Assessment of Climate Change in Italy by Variants of Ordered Correspondence Analysis
Abstract
:1. Introduction
2. Methodology: Simple and Multiple Correspondence Analysis for Ordered Variables
2.1. Ordered Multiple Correspondence Analysis
2.2. Doubly Ordered Correspondence Analysis
Polynomial Biplots
3. Application: Climate Change
3.1. Data Preparation
3.2. Lombardy Region
3.3. Campania Region
4. Simulation: Climate Change
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, B.; Sutton, R. Dominant role of greenhouse-gas forcing in the recovery of Sahel rainfall. Nat. Clim. Chang. 2015, 5, 757–760. [Google Scholar] [CrossRef] [Green Version]
- Kisrchvink, J.; Kopp, R. Palaeoproterozoic ice houses and the evolution of oxygen mediating enzymes: The case for a late origin of photosystem II. Philos. Trans. R. Soc. B 2008, 363, 2755–2765. [Google Scholar]
- IPPC14. Intergovernmental Panel on Climate Change. Fifth Assessment Report: Climate Change 2007; Cambridge University Press: Cambridge, UK, 2014; Available online: http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml (accessed on 31 December 2020).
- Christidis, N.; Donaldson, G.C.; Stott, P.A. Causes for the recent changes in cold- and heat-related mortality in England and Wales. Clim. Chang. 2010, 102, 539–553. [Google Scholar] [CrossRef]
- Hansen, G.; Stone, D. Assessing the observed impact of anthropogenic climate change. Nat. Clim. Chang. 2016, 6, 532–537. [Google Scholar] [CrossRef] [Green Version]
- Stone, D.; Auffhammer, M.; Carey, M.; Hansen, G.; Huggel, C.; Cramer, C.; Yohe, G. The challenge to detect and attribute effects of climate change on human and natural systems. Change 2013, 121, 381–395. [Google Scholar] [CrossRef] [Green Version]
- Rosenzweig, C.; Karoly, D.; Vicarelli, M.; Neofotis, P.; Wu, Q.; Casassa, G.; Imeson, A. Attributing physical and biological impacts to anthropogenic climate change. Nature 2008, 453, 353–357. [Google Scholar] [CrossRef]
- Bates, B.C.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. IPCC Technical Paper VI; IPCC Secretariat: Geneva, Switzerland, 2008. [Google Scholar]
- Toreti, A.; Desiato, F. Temperature trend over Italy from 1961 to 2004. Theor. Appl. Climatol. 2008, 91, 51–58. [Google Scholar] [CrossRef]
- Toreti, A.; Desiato, F. Changes in temperature extremes over Italy in the last 44 years. Int. J. Climatol. 2008, 28, 733–745. [Google Scholar] [CrossRef]
- Tomozeiu, R.; Pasqui, M.; Quaresima, S. Future changes of air temperature over Italian agricultural areas: A statistical downscaling technique applied to 2021–2050 and 2071–2100 periods. Meteorol. Atmos. Phys. 2018, 130, 543–563. [Google Scholar] [CrossRef]
- Simolo, C.; Brunetti, M.; Maugeri, M.; Nanni, T.; Speranza, A. Understanding climate change–induced variations in daily temperature distributions over Italy. J. Geophisical Res. 2010, 115, 1–12. [Google Scholar] [CrossRef]
- Brunetti, M.; Maugeri, M.; Monti, F.; Nanni, T. Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. Int. J. Climatol. 2006, 26, 345–381. [Google Scholar] [CrossRef]
- Brunetti, M.; Maugeri, M.; Nanni, T.; Simolo, C.; Spinoni, J. High-resolution temperature climatology for Italy: Interpolation method intercomparison. Int. J. Climatol. 2014, 34, 1278–1296. [Google Scholar] [CrossRef] [Green Version]
- Mudelsee, M. Trend analysis of climate time series: A review of methods. Earth-Sci. Rev. 2019, 190, 310–322. [Google Scholar] [CrossRef]
- Ali, F.; Dissanayake, D.; Bell, M.; Farrow, M. Investigating car users’ attitudes to climate change using multiple correspondence analysis. J. Transp. Geogr. 2018, 72, 237–247. [Google Scholar] [CrossRef]
- Brunette, M.; Bourke, R.; Hanewinkel, M.; Yousefpour, R. Adaptation to climate change in forestry: A Multiple Correspondence Analysis (MCA). Forests 2018, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Hill, M.O.; Gauch, H.G. Detrended correspondence analysis: An improved ordination technique. Vegetatio 1980, 42, 47–58. [Google Scholar] [CrossRef]
- Correa-Metrio, A.; Dechnik, Y.; Lozano-García, S.; Caballero, M. Detrended correspondence analysis: A useful tool to quantify ecological changes from fossil data sets. Boletín De La Soc. Geológica Mex. 2014, 66, 135–143. [Google Scholar] [CrossRef]
- Lombardo, R.; Beh, E.J. Simple and multiple correspondence analysis using orthogonal polynomials. J. Appl. Stat. 2010, 37, 2101–2116. [Google Scholar] [CrossRef]
- Lombardo, R.; Meulman, J.J. Multiple correspondence analysis via polynomial transformations of ordered categorical variables. J. Classif. 2010, 27, 191–216. [Google Scholar] [CrossRef]
- Beh, E.J.; Lombardo, R. Correspondence Analysis, Theory, Practice and New Strategies; Wiley: Chichester, UK, 2014. [Google Scholar]
- Lombardo, R.; Beh, E.J.; Kroonenberg, P.M. Modelling trends in ordered correspondence analysis using orthogonal polynomials. Psychometrika 2016, 81, 325–349. [Google Scholar] [CrossRef] [PubMed]
- Chihara, T.S. An Introduction to Orthogonal Polynomials, Mathematics and Its Applications; Gordon and Breach Science Publishers: New York, NY, USA, 1978. [Google Scholar]
- Favard, J. Sur les polynomes de Tchebicheff. Comptes Rendus De L’Académie Des Sci. 1935, 200, 2052–2053. [Google Scholar]
- Emerson, P.L. Numerical construction of orthogonal polynomials from general recurrence formula. Biometrics 1968, 24, 696–701. [Google Scholar] [CrossRef]
- Rayner, J.C.W.; Thas, O.; De Boeck, B. A Generalized Emerson Recurrence Relation. Aust. N. Z. J. Stat. 2008, 50, 235–240. [Google Scholar] [CrossRef]
- Greenacre, M.J. Theory and Application of Correspondence Analysis; Academic Press: London, UK, 1984. [Google Scholar]
- Lebart, L.; Morineau, A.; Warwick, K.M. Multivariate Descriptive Statistical Analysis; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Beh, E.J. Simple Corresp. Anal. Ordinal Cross-Classif. Using Orthogonal Polynomials. Biom. J. 1997, 39, 1–25. [Google Scholar] [CrossRef]
- Benzecri, J.P. L’Analyse des Correspondances; Dunod: Paris, France, 1973. [Google Scholar]
- Gifi, A. Non-Linear Multivariate Analysis; Wiley: Chichester, UK, 1990. [Google Scholar]
- Eckart, C.; Young, G. The approximation of one matrix by another of lower rank. Psychometrika 1936, 1, 211–218. [Google Scholar] [CrossRef]
- Rayner, J.C.W.; Best, D.J. Smooth extensions of Pearson’s product moment correlation and Spearman’s rho. Stat. Probab. Lett. 1996, 30, 171–177. [Google Scholar] [CrossRef]
- Rayner, J.C.W.; Beh, E.J. Towards a better understanding of correlation. Stat. Neerl. 2009, 63, 324–333. [Google Scholar] [CrossRef]
- Lombardo, R.; Beh, E.J. Variants of Correspondence Analysis. R J. 2016, 8, 167–184. [Google Scholar] [CrossRef] [Green Version]
Month | 1986 | 2015 |
---|---|---|
January | −0.09 | 2.88 |
February | −1.2 | 2.55 |
March | 4.94 | 7.26 |
April | 8.36 | 11.19 |
May | 16.56 | 15.73 |
June | 17.94 | 20.25 |
July | 19.81 | 24.49 |
August | 19.94 | 21.63 |
September | 16.42 | 16.35 |
October | 12.19 | 11.46 |
November | 6.1 | 7.84 |
December | 1.29 | 4.29 |
Month | 1986 | 2015 |
---|---|---|
January | 6.44 | 8.11 |
February | 5.36 | 7.27 |
March | 9.63 | 9.98 |
April | 12.57 | 13.03 |
May | 18.31 | 18.30 |
June | 18.95 | 21.76 |
July | 22.55 | 26.75 |
August | 24.54 | 25.37 |
September | 20.26 | 21.75 |
October | 16.67 | 16.57 |
November | 11.28 | 13.32 |
December | 6.42 | 10.57 |
Temperature | 1986 | 2015 |
---|---|---|
(−10.9, −1.6] | 7.5 | 6.2 |
(−1.6, 1] | 7.4 | 6.6 |
(1, 2.3] | 10.2 | 5.5 |
(2.3, 3.5] | 5.7 | 6.6 |
(3.5, 4.5] | 5.6 | 6.9 |
(4.5, 5.7] | 4.8 | 12 |
(5.7, 6.7] | 5.8 | 3.5 |
(6.7, 8.2] | 9 | 4.4 |
(8.2, 9.5] | 5.8 | 8.3 |
(9.5, 10.9] | 6.2 | 8.1 |
(10.9, 12.2] | 6.5 | 6.1 |
(12.2, 13.4] | 5.8 | 6.8 |
(13.4, 14.6] | 3.2 | 5 |
(14.6, 16.4] | 1.3 | 1.4 |
(16.4, 18.1] | 1.9 | 2.7 |
(18.1, 19.5] | 3.9 | 3 |
(19.5, 20.9] | 3.7 | 2.7 |
(20.9, 22.6] | 2.7 | 1.6 |
(22.6, 24.1] | 3 | 2.6 |
Temperature | 1986 | 2015 |
---|---|---|
(1.7, 5.8] | 9.8 | 5.1 |
(5.8, 7] | 7.4 | 6 |
(7, 7.9] | 6.9 | 6.2 |
(7.9, 8.7] | 6.2 | 6.3 |
(8.7, 9.6] | 5.6 | 6.7 |
(9.6, 10.4] | 5.4 | 7.4 |
(10.4, 11.2] | 6.2 | 6.2 |
(11.2, 12.2] | 6.5 | 7.8 |
(12.2, 13.3] | 6.7 | 6.7 |
(13.3, 14.5] | 6.2 | 7.1 |
(14.5, 16] | 5.6 | 7.1 |
(16, 17.4] | 6.9 | 6.2 |
(17.4, 18.5] | 3.6 | 2.5 |
(18.5, 19.6] | 3.8 | 1.8 |
(19.6, 20.7] | 2.9 | 2.7 |
(20.7, 21.8] | 2.5 | 1.4 |
(21.8, 22.9] | 2 | 2.3 |
(22.9, 23.9] | 2.7 | 2.5 |
(23.9, 25.1] | 1.8 | 2 |
(25.1, 28.8] | 1.3 | 6 |
Temperature | 1986-Mean | 1986-sd | 2015-Mean | 2015-sd | |
---|---|---|---|---|---|
1 | (−10.9, −1.6] | 7.5 | 0.8 | 6.2 | 0.7 |
2 | (-1.6, 1] | 7.5 | 0.7 | 6.6 | 0.7 |
3 | (1, 2.3] | 10.2 | 0.7 | 5.5 | 0.6 |
4 | (2.3, 3.5] | 5.7 | 0.6 | 6.6 | 0.6 |
5 | (3.5, 4.5] | 5.7 | 0.6 | 6.9 | 0.6 |
6 | (4.5, 5.7] | 5.0 | 0.6 | 11.9 | 0.8 |
7 | (5.7, 6.7] | 5.8 | 0.6 | 3.5 | 0.5 |
8 | (6.7, 8.2] | 9.0 | 0.7 | 4.4 | 0.5 |
9 | (8.2, 9.5] | 5.6 | 0.6 | 8.4 | 0.7 |
10 | (9.5, 10.9] | 6.4 | 0.6 | 8.0 | 0.7 |
11 | (10.9, 12.2] | 6.3 | 0.6 | 6.3 | 0.6 |
12 | (12.2, 13.4] | 5.8 | 0.6 | 6.8 | 0.6 |
13 | (13.4, 14.6] | 3.2 | 0.5 | 5.0 | 0.5 |
14 | (14.6, 16.4] | 1.3 | 0.3 | 1.4 | 0.3 |
15 | (16.4, 18.1] | 2.1 | 0.4 | 2.5 | 0.4 |
16 | (18.1, 19.5] | 3.9 | 0.5 | 2.9 | 0.4 |
17 | (19.5, 20.9] | 3.7 | 0.5 | 2.7 | 0.4 |
18 | (20.9, 22.6] | 2.7 | 0.4 | 1.6 | 0.3 |
19 | (22.6, 24.1] | 3 | 0.4 | 2.6 | 0.4 |
Temperature | 1986-mean | 1986-sd | 2015-mean | 2015-sd | |
---|---|---|---|---|---|
1 | (1.7, 5.8] | 9.8 | 0.8 | 5.1 | 0.6 |
2 | (5.8, 7] | 7.4 | 0.8 | 6 | 0.7 |
3 | (7, 7.9] | 6.9 | 0.7 | 6.2 | 0.6 |
4 | (7.9, 8.7] | 6.2 | 0.6 | 6.3 | 0.6 |
5 | (8.7, 9.6] | 5.6 | 0.6 | 6.7 | 0.6 |
6 | (9.6, 10.4] | 5.4 | 0.6 | 7.4 | 0.7 |
7 | (10.4, 11.2] | 6.2 | 0.6 | 6.2 | 0.6 |
8 | (11.2, 12.2] | 6.5 | 0.6 | 7.8 | 0.7 |
9 | (12.2, 13.3] | 6.7 | 0.6 | 6.7 | 0.6 |
10 | (13.3, 14.5] | 6.2 | 0.6 | 7.1 | 0.6 |
11 | (14.5, 16] | 5.6 | 0.6 | 7.1 | 0.7 |
12 | (16, 17.4] | 6.9 | 0.6 | 6.2 | 0.6 |
13 | (17.4, 18.5] | 3.6 | 0.5 | 2.5 | 0.4 |
14 | (18.5, 19.6] | 3.8 | 0.5 | 1.8 | 0.3 |
15 | (19.6, 20.7] | 2.9 | 0.4 | 2.7 | 0.4 |
16 | (20.7, 21.8] | 2.5 | 0.4 | 1.4 | 0.3 |
17 | (21.8, 22.9] | 2 | 0.4 | 2.3 | 0.4 |
18 | (22.9, 23.9] | 2.7 | 0.4 | 2.5 | 0.4 |
19 | (23.9, 25.1] | 1.8 | 0.3 | 2 | 0.4 |
20 | (25.1, 28.8] | 1.3 | 0.3 | 6 | 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cembalo, A.; Lombardo, R.; Beh, E.J.; Romano, G.; Ferrucci, M.; Pisano, F.M. Assessment of Climate Change in Italy by Variants of Ordered Correspondence Analysis. Stats 2021, 4, 146-161. https://doi.org/10.3390/stats4010012
Cembalo A, Lombardo R, Beh EJ, Romano G, Ferrucci M, Pisano FM. Assessment of Climate Change in Italy by Variants of Ordered Correspondence Analysis. Stats. 2021; 4(1):146-161. https://doi.org/10.3390/stats4010012
Chicago/Turabian StyleCembalo, Assuntina, Rosaria Lombardo, Eric J. Beh, Gianpaolo Romano, Michele Ferrucci, and Francesca M. Pisano. 2021. "Assessment of Climate Change in Italy by Variants of Ordered Correspondence Analysis" Stats 4, no. 1: 146-161. https://doi.org/10.3390/stats4010012
APA StyleCembalo, A., Lombardo, R., Beh, E. J., Romano, G., Ferrucci, M., & Pisano, F. M. (2021). Assessment of Climate Change in Italy by Variants of Ordered Correspondence Analysis. Stats, 4(1), 146-161. https://doi.org/10.3390/stats4010012