbehiry, F.; Rajput, V.D.; Minkina, T.; Mandzhieva, S. Plant nutrition under climate change and soil carbon sequestration. Sustainability 2022, 14, 914. [Google Scholar] [CrossRef]
- Barhoumi, C.; Peyron, O.; Joannin, S.; Subetto, D.; Kryshen, A.; Drobyshev, I.; Girardin, M.P.; Brossier, B.; Alleaume, S.; Ali, A.A. Gradually increasing forest fire activity during the Holocene in the northern Ural region (Komi Republic, Russia). Holocene 2019, 29, 1906–1920. [Google Scholar] [CrossRef]
- Bobrovsky, M.V.; Kupriaynov, D.A.; Khanina, L.G. Anthracological and morphological analysis of soils for the reconstruction of the forest ecosystem history (Meshchera Lowlands, Russia). Quat. Int. 2019, 516, 70–82. [Google Scholar] [CrossRef]
- Kupriyanov, D.A.; Novenko, E.Y. Reconstruction of Holocene forest fire dynamics in Central Meshchera (based on paleoanthracological analysis). Sib. Ecol. J. 2019, 26, 253–263. (In Russian) [Google Scholar] [CrossRef]
- Santín, C.; Doerr, S.H. Fire effects on soils: The human dimension. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150171. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Benscoter, B.; Page, S.; Rein, G.; Van Der Werf, G.R.; Watts, A. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 2015, 8, 11–14. [Google Scholar] [CrossRef]
- Higuera, P.E.; Gavin, D.G.; Bartlein, P.J.; Hallett, D.J. Peak detection in sediment-charcoal records: Impacts of alternative data analysis methods on fire-history interpretations. Int. J. Wildland Fire 2010, 19, 996–1014. [Google Scholar] [CrossRef]
- Mergelov, N.; Zazovskaya, E.; Fazuldinova, N.; Petrov, D.; Dolgikh, A.; Matskovsky, V.; Dobryansky, A. Chronology and properties of macrocharcoal sequestered in boreal forest soils since deglaciation (southeast of the Kola Peninsula). Catena 2024, 236, 107753. [Google Scholar] [CrossRef]
- Golovatskaya, E.A.; Nikonova, L.G. Decomposition of plant residues in peat soils of oligotrophic bogs. Vestn. Tomsk. Gos. Univ. Biol. 2013, 3, 137–151. (In Russian) [Google Scholar]
- Preston, C.M.; Schmidt, M.W.I. Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 2006, 3, 397–420. [Google Scholar] [CrossRef]
- Dymov, A.A.; Startsev, V.V.; Gorbach, N.M.; Pausova, I.N.; Gabov, D.N.; Donnerhack, O. Comparison of the Methods for Determining Pyrogenically Modified Carbon Compounds. Eurasian Soil Sci. 2021, 54, 1668–1680. [Google Scholar] [CrossRef]
- Gorbach, N.M.; Startsev, V.V.; Yakovleva, E.V.; Mazur, A.S.; Dymov, A.A. Paleoenvironmental analysis of three bogs in Northeastern European Russia: Peatland development and fire influence. Catena 2025, 249, 108607. [Google Scholar] [CrossRef]
- Startsev, V.; Gorbach, N.; Mazur, A.; Prokushkin, A.; Karpenko, L.; Dymov, A. Macrocharcoal signals in Histosols reveal wildfire history of vast Western Siberian forest-peatland complexes. Plants 2022, 11, 3478. [Google Scholar] [CrossRef]
- Chukov, S.N.; Lodygin, E.D.; Abakumov, E.V. Application of 13C NMR Spectroscopy to the Study of Soil Organic Matter: A Review of Publications. Eurasian Soil Sci. 2018, 51, 889–900. [Google Scholar] [CrossRef]
- Dymov, A.A.; Gorbach, N.M.; Goncharova, N.N.; Karpenko, L.V.; Gabov, D.N.; Kutyavin, I.N.; Grodnitskaya, I.D. Holocene and recent fires influence on soil organic matter, microbiological and physico-chemical properties of peats in the European North-East of Russia. Catena 2022, 217, 106449. [Google Scholar] [CrossRef]
- Mastrolonardo, G.; Francioso, O.; Di Foggia, M.; Bonora, S.; Forte, C.; Certini, G. Soil pyrogenic organic matter characterisation by spectroscopic analysis: A study on combustion and pyrolysis residues. J. Soils Sediments 2015, 15, 769–780. [Google Scholar] [CrossRef]
- Sushkova, S.N.; Yakovleva, E.V.; Minkina, T.M.; Gabov, D.N.; Antonenko, E.M.; Dudnikova, T.S.; Rajput, V.D. Accumulation of benzo[a]pyrene in plants of different species and organogenic soil horizons of steppe phytocenoses under technogenic pollution. Izv. Tomsk. Polytech. Univ. Geo-Resour. Eng. 2020, 331, 200–214. (In Russian) [Google Scholar] [CrossRef]
- Tsibart, A.S.; Gennadiyev, A.N. Polycyclic aromatic hydrocarbons in soils: Sources, behavior, and indicative significance (review). Eurasian Soil Sci. 2013, 46, 788–800. (In Russian) [Google Scholar] [CrossRef]
- Yakovleva, E.V.; Gabov, D.N.; Vasilevich, R.S. Formation of the Composition of Polycyclic Aromatic Hydrocarbons in Hummocky Bogs in the Forest-Tundra–Northern Tundra Zonal Sequence. Eurasian Soil Sci. 2022, 55, 313–329. [Google Scholar] [CrossRef]
- Khalikov, I.S. Identification of sources of environmental pollution by polycyclic aromatic hydrocarbons on the basis of their molar ratios. Russ. J. Gen. Chem. 2018, 88, 2871–2878. [Google Scholar] [CrossRef]
- Khaustov, A.P.; Redina, M.M. Geochemical markers based on concentration ratios of PAH in oils and oil-polluted areas. Geochem. Int. 2017, 55, 98–107. [Google Scholar] [CrossRef]
- Shamilishvily, G.; Abakumov, E.; Gabov, D. Polycyclic aromatic hydrocarbon in urban soils of an Eastern European megalopolis: Distribution, source identification and cancer risk evaluation. Solid Earth 2018, 9, 669–682. [Google Scholar] [CrossRef]
- Berset, J.D.; Kuehne, P.; Shotyk, W. Concentrations and distribution of some polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in an ombrotrophic peat bog profile of Switzerland. Sci. Total Environ. 2001, 267, 67–85. [Google Scholar] [CrossRef]
- Gabov, D.; Yakovleva, E.; Vasilevich, R. Vertical distribution of PAHs during the evolution of permafrost peatlands of the European arctic zone. Appl. Geochem. 2020, 123, 104790. [Google Scholar] [CrossRef]
- Wang, C.; Wu, S.; Zhou, S.; Shi, Y.; Song, J. Characteristics and source identification of polycyclic aromatic hydrocarbons (PAHs) in urban soils: A review. Pedosphere 2017, 27, 17–26. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Chen, H.; Chow, A.T.; Li, X.W.; Ni, H.G.; Dahlgren, R.A.; Zeng, H.; Wang, J.J. Wildfire burn intensity affects the quantity and speciation of polycyclic aromatic hydrocarbons in soils. ACS Earth Space Chem. 2018, 12, 1262–1270. [Google Scholar] [CrossRef]
- Gennadiyev, A.N.; Tsibart, A.S. Pyrogenic polycyclic aromatic hydrocarbons in soils of reserved and anthropogenically modified areas: Factors and features of accumulation. Eurasian Soil Sci. 2013, 46, 28–36. [Google Scholar] [CrossRef]
- Thuens, S.; Blodau, C.; Radke, M. How suitable are peat cores to study historical deposition of PAHs? Sci. Total Environ. 2013, 450–451, 271–279. [Google Scholar] [CrossRef] [PubMed]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014; (Update 2015); Food and Agriculture Organization (FAO): Rome, Italy, 2014; p. 192. [Google Scholar]
- Zaboeva, I.V.; Taskaev, A.I.; Dobrovolsky, G.V.; Beznosikov, V.; Lapteva, E.M.; Rusanova, G.V.; Nikitin, E.D.; Archegova, I.B.; Simonov, G.A.; Maghitova, G.G.; et al. Atlas of Soils of the Komi Republic; Zaboeva, I.V., Taskaev, A.I., Dobrovolsky, G.V., Eds.; Institute of Biology, Komi Science Center, Ural Branch of RAS: Syktyvkar, Russia, 2010; p. 356. (In Russian) [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Taskaev, A.I. Atlas of the Komi Republic: Climate and Hydrology; Drofa: Moscow, Russia, 1997; p. 115. (In Russian) [Google Scholar]
- Vadyunina, A.F.; Korchagina, Z.A. Methods for Studying the Physical Properties of Soils; Agropromizdat: Moscow, Russia, 1986; p. 415. (In Russian) [Google Scholar]
- Stuiver, M.; Reimer, P.J. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 1993, 35, 215–230. [Google Scholar] [CrossRef]
- Stuiver, M.; Reimer, P.J.; Braziunas, T.F. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 1998, 40, 1127–1151. [Google Scholar] [CrossRef]
- Blaauw, M.; Christen, J.A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 2011, 6, 457–474. [Google Scholar] [CrossRef]
- Reimer, P.J.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Ramsey, C.B.; Talamo, S. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Marcott, S.A.; Shakun, J.D.; Clark, P.U.; Mix, A.C. A reconstruction of regional and global temperature for the past 11,300 years. Science 2013, 339, 1198–1201. [Google Scholar] [CrossRef]
- GOST 28245-89; Peat. Methods for Determining Botanical Composition and Degree of Peat Decomposition. State Committee for Standards: Moscow, Russia, 1989. (In Russian)
- Dombrovskaya, A.V.; Koreneva, M.M.; Tyuremnov, S.N. Atlas of Plant Remains Found in Peat; State Energy Publishing House: Moscow, Russia, 1959; p. 228. (In Russian) [Google Scholar]
- Mooney, S.D.; Tinner, W. The analysis of charcoal in peat and organic sediments. Mires Peat 2011, 7, 1–18. [Google Scholar]
- Higuera, P.E. CharAnalysis 0.9: Diagnostic and Analytical Tools for Sediment-Charcoal Analysis; Montana State University: Bozeman, MT, USA, 2009; p. 27. [Google Scholar]
- Blarquez, O.; Vannière, B.; Marlon, J.R.; Daniau, A.L.; Power, M.J.; Brewer, S.; Bartlein, P.J. paleofire: An R package to analyse sedimentary charcoal records from the Global Charcoal Database to reconstruct past biomass burning. Comput. Geosci. 2014, 72, 255–261. [Google Scholar] [CrossRef]
- Tuszynski, J.; Khachatryan, M.H. Package ‘caTools’. 2024. Available online: https://CRAN.R-project.org/package=caTools (accessed on 26 May 2025).
- Scrucca, L.; Fraley, C.; Murphy, T.B.; Raftery, A.E. Model-Based Clustering, Classification, and Density Estimation Using Mclust in R; Chapman and Hall/CRC: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Sekhon, J.S. Multivariate and Propensity Score Matching Software with Automated Balance Optimization: The Matching Package for R. J. Stat. Softw. 2011, 42, 1–52. [Google Scholar] [CrossRef]
- Kelly, R.F.; Higuera, P.E.; Barrett, C.M.; Hu, F.S. A signal-to-noise index to quantify the potential for peak detection in sediment-charcoal records. Quat. Res. 2011, 75, 11–17. [Google Scholar] [CrossRef]
- Madany, M.H.; Swetnam, T.W.; West, N.E. Comparison of two approaches for determining fire dates from tree scars. Forest Science 1982, 28, 856–861. [Google Scholar]
- Fritts, H.C. Dendroclimatology and dendroecology. Quat. Res. 1971, 1, 419–449. [Google Scholar] [CrossRef]
- Grissino-Mayer, H.A. Manual and tutorial for the proper use of an increment borer. Tree-Ring Res. 2003, 59, 63–79. [Google Scholar]
- Goncalves, C.N.; Dalmolin, R.S.D.; Dick, D.P.; Knicker, H.; Klamt, E.; Kögel-Knabner, I. The effect of 10% HF treatment on the resolution of CPMAS 13C NMR spectra and on the quality of organic matter in Ferralsols. Geoderma 2003, 116, 373–392. [Google Scholar] [CrossRef]
- Skjemstad, J.O.; Clarke, P.; Taylor, J.A.; Oades, J.M.; Neuman, R.H. The removal of Magnetic Materials from surface soils. A solid state 13C CP/MAS n.m.r. Aust. J. Soil Res. 1994, 32, 1215–1229. [Google Scholar] [CrossRef]
- Hatcher, P.G.; Schnitzer, M.; Dennis, L.W.; Maciel, G.E. Aromaticity of humic substances in soils. Soil Sci. Soc. Am. J. 1981, 45, 1089–1093. [Google Scholar] [CrossRef]
- Fedorova, T.E.; Dudkin, D.V.; Rokhin, A.V.; Pershina, L.A.; Babkin, V.A. Analysis of the chemical composition of humin-like substances from sunflower husks subjected to oxidative ammonolysis under mechanical treatment by quantitative 1H and 13C NMR spectroscopy. Chem. Plant Raw Mater. 2003, 4, 25–29. (In Russian) [Google Scholar]
- Wickham, H.; Bryan, J. Readxl: Read Excel Files (R Package Version 1.3.1); R Foundation: Vienna, Austria, 2019. [Google Scholar]
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix (Version 0.92). 2021. Available online: https://CRAN.R-project.org/package=corrplot (accessed on 26 May 2025).
- Gorbach, N.M.; Kutyavin, I.N.; Startsev, V.V.; Dymov, A.A. Fire dynamics in the Northeast European part of Russia during the Holocene. Theor. Appl. Ecol. 2021, 3, 104–110. (In Russian) [Google Scholar] [CrossRef]
- Golubeva, Y.V. Climate and vegetation of the post-glacial period in the Komi Republic. Lithosphere 2008, 2, 124–132. (In Russian) [Google Scholar]
- Loginova, E.S. Settlements on the Middle Vychegda River in the Neolithic Era. KFAN USSR 1985, 120, 24. (In Russian) [Google Scholar]
- Karmanov, V.N. Neolithic of the European Northeast; Komi Science Center, Ural Branch of RAS: Syktyvkar, Russia, 2008; p. 226. (In Russian) [Google Scholar]
- Afifi, A.; Azen, S. Statistical Analysis: A Computer Oriented Approach; Academic Press Inc.: New York, NY, USA, 1972; p. 366. [Google Scholar]
- Tukey, J.W. The future of data analysis. In Breakthroughs in Statistics: Methodology and Distribution; Springer: New York, NY, USA, 1962; pp. 408–452. [Google Scholar] [CrossRef]
- Molinari, C.; Carcaillet, C.; Bradshaw, R.H.; Hannon, G.E.; Lehsten, V. Fire-vegetation interactions during the last 11,000 years in boreal and cold temperate forests of Fennoscandia. Quat. Sci. Rev. 2020, 241, 106408. [Google Scholar] [CrossRef]
- Borisova, O.K. Landscape and Climate Change in Holocene. Izv. Ross. Akad. Nauk. Seriya Geogr. 2014, 2, 5–20. (In Russian) [Google Scholar] [CrossRef]
- Osipov, A.F.; Bobkova, K.S.; Dymov, A.A. Carbon stocks of soils under forest in the Komi Republic of Russia. Geoderma Reg. 2021, 27, e00427. [Google Scholar] [CrossRef]
- Walker, X.J.; Baltzer, J.L.; Cumming, S.G.; Day, N.J.; Ebert, C.; Goetz, S.; Mack, M.C. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 2019, 572, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, S.; Wan, C.; Yue, D.; Ye, Y.; Wang, X. Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall. Environ. Pollut. 2008, 153, 594–601. [Google Scholar] [CrossRef]
- Ghety, C.C.; Scott, R.P.; Wilson, G.; Liu-May, R.; Anderson, K.A. Improvements in identification and quantitation of alkylated PAHs and forensic ratio sourcing. Anal. Bioanal. Chem. 2021, 413, 1651–1664. [Google Scholar] [CrossRef]
- Lawal, A.T. Polycyclic aromatic hydrocarbons. A review. Cogent Environ. Sci. 2017, 3, 1339841. [Google Scholar] [CrossRef]
- Khaustov, A.P.; Redina, M.M. Transformation of petroleum products as source of natural habitat’s toxic contaminants. Ecol. Ind. Russ. 2012, 12, 38–44. (In Russian) [Google Scholar]
- Yakovleva, E.V.; Deneva, S.V.; Shamrikova, E.V.; Gabov, D.N.; Dubrovskiy, Y.A. Polycyclic aromatic compounds in marsh and watershed soils of the Barents Sea coastline. Mar. Pollut. Bull. 2025, 216, 117979. [Google Scholar] [CrossRef] [PubMed]
- Reisser, M.; Purves, R.S.; Schmidt, M.W.I.; Abiven, S. Pyrogenic carbon in soils: A literature-based inventory and a global estimation of its content in soil organic carbon and stocks. Front. Earth Sci. 2016, 4, 80. [Google Scholar] [CrossRef]
- Leifeld, J.; Alewell, C.; Bader, C.; Krüger, J.P.; Mueller, C.W.; Sommer, M.; Szidat, S. Pyrogenic carbon contributes substantially to carbon storage in intact and degraded northern peatlands. Land Degrad. Dev. 2018, 29, 2082–2091. [Google Scholar] [CrossRef]
- Rein, G.; Huang, X. Smouldering wildfires in peatlands, forests and the arctic: Challenges and perspectives. Curr. Opin. Environ. Sci. Health 2021, 24, 100296. [Google Scholar] [CrossRef]
- Loisel, J.; Gallego-Sala, A.V.; Amesbury, M.J.; Magnan, G.; Anshari, G.; Beilman, D.W.; Wu, J. Expert assessment of future vulnerability of the global peatland carbon sink. Nat. Clim. Change 2021, 11, 70–77. [Google Scholar] [CrossRef]
Laboratory Sample Number | Sampling Depth, cm | Age, 14C yr BP | Age, cal yr BP (1δ) | Age, cal yr BP (2δ) |
---|---|---|---|---|
IMCES—14C1976 | 25–35 | 990 ± 90 | 853–1042 | 762–1244 |
IMCES—14C2111 | 55–65 | 2730 ± 115 | 2811–3064 | 2566–3241 |
IMCES—14C2139 | 80–90 | 7350 ± 300 | 7915–8500 | 7652–9044 |
Depth | Horizon | C,% | N,% | C/N | C, kg m−2 | N, kg m−2 |
---|---|---|---|---|---|---|
0–10 | T1 | 44.0 ± 1.5 | 0.95 ± 0.10 | 54.0 | 2.2 | 0.05 |
10–20 | T2 | 43.3 ± 1.5 | 1.22 ± 0.13 | 41.4 | 2.2 | 0.06 |
20–30 | T3 | 45.8 ± 1.6 | 1.52 ± 0.17 | 35.2 | 5.0 | 0.17 |
30–40 | T4 | 55.2 ± 1.9 | 1.20 ± 0.13 | 53.7 | 6.1 | 0.13 |
40–50 | T5 | 51.8 ± 1.8 | 1.50 ± 0.16 | 40.3 | 5.7 | 0.17 |
50–60 | T6 | 53.3 ± 1.9 | 1.50 ± 0.16 | 41.5 | 14.9 | 0.42 |
60–70 | T7 | 51.6 ± 1.8 | 1.58 ± 0.17 | 38.1 | 14.4 | 0.44 |
70–80 | T8 | 50.0 ± 1.8 | 1.42 ± 0.16 | 41.1 | 14.0 | 0.40 |
80–90 | T9 | 51.1 ± 1.8 | 1.23 ± 0.14 | 48.5 | 16.9 | 0.41 |
Depth, cm | 2-Ring | 3-Ring | 4-Ring | 5-Ring | 6-Ring | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NP | ACE | FL | PHE | ANT | FLA | PYR | BaA | CHR | BbF | BkF | BaP | DahA | BghiP | |
0–10 | 116.2 ± 58.1 | nd | nd | 385.6 ± 84.8 | 5.8 ± 2.9 | 25.8 ± 11.8 | nd | 6.2 ± 2.6 | 13.0 ± 6.7 | 74.7 ± 31.4 | 3.4 ± 1.6 | 4.2 ± 2.1 | 11.8 ± 5.7 | 13.9 ± 6.1 |
10–20 | 177.4 ± 88.7 | 14.9 ± 6.0 | 19.4 ± 7.8 | 150.2 ± 33.1 | 9.4 ± 4.7 | 55.7 ± 25.6 | 52.1 ± 24.0 | 14.2 ± 5.9 | 44.6 ± 23.2 | 313.0 ± 81.4 | 10.3 ± 5.0 | 11.3 ± 5.6 | 28.6 ± 13.7 | 12.5 ± 5.5 |
20–30 | 261.8 ± 130.9 | nd | 26.2 ± 10.5 | 177.7 ± 39.1 | 11.6 ± 5.8 | 42.0 ± 19.3 | 34.2 ± 15.7 | 118.2 ± 30.7 | 913.9 ± 255.9 | 495.0 ± 128.7 | 33.3 ± 16.0 | 150.9 ± 36.2 | 21.1 ± 10.1 | 23.4 ± 10.3 |
30–40 | 508.8 ± 183.2 | 88.2 ± 19.4 | 36.3 ± 14.5 | 518.7 ± 114.1 | 53.8 ± 12.9 | 163.0 ± 61.9 | 63.6 ± 29.3 | 106.1 ± 27.6 | 903.0 ± 252.8 | 1860.6 ± 409.3 | 78.5 ± 37.7 | 1425.9 ± 256.7 | 288.8 ± 86.6 | 165.5 ± 39.7 |
40–50 | 172.5 ± 86.3 | 24.6 ± 9.8 | 13.8 ± 5.5 | 63.5 ± 31.7 | 2.1 ± 1.0 | nd | nd | nd | 28.5 ± 14.8 | 643.3 ± 167.3 | 6.9 ± 3.3 | 49.2 ± 24.6 | nd | nd |
50–60 | 228.0 ± 114.0 | nd | 12.6 ± 5.0 | 75.2 ± 37.6 | 1.8 ± 0.9 | nd | nd | 6.4 ± 2.7 | 100.8 ± 34.3 | 2112.0 ± 659.8 | 9.2 ± 4.4 | 277.8 ± 66.7 | 156.8 ± 47.0 | nd |
60–70 | 188.3 ± 94.1 | 13.5 ± 5.4 | 17.5 ± 7.0 | 40.8 ± 20.4 | 2.5 ± 1.3 | nd | nd | nd | 34.5 ± 17.9 | 75.3 ± 31.6 | 1.8 ± 0.8 | 7.8 ± 3.9 | nd | nd |
70–80 | 213.8 ± 106.9 | 17.8 ± 7.1 | 25.0 ± 10.0 | 61.9 ± 31.0 | 4.1 ± 2.0 | nd | nd | nd | 31.7 ± 16.5 | 52.1 ± 21.9 | 2.4 ± 1.2 | nd | nd | nd |
80–90 | 163.4 ± 81.7 | 8.9 ± 3.6 | 12.5 ± 5.0 | 34.6 ± 17.3 | 1.9 ± 1.0 | nd | nd | nd | 15.2 ± 7.9 | 15.0 ± 6.3 | nd | 1.2 ± 0.6 | nd | 21.5 ± 9.4 |
Depth, cm | Alcyl C | O-Alkyl C | Aryl C | Carboxyl C/Amide/Ester | Alkyl/ O, N-alkyl | fa | ||||
---|---|---|---|---|---|---|---|---|---|---|
CAlk-H | CCH3-O | CAlk-O | CO-Alk-O | CAr-H(C) | CAr-O,N | CCOOH(R) | CC=0 | |||
0–45 | 45–60 | 60–95 | 95–110 | 110–145 | 145–165 | 165–185 | 185–220 | |||
5–15 | 35.9 | 7.1 | 26.1 | 6.4 | 13.1 | 4.6 | 5.6 | 1.2 | 0.9 | 17.7 |
20–25 | 21.5 | 6.7 | 40.8 | 10.1 | 9.6 | 4.0 | 5.4 | 1.9 | 0.4 | 13.6 |
30–35 | 28.2 | 8.2 | 20.0 | 5.4 | 24.8 | 7.0 | 5.3 | 1.1 | 0.8 | 31.8 |
40–50 | 20.0 | 8.7 | 21.0 | 5.1 | 29.8 | 8.3 | 5.0 | 2.1 | 0.6 | 38.1 |
55–65 | 37.0 | 7.5 | 21.6 | 5.6 | 14.4 | 5.6 | 6.5 | 1.8 | 1.1 | 19.9 |
65–70 | 42.6 | 7.3 | 18.3 | 5.2 | 14.5 | 4.9 | 6.5 | 0.7 | 1.4 | 19.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorbach, N.M.; Startsev, V.V.; Yakovleva, E.V.; Mazur, A.S.; Dymov, A.A. Pyrogenic Transformation and Carbon Sequestration in Forested Bog Soils of the Middle Taiga in Northeastern European Russia. Soil Syst. 2025, 9, 74. https://doi.org/10.3390/soilsystems9030074
Gorbach NM, Startsev VV, Yakovleva EV, Mazur AS, Dymov AA. Pyrogenic Transformation and Carbon Sequestration in Forested Bog Soils of the Middle Taiga in Northeastern European Russia. Soil Systems. 2025; 9(3):74. https://doi.org/10.3390/soilsystems9030074
Chicago/Turabian StyleGorbach, Nikolay M., Viktor V. Startsev, Evgenia V. Yakovleva, Anton S. Mazur, and Alexey A. Dymov. 2025. "Pyrogenic Transformation and Carbon Sequestration in Forested Bog Soils of the Middle Taiga in Northeastern European Russia" Soil Systems 9, no. 3: 74. https://doi.org/10.3390/soilsystems9030074
APA StyleGorbach, N. M., Startsev, V. V., Yakovleva, E. V., Mazur, A. S., & Dymov, A. A. (2025). Pyrogenic Transformation and Carbon Sequestration in Forested Bog Soils of the Middle Taiga in Northeastern European Russia. Soil Systems, 9(3), 74. https://doi.org/10.3390/soilsystems9030074