A Note on the Nonparametric Estimation of the Conditional Mode by Wavelet Methods
Abstract
:1. Introduction
2. Estimation Procedures
2.1. Multiresolution Analysis
- (i)
- ,
- (ii)
- ,
- (iii)
- (W.1)
- an orthonormal basis for is given by ,
- (W.2)
- an orthonormal basis for is given by where ,
- (W.3)
- has the same regularity as and both functions are compactly supported on for some .
2.2. Main Estimator
3. Assumptions and Main Results
3.1. Assumptions
- (A.1)
- is two times continuous differentiable;
- (A.2)
- There is some compact subset such that has an unique mode on and there exists a constant such that ;
- (A.3)
- We have ;
- (A.4)
- and ;
- (A.5)
- There exists a constant such that .
3.2. Main Result
4. On a General Estimation Method: One Step to the Adaptivity
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Besov Spaces
References
- Ezzahrioui, M.; Ould-Saïd, E. Asymptotic normality of a nonparametric estimator of the conditional mode function for functional data. J. Nonparametr. Stat. 2008, 20, 3–18. [Google Scholar] [CrossRef]
- Ferraty, F.; Laksaci, A.; Vieu, P. Functional time series prediction via conditional mode estimation. C. R. Math. Acad. Sci. Paris 2005, 340, 389–392. [Google Scholar] [CrossRef]
- Berlinet, A.; Gannoun, A.; Matzner-Løber, E. Normalité asymptotique d’estimateurs convergents du mode conditionnel. Canad. J. Stat. 1998, 26, 365–380. [Google Scholar] [CrossRef]
- Quintela-Del-Río, A.; Vieu, P. A nonparametric conditional mode estimate. J. Nonparametr. Stat. 1997, 8, 253–266. [Google Scholar] [CrossRef]
- Ould-Saïd, E. A note on ergodic processes prediction via estimation of the conditional mode function. Scand. J. Stat. 1997, 24, 231–239. [Google Scholar] [CrossRef]
- Samanta, M.; Thavaneswaran, A. Nonparametric estimation of the conditional mode. Commun. Stat. Theory Methods 1990, 19, 4515–4524. [Google Scholar] [CrossRef]
- Collomb, G.; Härdle, W.; Hassani, S. A note on prediction via estimation of the conditional mode function. J. Stat. Plann. Inference 1987, 15, 227–236. [Google Scholar] [CrossRef]
- Meyer, Y. Wavelets and operators. In Cambridge Studies in Advanced Mathematics; Translated from the 1990 French Original by D. H. Salinger; Cambridge University Press: Cambridge, UK, 1992; Volume 37. [Google Scholar]
- Daubechies, I. Ten lectures on wavelets. In CBMS-NSF Regional Conference Series in Applied Mathematics; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 1992; Volume 61. [Google Scholar]
- Vidakovic, B. Statistical modeling by wavelets. In Wiley Series in Probability and Statistics: Applied Probability and Statistics; A Wiley-Interscience Publication; John Wiley & Sons Inc.: New York, NY, USA, 1999. [Google Scholar]
- Mallat, S. A Wavelet Tour of Signal Processing, 3rd ed.; The Sparse Way, with Contributions from Gabriel Peyré; Elsevier/Academic Press: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Härdle, W.; Kerkyacharian, G.; Picard, D.; Tsybakov, A. Wavelets, approximation, and statistical applications. In Lecture Notes in Statistics; Springer: New York, NY, USA, 1998; Volume 129. [Google Scholar]
- Hall, P.; Patil, P. Formulae for mean integrated squared error of nonlinear wavelet-based density estimators. Ann. Stat. 1995, 23, 905–928. [Google Scholar] [CrossRef]
- Hall, P.; Patil, P. On wavelet methods for estimating smooth functions. Bernoulli 1995, 1, 41–58. [Google Scholar] [CrossRef]
- Donoho, D.L.; Johnstone, I.M.; Kerkyacharian, G.; Picard, D. Density estimation by wavelet thresholding. Ann. Stat. 1996, 24, 508–539. [Google Scholar] [CrossRef]
- Hall, P.; Penev, S. Cross-validation for choosing resolution level for nonlinear wavelet curve estimators. Bernoulli 2001, 7, 317–341. [Google Scholar] [CrossRef]
- Doosti, H.; Afshari, M.; Niroumand, H.A. Wavelets for nonparametric stochastic regression with mixing stochastic process. Commun. Stat. Theory Methods 2008, 37, 373–385. [Google Scholar] [CrossRef]
- Chesneau, C. On the adaptive wavelet estimation of a multidimensional regression function under α-mixing dependence: Beyond the standard assumptions on the noise. Comment. Math. Univ. Carol. 2013, 4, 527–556. [Google Scholar]
- Chaubey, Y.P.; Chesneau, C.; Doosti, H. Adaptive wavelet estimation of a density from mixtures under multiplicative censoring. Statistics 2015, 49, 638–659. [Google Scholar] [CrossRef] [Green Version]
- Prakasa Rao, B.L.S. Nonparametric estimation of partial derivatives of a multivariate probability density by the method of wavelets. In Asymptotics in Statistics and Probability, Festschrift for George G. Roussas; Puri, M.L., Ed.; VSP: Leiden, The Netherlands, 2000; pp. 321–330. [Google Scholar]
- Masry, E. Multivariate probability density estimation by wavelet methods: Strong consistency and rates for stationary time series. Stoch. Process. Appl. 1997, 67, 177–193. [Google Scholar] [CrossRef] [Green Version]
- Masry, E. Wavelet-based estimation of multivariate regression functions in Besov spaces. J. Nonparametr. Stat. 2000, 12, 283–308. [Google Scholar] [CrossRef]
- Chaubey, Y.P.; Doosti, H. Wavelet based estimation of the derivatives of a density for m-dependent random variables. J. Iran. Stat. Soc. 2005, 4, 97–105. [Google Scholar]
- Chaubey, Y.P.; Doosti, H.; Prakasa Rao, B.L.S. Wavelet based estimation of the derivatives of a density with associated variables. Int. J. Pure Appl. Math. 2006, 27, 97–106. [Google Scholar]
- Giné, E.; Nickl, R. Uniform Limit theorem for wavelet density estimators. Ann. Probab. 2009, 37, 1605–1646. [Google Scholar] [CrossRef]
- Bergh, J.; Löfström, J. Interpolation spaces. An introduction. In Grundlehren der Mathematischen Wissenschaften, No. 223; Springer: Berlin, Germany, 1976. [Google Scholar]
- Triebel, H. Theory of function spaces. In Monographs in Mathematics; Birkhäuser Verlag: Basel, Switzerland, 1983; Volume 78. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouzebda, S.; Chesneau, C. A Note on the Nonparametric Estimation of the Conditional Mode by Wavelet Methods. Stats 2020, 3, 475-483. https://doi.org/10.3390/stats3040030
Bouzebda S, Chesneau C. A Note on the Nonparametric Estimation of the Conditional Mode by Wavelet Methods. Stats. 2020; 3(4):475-483. https://doi.org/10.3390/stats3040030
Chicago/Turabian StyleBouzebda, Salim, and Christophe Chesneau. 2020. "A Note on the Nonparametric Estimation of the Conditional Mode by Wavelet Methods" Stats 3, no. 4: 475-483. https://doi.org/10.3390/stats3040030
APA StyleBouzebda, S., & Chesneau, C. (2020). A Note on the Nonparametric Estimation of the Conditional Mode by Wavelet Methods. Stats, 3(4), 475-483. https://doi.org/10.3390/stats3040030