Environmental Comparison of Different Mechanical–Biological Treatment Plants by Combining Life Cycle Assessment and Material Flow Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Functional Unit and System Boundaries
2.2. Life Cycle Inventory
2.2.1. Haase
2.2.2. Entsorga
2.2.3. ArrowBio
2.2.4. Global Renewables
2.2.5. Ecodeco
2.2.6. Herhof
2.2.7. Linde
2.3. Impact Assessment
3. Results
3.1. Material Flow Analysis
3.2. Life Cycle Impact Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gea, T.; Barrena, R.; Artola, A.; Sánchez, A. Monitoring the biological activity of the composting process: Oxygen uptake rate (OUR), respirometric index (RI), and respiratory quotient (RQ). Biotechnol. Bioeng. 2004, 88, 520–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Gisi, S.; Alberotanza, A.; Todaro, F.; Campanaro, V.; Notarnicola, M. Separate collection of municipal solid waste and fate of the residual unsorted fraction: A scenario analysis. Environ. Eng. Manag. J. 2020, 19, 1731–1740. [Google Scholar] [CrossRef]
- Mastellone, M.L.; Cremiato, R.; Zaccariello, L.; Lotito, R. Evaluation of performance indicators applied to a material recovery facility fed by mixed packaging waste. Waste Manag. 2017, 64, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Binner, E.; Zach, A. Biological reactivity of residual wastes and dependence on the duration of pretreatment. Waste Manag. Res. 1999, 17, 543–555. [Google Scholar] [CrossRef]
- European Union. 2008 Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste (Waste Framework Directive). Off. J. Eur. Union 2008, 34, 99–126. [Google Scholar]
- Fuss, M.; Vergara-Araya, M.; Barros, R.T.V.; Poganietz, W.R. Implementing mechanical biological treatment in an emerging waste management system predominated by waste pickers: A Brazilian case study. Resour. Conserv. Recycl. 2020, 162, 105031. [Google Scholar] [CrossRef]
- Feil, A.; Pretz, T.; Jansen, M.; van Velzen, E.U.T. Separate collection of plastic waste, better than technical sorting from municipal solid waste? Waste Manag. Res. 2017, 35, 172–180. [Google Scholar] [CrossRef]
- Trulli, E.; Ferronato, N.; Torretta, V.; Piscitelli, M.; Masi, S.; Mancini, I. Sustainable mechanical biological treatment of solid waste in urbanized areas with low recycling rates. Waste Manag. 2018, 71, 556–564. [Google Scholar] [CrossRef]
- Gadaleta, G.; de Gisi, S.; Todaro, F.; Campanaro, V.; Teodosiu, C.; Notarnicola, M. Sustainability assessment of municipal solid waste separate collection and treatment systems in a large metropolitan area. Sustain. Prod. Consum. 2021, 29, 328–340. [Google Scholar] [CrossRef]
- Bayard, R.; Morais, J.d.; Ducom, G.; Achour, F.; Rouez, M.; Gourdon, R. Assessment of the effectiveness of an industrial unit of mechanical-biological treatment of municipal solid waste. J. Hazard. Mater. 2010, 175, 23–32. [Google Scholar] [CrossRef]
- Rigamonti, L.; Borghi, G.; Martignon, G.; Grosso, M. Life cycle costing of energy recovery from solid recovered fuel produced in MBT plants in Italy. Waste Manag. 2019, 99, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Montejo, C.; Tonini, D.; Márquez, M.d.; Astrup, T.F. Mechanical-biological treatment: Performance and potentials. An LCA of 8 MBT plants including waste characterization. Environ. Manag. 2013, 128, 661–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Gisi, S.; Todaro, F.; Fedele, G.; Carella, C.; Notarnicola, M. Alternating pure oxygen and air cycles for the biostabilization of unsorted fraction of municipal solid waste. Waste Manag. 2018, 79, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Połomka, J.; Jędrczak, A. Efficiency of waste processing in the MBT system. Waste Manag. 2019, 96, 9–14. [Google Scholar] [CrossRef]
- Velis, C.A.; Longhurst, P.J.; Drew, G.H.; Smith, R.; Pollard, S.J.T. Production and quality assurance of solid recovered fuels using mechanical-biological treatment (MBT) of waste: A comprehensive assessment. Crit. Rev. Environ. Sci. Technol. 2010, 40, 979–1105. [Google Scholar] [CrossRef] [Green Version]
- Bayard, R.; Morais, J.d.; Rouez, M.; Fifi, U.; Achour, F.; Ducom, G. Effect of biological pretreatment of coarse MSW on landfill behaviour: Laboratory study. Water Sci. Technol. 2008, 58, 1361–1369. [Google Scholar] [CrossRef]
- di Lonardo, M.C.; Lombardi, F.; Gavasci, R. Characterization of MBT plants input and outputs: A review. Rev. Environ. Sci. Bio/Technol. 2012, 11, 353–363. [Google Scholar] [CrossRef]
- Panepinto, D.; Blengini, G.A.; Genon, G. Economic and environmental comparison between two scenarios of waste management: MBT vs thermal treatment. Resour. Conserv. Recycl. 2015, 97, 16–23. [Google Scholar] [CrossRef]
- Ripa, M.; Fiorentino, G.; Vacca, V.; Ulgiati, S. The relevance of site-specific data in Life Cycle Assessment (LCA). The case of the municipal solid waste management in the metropolitan city of Naples (Italy). J. Clean. Prod. 2017, 142, 445–460. [Google Scholar] [CrossRef]
- Consonni, S.; Giugliano, M.; Grosso, M. Alternative strategies for energy recovery from municipal solid waste: Part B: Emission and cost estimates. Waste Manag. 2005, 25, 137–148. [Google Scholar] [CrossRef]
- Abeliotis, K.; Kalogeropoulos, A.; Lasaridi, K. Life Cycle Assessment of the MBT plant in Ano Liossia, Athens, Greece. Waste Manag. 2012, 32, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Bonnin, M.; Azzaro-Pantel, C.; Pibouleau, L.; Domenech, S.; Villeneuve, J. Development and validation of a dynamic material flow analysis model for French copper cycle. Chem. Eng. Res. Des. 2013, 91, 1390–1402. [Google Scholar] [CrossRef] [Green Version]
- Padeyanda, Y.; Jang, Y.C.; Ko, Y.; Yi, S. Evaluation of environmental impacts of food waste management by material flow analysis (MFA) and life cycle assessment (LCA). J. Mater. Cycles Waste Manag. 2016, 18, 493–508. [Google Scholar] [CrossRef]
- Golder. WRATE Download Version 4. 2017. Available online: http://www.wrate.co.uk/Page/Download (accessed on 5 April 2022).
- Pantini, S.; Verginelli, I.; Lombardi, F. Analysis and modeling of metals release from MBT wastes through batch and up-flow column tests. Waste Manag. 2015, 38, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, T.L.; White, E.; Holden, N.M. The implications of stakeholder perspective for LCA of wasted food and green waste. J. Clean. Prod. 2018, 170, 1554–1564. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Dreyer, L.C.; Niemann, A.L.; Hauschild, M.Z. Comparison of Three Different LCIA Methods: EDIP97, CML2001 and Eco-indicator 99. Int. J. Life Cycle Assess. 2003, 8, 191–200. [Google Scholar] [CrossRef]
- Lasvaux, S.; Achim, F.; Garat, P.; Peuportier, B.; Chevalier, J.; Habert, G. Correlations in Life Cycle Impact Assessment methods (LCIA) and indicators for construction materials: What matters? Ecol. Indic. 2016, 67, 174–182. [Google Scholar] [CrossRef]
- Hischier, R.; Weidema, B.; Althaus, H.-J.; Bauer, C.; Doka, G.; Dones, R.; Frischknecht, R.; Hellweg, S.; Humbert, S.; Jungbluth, N.; et al. Implementation of Life Cycle Impact Assessment Methods; Data v2.2 2010; Ecoinvent Report No. 3. 2010. Available online: https://docplayer.net/14249358-Implementation-of-life-cycle-impact-assessment-methods.html (accessed on 10 May 2022).
- Coelho, L.M.G.; Lange, L.C. Applying life cycle assessment to support environmentally sustainable waste management strategies in Brazil. Resour. Conserv. Recycl. 2018, 128, 438–450. [Google Scholar] [CrossRef]
- Gadaleta, G.; de Gisi, S.; Binetti, S.M.C.; Notarnicola, M. Outlining a comprehensive techno-economic approach to evaluate the performance of an advanced sorting plant for plastic waste recovery. Process Saf. Environ. Prot. 2020, 143, 248–261. [Google Scholar] [CrossRef]
- Gadaleta, G.; Todaro, F.; de Gisi, S.; Gadaleta, V.; Notarnicola, M. Evaluating the performance of a Municipal Solid Waste MBT plant. Ing. Ambiente 2021, 8, 91–102. (In Italian) [Google Scholar] [CrossRef]
- Altland, B.L.; Cox, D.; Enick, R.M.; Beckman, E.J. Optimization of the high-pressure, near-critical liquid-based microsortation of recyclable post-consumer plastics. Resour. Conserv. Recycl. 1995, 15, 203–217. [Google Scholar] [CrossRef]
- Ali, M.; Zhang, J.; Raga, R.; Lavagnolo, M.C.; Pivato, A.; Wang, X.; Zhang, Y.; Cossu, R.; Yue, D. Effectiveness of aerobic pretreatment of municipal solid waste for accelerating biogas generation during simulated landfilling. Front. Environ. Sci. Eng. 2018, 12, 5. [Google Scholar] [CrossRef]
- Gadaleta, G.; de Gisi, S.; Notarnicola, M. Feasibility analysis on the adoption of decentralized anaerobic co-digestion for the treatment of municipal organic waste with energy recovery in urban districts of metropolitan areas. Int. J. Environ. Res. Public Health 2021, 18, 1820. [Google Scholar] [CrossRef] [PubMed]
- Nielfa, A.; Cano, R.; Vinot, M.; Fernández, E.; Fdz-Polanco, M. Anaerobic digestion modeling of the main components of organic fraction of municipal solid waste. Process Saf. Environ. Prot. 2015, 94, 180–187. [Google Scholar] [CrossRef]
- Den Boer, J.; Den Boer, E.; Jager, J. LCA-IWM: A decision support tool for sustainability assessment of waste management systems. Waste Manag. 2007, 27, 1032–1045. [Google Scholar] [CrossRef]
Fractions | % |
---|---|
Paper and cardboard | 21.03 |
Plastic film | 4.55 |
Dense plastic | 10.61 |
Textiles | 2.99 |
Absorbent | 2.30 |
Wood | 2.80 |
Combustibles | 5.89 |
Non-combustible | 6.89 |
Glass | 5.80 |
Organic | 25.96 |
Ferrous metal | 4.25 |
Non-ferrous metal | 0.75 |
Fine < 20 mm | 5.43 |
WEEE | 0.40 |
Hazardous | 0.35 |
Haa. | Ent. | Arr. | Glo. | Eco. | Her. | Lin. | |
---|---|---|---|---|---|---|---|
Country | DE | UK | IL | AUS | IT | DE | DE |
Pre-treatments | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Anaerobic digestion | ✓ | ✓ | ✓ | ||||
Aerobic biostabilization | ✓ | ✓ | ✓ | ✓ | ✓ | ||
RDF production | ✓ | ✓ | ✓ | ✓ | ✓ | ||
SOF production | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
Metals recovery | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
Other waste recovery | ✓ | ✓ * | ✓ | ✓ | |||
Retention time | 10–14 d | 24 h | 6 d | 28 d |
Haa. | Ent. | Arr. | Glo. | Eco. | Her. | Lin. | ||
---|---|---|---|---|---|---|---|---|
Ferrous | kg | 42.4 | 32.3 | 37.4 | 91.5 | 36.9 | 42.9 | 8.2 |
% recovered | 99% | 76% | 88% | >99% | 86% | >99% | 19.3% | |
Aluminium | kg | 9.0 | 5.6 | 5.9 | 11.8 | 6.8 | 10.5 | |
% recovered | >99% | 74% | 78% | >99% | 90.7% | >99% | ||
Plastic film | kg | 34.1 | 5.7 | |||||
% recovered | 75% | 12% | ||||||
Dense plastic | kg | 79.6 | 14.3 | |||||
% recovered | 75% | 13% | ||||||
Glass | kg | 40.0 | 21.5 | 51.8 | 57.6 | |||
% recovered | 69% | 37% | 89% | 99% | ||||
Paper | kg | 162.1 | ||||||
% recovered | 77% | |||||||
Inert | kg | 61.9 | ||||||
% recovered | 89% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gadaleta, G.; De Gisi, S.; Todaro, F.; Notarnicola, M. Environmental Comparison of Different Mechanical–Biological Treatment Plants by Combining Life Cycle Assessment and Material Flow Analysis. Clean Technol. 2022, 4, 380-394. https://doi.org/10.3390/cleantechnol4020023
Gadaleta G, De Gisi S, Todaro F, Notarnicola M. Environmental Comparison of Different Mechanical–Biological Treatment Plants by Combining Life Cycle Assessment and Material Flow Analysis. Clean Technologies. 2022; 4(2):380-394. https://doi.org/10.3390/cleantechnol4020023
Chicago/Turabian StyleGadaleta, Giovanni, Sabino De Gisi, Francesco Todaro, and Michele Notarnicola. 2022. "Environmental Comparison of Different Mechanical–Biological Treatment Plants by Combining Life Cycle Assessment and Material Flow Analysis" Clean Technologies 4, no. 2: 380-394. https://doi.org/10.3390/cleantechnol4020023
APA StyleGadaleta, G., De Gisi, S., Todaro, F., & Notarnicola, M. (2022). Environmental Comparison of Different Mechanical–Biological Treatment Plants by Combining Life Cycle Assessment and Material Flow Analysis. Clean Technologies, 4(2), 380-394. https://doi.org/10.3390/cleantechnol4020023