Lack of Neuromuscular Fatigue Due to Recreational Doubles Pickleball
Abstract
:1. Introduction
- Determine whether or not pickleball players exhibit a learning effect on the CMJ test.
- Determine whether or not playing doubles pickleball causes neuromuscular fatigue.
- Determine the reliability of testing CMJ performance across multiple doubles pickleball matches.
- Investigate factors that may influence CMJ performance in pickleball players.
2. Materials and Methods
2.1. Approach to the Problem
2.2. Participants
2.3. Protocol
- Jump height (calculated from takeoff velocity).
- Net impulse normalized to body mass (hereafter, net impulse).
- Time to takeoff.
- Reactive strength index modified (RSImod; jump height divided by time to takeoff).
- Braking phase mean power normalized to body mass (hereafter, braking mean power).
- Propulsive phase peak power normalized to body mass (hereafter, propulsive peak power).
- Propulsive phase peak force normalized to body mass (hereafter, propulsive peak force).
- Propulsive phase mean power normalized to body mass (hereafter, propulsive mean power).
- Propulsive phase time.
2.4. Data Analysis Methods
- Objective 1: Determine whether or not pickleball players exhibit a learning effect on the CMJ test.
- Objective 2: Determine whether or not playing doubles pickleball causes neuromuscular fatigue.
- Objective 3: Determine the reliability of testing CMJ performance across multiple doubles pickleball matches.
- Objective 4. Investigate factors related to CMJ performance in pickleball players.
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- USA Pickleball. Pickleball Annual Growth Report. Available online: https://usapickleball.org/about-us/organizational-docs/pickleball-annual-growth-report/ (accessed on 3 April 2024).
- Sports & Fitness Industry Association. Sports, Fitness, and Leisure Activities Topline Participation Report; Sports & Fitness Industry Association: Laurel, MD, USA, 2024; p. 44. [Google Scholar]
- Sports & Fitness Industry Association; Pickleheads. State of Pickleball: Participation & Infrastructure Report. Available online: https://www.sportstravelmagazine.com/sfia-and-pickleheads-release-participation-infrastructure-report/ (accessed on 3 April 2024).
- Cerullo, M. Yes, Pickleball Is a Professional Sport. Here’s How Much Top Players Make. Available online: https://www.cbsnews.com/news/pickleball-professional-sport-how-much-you-can-earn/ (accessed on 10 May 2024).
- Forrester, M.B. Pickleball-Related Injuries Treated in Emergency Departments. J. Emerg. Med. 2020, 58, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Greiner, N. Pickleball: Injury Considerations in an Increasingly Popular Sport. Mo. Med. 2019, 116, 488–491. [Google Scholar] [PubMed]
- de la Motte, S.J.; Gribbin, T.C.; Lisman, P.; Murphy, K.; Deuster, P.A. Systematic Review of the Association between Physical Fitness and Musculoskeletal Injury Risk: Part 2–Muscular Endurance and Muscular Strength. J. Strength Cond. Res. 2017, 31, 3218–3234. [Google Scholar] [CrossRef] [PubMed]
- Lisman, P.J.; de la Motte, S.J.; Gribbin, T.C.; Jaffin, D.P.; Murphy, K.; Deuster, P.A. A Systematic Review of the Association Between Physical Fitness and Musculoskeletal Injury Risk: Part 1–Cardiorespiratory Endurance. J. Strength Cond. Res. 2017, 31, 1744–1757. [Google Scholar] [CrossRef] [PubMed]
- Webber, S.C.; Anderson, S.; Biccum, L.; Jin, S.; Khawashki, S.; Tittlemier, B.J. Physical Activity Intensity of Singles and Doubles Pickleball in Older Adults. J. Aging Phys. Act. 2023, 31, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Wray, P.; Ward, C.K.; Nelson, C.; Sulzer, S.H.; Dakin, C.J.; Thompson, B.J.; Vierimaa, M.; Das Gupta, D.; Bolton, D.A.E. Pickleball for Inactive Mid-Life and Older Adults in Rural Utah: A Feasibility Study. Int. J. Environ. Res. Public Health 2021, 18, 8374. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.E.; Buchanan, C.A.; Dalleck, L.C. The Acute and Chronic Physiological Responses to Pickleball in Middle-Aged and Older Adults. Int. J. Res. Exerc. Physiol. 2018, 13, 21–32. [Google Scholar]
- Bourgeois, F.A.; Gamble, P.; Gill, N.D.; McGuigan, M.R. Effects of a Six-Week Strength Training Programme on Change of Direction Performance in Youth Team Sport Athletes. Sports 2017, 5, 83. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power: Part 2—Training considerations for improving maximal power production. Sports Med. 2011, 41, 125–146. [Google Scholar] [CrossRef]
- Furlong, L.M.; Harrison, A.J.; Jensen, R.L. Measures of Strength and Jump Performance Can Predict 30-m Sprint Time in Rugby Union Players. J. Strength Cond. Res. 2021, 35, 2579–2583. [Google Scholar] [CrossRef]
- Gabbett, T.; Kelly, J.; Pezet, T. Relationship between physical fitness and playing ability in rugby league players. J. Strength Cond. Res. 2007, 21, 1126–1133. [Google Scholar] [CrossRef] [PubMed]
- Speranza, M.J.; Gabbett, T.J.; Johnston, R.D.; Sheppard, J.M. Muscular Strength and Power Correlates of Tackling Ability in Semiprofessional Rugby League Players. J. Strength Cond. Res. 2015, 29, 2071–2078. [Google Scholar] [CrossRef]
- Kramer, T.; Huijgen, B.C.; Elferink-Gemser, M.T.; Visscher, C. A Longitudinal Study of Physical Fitness in Elite Junior Tennis Players. Pediatr. Exerc. Sci. 2016, 28, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Kramer, T.; Huijgen, B.C.; Elferink-Gemser, M.T.; Visscher, C. Prediction of Tennis Performance in Junior Elite Tennis Players. J. Sports Sci. Med. 2017, 16, 14–21. [Google Scholar] [PubMed]
- Young, W.B. Transfer of strength and power training to sports performance. Int. J. Sports Physiol. Perform. 2006, 1, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Claudino, J.G.; Cronin, J.; Mezêncio, B.; McMaster, D.T.; McGuigan, M.; Tricoli, V.; Amadio, A.C.; Serrão, J.C. The countermovement jump to monitor neuromuscular status: A meta-analysis. J. Sci. Med. Sport 2017, 20, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Kim, D.; Kim, E.; Bemben, M.G.; Anderson, M.; Seo, D.I.; Bemben, D.A. Jump test performance and sarcopenia status in men and women, 55 to 75 years of age. J. Geriatr. Phys. Ther. 2014, 37, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Buehring, B.; Krueger, D.; Fidler, E.; Gangnon, R.; Heiderscheit, B.; Binkley, N. Reproducibility of jumping mechanography and traditional measures of physical and muscle function in older adults. Osteoporos. Int. 2015, 26, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Parsons, C.M.; Edwards, M.H.; Cooper, C.; Dennison, E.M.; Ward, K.A. Are jumping mechanography assessed muscle force and power, and traditional physical capability measures associated with falls in older adults? Results from the Hertfordshire Cohort Study. J. Musculoskelet. Neuronal Interact. 2020, 20, 168–175. [Google Scholar]
- Watkins, C.M.; Gill, N.D.; McGuigan, M.R.; Maunder, E.; Spence, A.-J.; Downes, P.; Neville, J.; Storey, A.G. Kinetic Analysis, Potentiation, and Fatigue During Vertical and Horizontal Plyometric Training: An In-Depth Investigation Into Session Volume. Int. J. Sports Physiol. Perform. 2024, 19, 195–206. [Google Scholar] [CrossRef]
- Watkins, C.M.; Barillas, S.R.; Wong, M.A.; Archer, D.C.; Dobbs, I.J.; Lockie, R.G.; Coburn, J.W.; Tran, T.T.; Brown, L.E. Determination of Vertical Jump as a Measure of Neuromuscular Readiness and Fatigue. J. Strength Cond. Res. 2017, 31, 3305–3310. [Google Scholar] [CrossRef] [PubMed]
- Gathercole, R.; Sporer, B.; Stellingwerff, T.; Sleivert, G. Alternative Countermovement-Jump Analysis to Quantify Acute Neuromuscular Fatigue. Int. J. Sports Physiol. Perform. 2015, 10, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Glenn, J.M.; Vincenzo, J.; Gray, M.; Binns, A. Development of a Prediction Equation for Vertical Power in Masters Level Basketball Athletes. Int. J. Exerc. Sci. 2014, 7, 119–127. [Google Scholar]
- Santos, C.A.F.; Amirato, G.R.; Jacinto, A.F.; Pedrosa, A.V.; Caldo-Silva, A.; Sampaio, A.R.; Pimenta, N.; Santos, J.M.B.; Pochini, A.; Bachi, A.L.L. Vertical Jump Tests: A Safe Instrument to Improve the Accuracy of the Functional Capacity Assessment in Robust Older Women. Healthcare 2022, 10, 323. [Google Scholar] [CrossRef] [PubMed]
- Ditroilo, M.; Forte, R.; McKeown, D.; Boreham, C.; De Vito, G. Intra- and inter-session reliability of vertical jump performance in healthy middle-aged and older men and women. J. Sports Sci. 2011, 29, 1675–1682. [Google Scholar] [CrossRef] [PubMed]
- Manor, J.; Bunn, J.; Bohannon, R.W. Validity and Reliability of Jump Height Measurements Obtained From Nonathletic Populations With the VERT Device. J. Geriatr. Phys. Ther. 2020, 43, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Farias, D.L.; Teixeira, T.G.; Madrid, B.; Pinho, D.; Boullosa, D.A.; Prestes, J. Reliability of vertical jump performance evaluated with contact mat in elderly women. Clin. Physiol. Funct. Imaging 2013, 33, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Jordan, M.; Torres-Ronda, L.; Loturco, I.; Harry, J.; Virgile, A.; Mundy, P.; Turner, A.; Comfort, P. Selecting Metrics That Matter: Comparing the Use of the Countermovement Jump for Performance Profiling, Neuromuscular Fatigue Monitoring, and Injury Rehabilitation Testing. Strength Cond. J. 2023, 45, 545–553. [Google Scholar] [CrossRef]
- Bilić, Z.; Sinković, F.; Barbaros, P.; Novak, D.; Zemkova, E. Exercise-Induced Fatigue Impairs Change of Direction Performance and Serve Precision among Young Male Tennis Players. Sports 2023, 11, 111. [Google Scholar] [CrossRef]
- Filipas, L.; Rossi, C.; Codella, R.; Bonato, M. Mental Fatigue Impairs Second Serve Accuracy in Tennis Players. Res. Q. Exerc. Sport 2024, 95, 190–196. [Google Scholar] [CrossRef]
- Brito, A.V.; Carvalho, D.D.; Fonseca, P.; Monteiro, A.S.; Fernandes, A.; Fernández-Fernández, J.; Fernandes, R.J. Shoulder Torque Production and Muscular Balance after Long and Short Tennis Points. Int. J. Environ. Res. Public Health 2022, 19, 15857. [Google Scholar] [CrossRef] [PubMed]
- Gescheit, D.T.; Cormack, S.J.; Reid, M.; Duffield, R. Consecutive days of prolonged tennis match play: Performance, physical, and perceptual responses in trained players. Int. J. Sports Physiol. Perform. 2015, 10, 913–920. [Google Scholar] [CrossRef]
- Girard, O.; Christian, R.J.; Racinais, S.; Périard, J.D. Heat stress does not exacerbate tennis-induced alterations in physical performance. Br. J. Sports Med. 2014, 48 (Suppl. S1), i39–i44. [Google Scholar] [CrossRef] [PubMed]
- Habay, J.; Proost, M.; De Wachter, J.; Díaz-García, J.; De Pauw, K.; Meeusen, R.; Van Cutsem, J.; Roelands, B. Mental Fatigue-Associated Decrease in Table Tennis Performance: Is There an Electrophysiological Signature? Int. J. Environ. Res. Public Health 2021, 18, 12906. [Google Scholar] [CrossRef]
- Le Mansec, Y.; Pageaux, B.; Nordez, A.; Dorel, S.; Jubeau, M. Mental fatigue alters the speed and the accuracy of the ball in table tennis. J. Sports Sci. 2018, 36, 2751–2759. [Google Scholar] [CrossRef]
- Díaz-García, J.; González-Ponce, I.; López-Gajardo, M.Á.; Van Cutsem, J.; Roelands, B.; García-Calvo, T. How Mentally Fatiguing Are Consecutive World Padel Tour Matches? Int. J. Environ. Res. Public Health 2021, 18, 9059. [Google Scholar] [CrossRef]
- Pradas, F.; García-Giménez, A.; Toro-Román, V.; Ochiana, N.; Castellar, C. Gender Differences in Neuromuscular, Haematological and Urinary Responses during Padel Matches. Int. J. Environ. Res. Public Health 2021, 18, 5864. [Google Scholar] [CrossRef] [PubMed]
- Demeco, A.; de Sire, A.; Marotta, N.; Spanò, R.; Lippi, L.; Palumbo, A.; Iona, T.; Gramigna, V.; Palermi, S.; Leigheb, M.; et al. Match Analysis, Physical Training, Risk of Injury and Rehabilitation in Padel: Overview of the Literature. Int. J. Environ. Res. Public Health 2022, 19, 4153. [Google Scholar] [CrossRef]
- Lees, A.; Vanrenterghem, J.; De Clercq, D. Understanding how an arm swing enhances performance in the vertical jump. J. Biomech. 2004, 37, 1929–1940. [Google Scholar] [CrossRef]
- Ritchey, M.; Falknor, M.; Beckham, G.; Martin, E. Does Neuromuscular Fatigue Occur From One Doubles Pickleball Match? In Proceedings of the Southwest American College of Sports Medicine Annual Meeting, Costa Mesa, CA, USA, 27–28 October 2023.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Ben-Shachar, M.S.; Lüdecke, D.; Makowski, D. effectsize: Estimation of effect Size Indices and Standardized Parameters. J. Open Source Softw. 2020, 5, 2815. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 2013. [Google Scholar]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Milner, C.E.; Foch, E.; Gonzales, J.M.; Petersen, D. Biomechanics associated with tibial stress fracture in runners: A systematic review and meta-analysis. J. Sport Health Sci. 2023, 12, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Dos’Santos, T.; Thomas, C.; McBurnie, A.; Comfort, P.; Jones, P.A. Biomechanical Determinants of Performance and Injury Risk During Cutting: A Performance-Injury Conflict? Sports Med. 2021, 51, 1983–1998. [Google Scholar] [CrossRef] [PubMed]
- Donelon, T.A.; Dos’Santos, T.; Pitchers, G.; Brown, M.; Jones, P.A. Biomechanical Determinants of Knee Joint Loads Associated with Increased Anterior Cruciate Ligament Loading During Cutting: A Systematic Review and Technical Framework. Sports Med. Open 2020, 6, 53. [Google Scholar] [CrossRef] [PubMed]
- Dobbs, W.C.; Tolusso, D.V.; Fedewa, M.V.; Esco, M.R. Effect of Postactivation Potentiation on Explosive Vertical Jump: A Systematic Review and Meta-Analysis. J. Strength Cond. Res. 2019, 33, 2009–2018. [Google Scholar] [CrossRef] [PubMed]
- Seitz, L.B.; Haff, G.G. Factors Modulating Post-Activation Potentiation of Jump, Sprint, Throw, and Upper-Body Ballistic Performances: A Systematic Review with Meta-Analysis. Sports Med. 2016, 46, 231–240. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Lamont, H.S.; Moir, G.L. Understanding Vertical Jump Potentiation: A Deterministic Model. Sports Med. 2016, 46, 809–828. [Google Scholar] [CrossRef]
- Kim, S.; Lara-Sotelo, S.; Martin, E. Application of Model Averaging for Measurement in the Presence of Unknown Familiarization Phase or Fatigue Phase. Meas. Phys. Educ. Exerc. Sci. 2024, 28, 294–308. [Google Scholar] [CrossRef]
Total Sample (n = 32) | Males (n = 14) | Females (n = 18) | 50+ Years Old (n = 26) | under 50 Years Old (n = 6) | |
---|---|---|---|---|---|
Mean (SD) | |||||
Age (years) | 60.0 (15.9) | 63.7 (13.6) | 57.1 (17.3) | 66.7 (7.3) | 31.0 (7.7) |
Body mass (kg) | 77.2 (18.8) | 90.5 (14.1) | 66.8 (15.1) | 76.5 (19.4) | 79.8 (17.2) |
Pickleball experience (months) | 14.1 (15.5) | 23.8 (18.7) | 6.6 (5.7) | 16.6 (16.2) | 3.2 (2.4) |
Weekly frequency of pickleball in last month (days/week) | 2.4 (1.2) | 2.9 (1.5) | 2.0 (0.8) | 2.6 (1.2) | 1.5 (0.4) |
Number of participants (note: one participant did not answer these questions, hence the total of 31 instead of 32) | |||||
In the last 30 days, did you participate in 12+ hours of aerobic physical activity (including pickleball) most weeks? | Yes = 24 No = 7 | Yes = 14 No = 0 | Yes = 10 No = 7 | Yes = 20 No = 5 | Yes = 4 No = 2 |
In the last 30 days, did you usually perform at least 2 days of resistance training most weeks? | Yes = 16 No = 15 | Yes = 7 No = 7 | Yes = 9 No = 8 | Yes = 11 No = 14 | Yes = 5 No = 1 |
Total Sample (n = 32) | Males (n = 14) | Females (n = 18) | 50+ Years Old (n = 26) | under 50 Years Old (n = 6) | ||
---|---|---|---|---|---|---|
Mean (SD) | ||||||
No prior matches | Jump height (m) | 0.133 (0.0465) | 0.105 (0.0287) | 0.159 (0.0445) | 0.116 (0.0404) | 0.176 (0.0308) |
Net impulse (N.s/kg) | 2.29 (0.391) | 2.07 (0.311) | 2.50 (0.345) | 2.15 (0.343) | 2.66 (0.225) | |
Time to takeoff (s) | 0.815 (0.1655) | 0.881 (0.0977) | 0.754 (0.1919) | 0.777 (0.161) | 0.909 (0.1420) | |
RSImod (no units) | 0.1743 (0.08326) | 0.1215 (0.03878) | 0.2224 (0.08422) | 0.1654 (0.09528) | 0.1965 (0.03393) | |
Braking mean power (W/kg) | −6.18 (1.875) | −5.32 (1.688) | −6.97 (1.713) | −5.82 (1.927) | −7.10 (1.429) | |
Propulsive peak power (W/kg) | 28.80 (5.957) | 25.14 (3.296) | 32.12 (5.927) | 27.49 (6.34) | 32.07 (3.153) | |
Propulsive peak force (N/kg) | 21.13 (2.95) | 20.16 (1.878) | 22.02 (3.468) | 21.96 (3.040) | 19.07 (1.213) | |
Propulsive mean power (W/kg) | 16.32 (3.748) | 13.96 (2.033) | 18.47 (3.680) | 15.87 (4.216) | 17.45 (1.885) | |
Propulsive phase time (s) | 0.243 (0.0463) | 0.252 (0.0348) | 0.235 (0.0542) | 0.222 (0.0319) | 0.297 (0.0308) | |
One prior match | Jump height (m) | 0.152 (0.0725) | 0.168 (0.0809) | 0.137 (0.0603) | 0.134 (0.0575) | 0.230 (0.0816) |
Net impulse (N.s/kg) | 2.44 (0.560) | 2.55 (0.602) | 2.33 (0.499) | 2.30 (0.467) | 3.04 (0.535) | |
Time to takeoff (s) | 0.793 (0.1824) | 0.817 (0.1996) | 0.769 (0.1626) | 0.788 (0.1903) | 0.815 (0.1441) | |
RSImod (no units) | 0.1977 (0.09886) | 0.2096 (0.09909) | 0.1862 (0.09816) | 0.1772 (0.08472) | 0.2877 (0.10816) | |
Braking mean power (W/kg) | −6.78 (2.182) | −6.89 (2.44) | −6.68 (1.920) | −6.30 (1.841) | −8.92 (2.321) | |
Propulsive peak power (W/kg) | 30.55 (7.816) | 32.14 (7.379) | 29.02 (7.982) | 28.75 (6.761) | 38.46 (7.34) | |
Propulsive peak force (N/kg) | 21.52 (2.776) | 21.59 (2.508) | 21.46 (3.034) | 21.50 (2.846) | 21.62 (2.514) | |
Propulsive mean power (W/kg) | 17.36 (4.524) | 18.18 (4.392) | 29.02 (7.982) | 16.47 (3.981) | 21.26 (4.789) | |
Propulsive phase time (s) | 0.244 (0.0524) | 0.251 (0.0464) | 0.236 (0.0572) | 0.237 (0.0513) | 0.272 (0.0492) |
The First and Second Set | Estimate (95% CI) | p-Value | d | η2 | 95% LOA |
---|---|---|---|---|---|
Jump height (m) | 0.014 (0.011, 0.017) | <0.001 | 1.129 *** | 0.28 *** | (−0.011, 0.038) |
Net impulse (N.s/kg) | 0.124 (0.087, 0.161) | <0.001 | 0.877 *** | 0.199 *** | (−0.163, 0.404) |
Time to takeoff (s) | −0.042 (−0.072, −0.012) | 0.007 | −0.436 * | 0.042 * | (−0.285, 0.185) |
RSImod (no units) | 0.030 (0.022, 0.038) | <0.001 | 1.013 *** | 0.233 *** | (−0.031, 0.091) |
Braking mean power (W/kg) | −0.621 (−0.923, −0.318) | <0.001 | −0.628 ** | 0.086 ** | (−2.719, 1.448) |
Propulsive peak power (W/kg) | 2.005 (1.671, 2.340) | <0.001 | 1.743 *** | 0.446 *** | (−0.363, 4.362) |
Propulsive peak force (N/kg) | 0.663 (0.317, 1.009) | <0.001 | 0.481 * | 0.076 ** | (−2.298, 3.700) |
Propulsive mean power (W/kg) | 1.191 (0.888, 1.493) | <0.001 | 1.131 *** | 0.258 *** | (−1.028, 3.534) |
Propulsive phase time (s) | −0.006 (−0.013, 0.002) | 0.156 | −0.25 * | 0.012 * | (−0.083, 0.065) |
The Second and Third Set | Estimate (95% CI) | p-Value | d | η2 | 95% LOA |
Jump height (m) | −0.004 (−0.007, 0.000) | 0.058 | −0.376 | 0.044 | (−0.028, 0.020) |
Net impulse (N.s/kg) | −0.020 (−0.060, 0.021) | 0.341 | −0.228 | 0.011 | (−0.263, 0.214) |
Time to takeoff (s) | −0.017 (−0.049, 0.014) | 0.277 | −0.244 | 0.015 | (−0.163, 0.131) |
RSImod (no units) | −0.001 (−0.010, 0.007) | 0.785 | −0.09 | 0.001 | (−0.064, 0.059) |
Braking mean power (W/kg) | −0.041 (−0.337, 0.256) | 0.787 | −0.016 | 0.001 | (−1.682, 1.658) |
Propulsive peak power (W/kg) | −0.194 (−0.605, 0.216) | 0.354 | −0.225 | 0.011 | (−2.725, 2.220) |
Propulsive peak force (N/kg) | −0.041 (−0.414, 0.331) | 0.828 | −0.073 | 0.001 | (−1.828, 1.710) |
Propulsive mean power (W/kg) | −0.056 (−0.499, 0.387) | 0.804 | −0.085 | 0.001 | (−3.006, 2.783) |
Propulsive phase time (s) | −0.006 (−0.015, 0.003) | 0.170 | −0.298 | 0.023 | (−0.050, 0.038) |
Among Those Who Did Not Have a Prior Match (n = 11) | Estimate (95% CI) | p-Value | η2 |
Jump height (m) | 0.000 (−0.003, 0.003) | 0.976 | <0.001 |
Net impulse (N.s/kg) | 0.014 (−0.019, 0.046) | 0.407 | 0.023 * |
Time to takeoff (s) | −0.036 (−0.060, −0.012) | 0.006 | 0.227 *** |
RSImod (no units) | 0.008 (0.001, 0.015) | 0.033 | 0.143 *** |
Braking mean power (W/kg) | −0.289 (−0.547, −0.028) | 0.035 | 0.139 ** |
Propulsive peak power (W/kg) | 0.221 (−0.108, 0.550) | 0.192 | 0.056 ** |
Propulsive peak force (N/kg) | 0.372 (0.129, 0.613) | 0.005 | 0.236 *** |
Propulsive mean power (W/kg) | 0.243 (−0.024, 0.510) | 0.080 | 0.098 ** |
Propulsive phase time (s) | −0.005 (−0.009, −0.001) | 0.012 | 0.192 *** |
Among Those Who Had a Prior Match (n = 21) | Estimate (95% CI) | p-Value | η2 |
Jump height (m) | 0.001 (−0.001, 0.004) | 0.327 | 0.017 * |
Net impulse (N.s/kg) | 0.022 (−0.005, 0.049) | 0.115 | 0.044 * |
Time to takeoff (s) | −0.000 (−0.020, 0.019) | 0.989 | <0.001 |
RSImod (no units) | 0.004 (−0.002, 0.009) | 0.174 | 0.033 * |
Braking mean power (W/kg) | −0.201 (−0.420, 0.015) | 0.073 | 0.057 ** |
Propulsive peak power (W/kg) | 0.174 (−0.111, 0.460) | 0.233 | 0.026 * |
Propulsive peak force (N/kg) | 0.131 (−0.120, 0.385) | 0.308 | 0.018 * |
Propulsive mean power (W/kg) | 0.166 (−0.027, 0.360) | 0.096 | 0.049 * |
Propulsive phase time (s) | −0.001 (−0.006, 0.003) | 0.531 | 0.007 |
Estimate (95% CI) | p-Value | η2 | |
---|---|---|---|
Jump height (m) | −0.001 (−0.002, 0.000) | 0.246 | 0.009 |
Net impulse (N.s/kg) | 0.004 (−0.010, 0.017) | 0.617 | 0.002 |
Time to takeoff (s) | 0.003 (−0.007, 0.013) | 0.586 | 0.002 |
RSImod (no units) | −0.001 (−0.003, 0.002) | 0.692 | 0.001 |
Braking mean power (W/kg) | −0.093 (−0.192, 0.007) | 0.068 | 0.023 * |
Propulsive peak power (W/kg) | −0.073 (−0.215, 0.069) | 0.316 | 0.007 |
Propulsive peak force (N/kg) | 0.027 (−0.097, 0.151) | 0.669 | 0.001 |
Propulsive mean power (W/kg) | −0.046 (−0.180, 0.089) | 0.507 | 0.003 |
Propulsive phase time (s) | 0.001 (−0.002, 0.004) | 0.609 | 0.002 |
ICC | SEM | CV% | ||
---|---|---|---|---|
Jump height (m) | After first set (n = 26) | 0.986 (0.973, 0.992) | 0.009 (0.008, 0.010) | 6.687 (4.877, 8.496) |
First set only (n = 32) | 0.969 (0.946, 0.979) | 0.012 (0.011, 0.014) | 7.822 (5.890, 9.753) | |
Second set only (n = 26) | 0.985 (0.957, 0.992) | 0.009 (0.008, 0.011) | 6.018 (4.314, 7.723) | |
Third set only (n = 12) | 0.986 (0.961, 0.994) | 0.006 (0.005, 0.008) | 4.982 (2.735, 7.229) | |
Fourth set only (n = 7) | 0.980 (0.914, 0.994) | 0.008 (0.006, 0.012) | 6.343 (2.093, 10.59) | |
Net impulse (N.s/kg) | After first set | 0.971 (0.939, 0.984) | 0.102 (0.092, 0.113) | 4.295 (3.360, 5.231) |
First set only | 0.945 (0.895, 0.965) | 0.127 (0.111, 0.150) | 4.592 (3.635, 5.549) | |
Second set only | 0.968 (0.937, 0.983) | 0.105 (0.091, 0.125) | 4.024 (3.006, 5.041) | |
Third set only | 0.971 (0.912, 0.988) | 0.081 (0.066, 0.107) | 3.254 (1.943, 4.565) | |
Fourth set only | 0.972 (0.914, 0.991) | 0.082 (0.062, 0.118) | 3.591 (1.273, 5.908) | |
Time to takeoff (s) | After first set | 0.637 (0.462, 0.745) | 0.085 (0.077, 0.095) | 11.85 (9.555, 14.14) |
First set only | 0.733 (0.595, 0.835) | 0.095 (0.083, 0.111) | 10.23 (8.115, 12.35) | |
Second set only | 0.548 (0.321, 0.691) | 0.104 (0.090, 0.124) | 11.39 (9.006, 13.78) | |
Third set only | 0.198 (0.000, 0.433) | 0.076 (0.062, 0.100) | 8.372 (3.757, 12.99) | |
Fourth set only | 0.499 (0.112, 0.799) | 0.050 (0.038, 0.072) | 5.970 (2.864, 9.076) | |
RSImod (no units) | After first set | 0.955 (0.923, 0.970) | 0.023 (0.021, 0.026) | 13.52 (10.91, 16.13) |
First set only | 0.922 (0.864, 0.950) | 0.026 (0.022, 0.030) | 13.50 (10.99, 16.01) | |
Second set only | 0.940 (0.873, 0.966) | 0.027 (0.023, 0.032) | 12.66 (9.725, 15.60) | |
Third set only | 0.954 (0.876, 0.975) | 0.016 (0.013, 0.021) | 8.222 (4.291, 12.15) | |
Fourth set only | 0.964 (0.867, 0.989) | 0.015 (0.011, 0.021) | 8.347 (4.527, 12.17) | |
Braking mean power (W/kg) | After first set | 0.884 (0.801, 0.930) | 0.807 (0.732, 0.898) | −11.98 (−14.90, −9.057) |
First set only | 0.773 (0.657, 0.865) | 1.047 (0.912, 1.230) | −13.61 (−16.22, −11.00) | |
Second set only | 0.863 (0.721, 0.921) | 0.903 (0.779, 1.073) | −11.55 (−14.77, −8.330) | |
Third set only | 0.858 (0.648, 0.952) | 0.647 (0.523, 0.848) | −8.787 (−12.15, −5.422) | |
Fourth set only | 0.930 (0.662, 0.972) | 0.484 (0.370, 0.699) | −8.373 (−13.10, −3.643) | |
Propulsive peak power (W/kg) | After first set | 0.984 (0.968, 0.990) | 1.054 (0.957, 1.174) | 3.411 (2.588, 4.234) |
First set only | 0.967 (0.941, 0.981) | 1.324 (1.153, 1.555) | 4.036 (3.030, 5.043) | |
Second set only | 0.984 (0.971, 0.991) | 1.018 (0.879, 1.210) | 2.872 (1.980, 3.764) | |
Third set only | 0.975 (0.930, 0.991) | 0.969 (0.784, 1.270) | 2.906 (1.953, 3.858) | |
Fourth set only | 0.982 (0.923, 0.993) | 0.843 (0.645, 1.217) | 2.728 (1.531, 3.926) | |
Propulsive peak force (N/kg) | After first set | 0.873 (0.741, 0.922) | 0.961 (0.872, 1.069) | 4.515 (3.517, 5.512) |
First set only | 0.782 (0.636, 0.874) | 1.150 (1.001, 1.350) | 4.868 (3.934, 5.801) | |
Second set only | 0.846 (0.737, 0.900) | 1.054 (0.910, 1.253) | 4.495 (3.457, 5.533) | |
Third set only | 0.741 (0.503, 0.870) | 0.841 (0.680, 1.101) | 3.498 (2.310, 4.685) | |
Fourth set only | 0.836 (0.432, 0.937) | 0.760 (0.582, 1.098) | 2.953 (0.961, 4.945) | |
Propulsive mean power (W/kg) | After first set | 0.959 (0.929, 0.976) | 0.983 (0.892, 1.094) | 5.175 (3.828, 6.523) |
First set only | 0.948 (0.911, 0.969) | 0.966 (0.841, 1.134) | 5.351 (4.175, 6.527) | |
Second set only | 0.950 (0.905, 0.971) | 1.083 (0.934, 1.287) | 4.988 (3.260, 6.716) | |
Third set only | 0.969 (0.899, 0.988) | 0.629 (0.509, 0.825) | 3.339 (2.106, 4.571) | |
Fourth set only | 0.971 (0.906, 0.989) | 0.657 (0.503, 0.949) | 3.805 (2.270, 5.339) | |
Propulsive phase time (s) | After first set | 0.743 (0.579, 0.829) | 0.023 (0.021, 0.026) | 8.493 (5.775, 11.21) |
First set only | 0.870 (0.802, 0.920) | 0.019 (0.017, 0.023) | 7.367 (6.029, 8.705) | |
Second set only | 0.635 (0.463, 0.773) | 0.029 (0.025, 0.035) | 8.718 (5.714, 11.72) | |
Third set only | 0.859 (0.670, 0.937) | 0.013 (0.010, 0.017) | 4.963 (3.534, 6.392) | |
Fourth set only | 0.849 (0.472, 0.952) | 0.013 (0.010, 0.019) | 4.806 (2.628, 6.983) |
Estimate (95% CI) | p-Value | η2 | ||
---|---|---|---|---|
Jump height (m) | Age (per 10 years) | −0.025 (−0.039, −0.011) | 0.004 | 0.288 *** |
Sex (male) | 0.042 (−0.008, 0.092) | 0.141 | 0.085 ** | |
Aerobics (yes) | −0.009 (−0.066, 0.048) | 0.778 | 0.003 | |
Resistance Training (yes) | −0.001 (−0.044, 0.043) | 0.983 | <0.001 | |
Frequency of PB (sessions per week) | 0.013 (−0.006, 0.032) | 0.234 | 0.056 * | |
Number of Prior Matches | −0.001 (−0.002, 0.000) | 0.133 | 0.008 | |
Learning Effect | 0.014 (0.010, 0.017) | <0.001 | 0.155 *** | |
Net impulse (N.s/kg) | Age (per 10 years) | −0.162 (−0.277, −0.047) | 0.017 | 0.208 *** |
Sex (male) | 0.336 (−0.071, 0.744) | 0.147 | 0.082 ** | |
Aerobics (yes) | −0.088 (−0.554, 0.378) | 0.735 | 0.005 | |
Resistance Training (yes) | 0.060 (−0.292, 0.413) | 0.759 | 0.004 | |
Frequency of PB (sessions per week) | 0.075 (−0.082, 0.231) | 0.394 | 0.029 * | |
Number of Prior Matches | 0.002 (−0.013, 0.017) | 0.786 | <0.001 | |
Learning Effect | 0.113 (0.073, 0.152) | <0.001 | 0.096 ** | |
Time to takeoff (s) | Age (per 10 years) | −0.037 (−0.065, −0.010) | 0.021 | 0.195 *** |
Sex (male) | 0.072 (−0.024, 0.169) | 0.187 | 0.069 ** | |
Aerobics (yes) | −0.041 (−0.152, 0.071) | 0.515 | 0.017 * | |
Resistance Training (yes) | −0.088 (−0.171, −0.004) | 0.069 | 0.127 ** | |
Frequency of PB (sessions per week) | 0.026 (−0.011, 0.063) | 0.217 | 0.060 ** | |
Number of Prior Matches | 0.003 (−0.009, 0.014) | 0.674 | 0.001 | |
Learning Effect | −0.055 (−0.087, −0.024) | 0.001 | 0.037 * | |
RSImod (no units) | Age (per 10 years) | −0.023 (−0.044, −0.002) | 0.055 | 0.139 ** |
Sex (male) | 0.030 (−0.044, 0.104) | 0.472 | 0.021 * | |
Aerobics (yes) | 0.006 (−0.079, 0.090) | 0.907 | 0.001 | |
Resistance Training (yes) | 0.026 (−0.038, 0.091) | 0.460 | 0.022 * | |
Frequency of PB (sessions per week) | 0.010 (−0.018, 0.039) | 0.522 | 0.017 * | |
Number of Prior Matches | −0.002 (−0.005, 0.001) | 0.208 | 0.005 | |
Learning Effect | 0.032 (0.023, 0.040) | <0.001 | 0.148 *** | |
Braking mean power (W/kg) | Age (per 10 years) | 0.351 (−0.117, 0.821) | 0.186 | 0.069 ** |
Sex (male) | −1.041 (−2.704, 0.622) | 0.267 | 0.049 * | |
Aerobics (yes) | 0.446 (−1.457, 2.356) | 0.675 | 0.007 | |
Resistance Training (yes) | −0.834 (−2.275, 0.603) | 0.303 | 0.043 * | |
Frequency of PB (sessions per week) | 0.047 (−0.593, 0.684) | 0.895 | 0.001 | |
Number of Prior Matches | −0.076 (−0.193, 0.046) | 0.215 | 0.005 | |
Learning Effect | −0.526 (−0.844, −0.214) | 0.001 | 0.035 * | |
Propulsive peak power (W/kg) | Age (per 10 years) | −2.557 (−4.078, −1.036) | 0.005 | 0.271 *** |
Sex (male) | 4.041 (−1.361, 9.443) | 0.186 | 0.069 ** | |
Aerobics (yes) | −0.468 (−6.642, 5.702) | 0.892 | 0.001 | |
Resistance Training (yes) | 0.289 (−4.384, 4.963) | 0.911 | 0.001 | |
Frequency of PB (sessions per week) | 0.961 (−1.109, 3.033) | 0.407 | 0.028 * | |
Number of Prior Matches | −0.150 (−0.304, 0.005) | 0.059 | 0.012 * | |
Learning Effect | 2.048 (1.643, 2.455) | <0.001 | 0.251 *** | |
Propulsive peak force (N/kg) | Age (per 10 years) | 0.111 (−0.408, 0.630) | 0.701 | 0.006 |
Sex (male) | 0.093 (−1.746, 1.933) | 0.927 | <0.001 | |
Aerobics (yes) | 0.621 (−1.491, 2.730) | 0.597 | 0.011 * | |
Resistance Training (yes) | 0.772 (−0.820, 2.363) | 0.386 | 0.030 * | |
Frequency of PB (sessions per week) | −0.500 (−1.206, 0.207) | 0.210 | 0.061 ** | |
Number of Prior Matches | −0.061 (−0.206, 0.083) | 0.407 | 0.002 | |
Learning Effect | 0.712 (0.332, 1.094) | <0.001 | 0.043 * | |
Propulsive mean power (W/kg) | Age (per 10 years) | −1.112 (−2.045, −0.179) | 0.040 | 0.157 *** |
Sex (male) | 1.990 (−1.323, 5.304) | 0.286 | 0.045 * | |
Aerobics (yes) | −0.143 (−3.933, 3.644) | 0.946 | <0.001 | |
Resistance Training (yes) | 0.913 (−1.953, 3.781) | 0.568 | 0.013 * | |
Frequency of PB (sessions per week) | 0.472 (−0.798, 1.744) | 0.506 | 0.018 * | |
Number of Prior Matches | −0.101 (−0.235, 0.032) | 0.140 | 0.007 | |
Learning Effect | 1.240 (0.890, 1.593) | <0.001 | 0.140 *** | |
Propulsive phase time (s) | Age (per 10 years) | −0.014 (−0.021, −0.006) | 0.003 | 0.288 *** |
Sex (male) | 0.028 (0.001, 0.055) | 0.076 | 0.118 ** | |
Aerobics (yes) | −0.018 (−0.050, 0.013) | 0.301 | 0.041 * | |
Resistance Training (yes) | −0.017 (−0.041, 0.007) | 0.200 | 0.063 ** | |
Frequency of PB (sessions per week) | 0.010 (−0.001, 0.020) | 0.097 | 0.103 ** | |
Number of Prior Matches | 0.001 (−0.002, 0.004) | 0.463 | 0.002 | |
Learning Effect | −0.008 (−0.016, −0.000) | 0.039 | 0.014 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, E.; Ritchey, M.; Kim, S.; Falknor, M.; Beckham, G. Lack of Neuromuscular Fatigue Due to Recreational Doubles Pickleball. J 2024, 7, 264-280. https://doi.org/10.3390/j7030015
Martin E, Ritchey M, Kim S, Falknor M, Beckham G. Lack of Neuromuscular Fatigue Due to Recreational Doubles Pickleball. J. 2024; 7(3):264-280. https://doi.org/10.3390/j7030015
Chicago/Turabian StyleMartin, Eric, Matthew Ritchey, Steven Kim, Margaret Falknor, and George Beckham. 2024. "Lack of Neuromuscular Fatigue Due to Recreational Doubles Pickleball" J 7, no. 3: 264-280. https://doi.org/10.3390/j7030015
APA StyleMartin, E., Ritchey, M., Kim, S., Falknor, M., & Beckham, G. (2024). Lack of Neuromuscular Fatigue Due to Recreational Doubles Pickleball. J, 7(3), 264-280. https://doi.org/10.3390/j7030015