Assessing Regional Entrepreneurship: A Bootstrapping Approach in Data Envelopment Analysis
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Methods
3.1.1. Definition of DMUs
3.1.2. Selection of Input and Output Variables
3.1.3. Selection of DEA Model
3.1.4. Bootstrapping
- (i)
- Determine each region’s initial DEA efficiency scores, , by solving Model (1).
- (ii)
- Generate a random sample with a replacement of size n from the non-parametric kernel density function used to estimate the distribution of the original point efficiency scores, .
- (iii)
- Create a pseudo-dataset for each region of the sample.
- (iv)
- To create new efficiency scores, , solve the DEA-BCC model for the new set of data.
- (v)
- Repeat steps (ii) through (iv) B = 2000 times.
4. Dataset
5. Results and Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Small Business Administration (SBA), Office of Advocacy—Edward Lowe Foundation, Cassopolis, MI. The Innovation-Entrepreneurship NEXUS: A National Assessment of Entrepreneurship and Regional Economic Growth and Development, Study Conducted by Advanced Research Technologies, LLC, Powell, OH.; Small Business Administration (SBA); Office of Advocacy—Edward Lowe Foundation: Cassopolis, MI, USA, 2005. [Google Scholar]
- Schumpeter, J.A. The Theory of Economic Development: An Inquiry into Profits, Capital, Credit, Interest, and the Business Cycle; Harvard University Press: Cambridge, MA, USA, 1934. [Google Scholar]
- Reynolds, P.D.; Hay, M.; Camp, S.M. Global Entrepreneurs Hip Monitor, 1999 Executive Report; Babson College, Kauffman Center for Entrepreneurial Leadership and the London Business School: Babson, MA, USA, 1999. [Google Scholar]
- Gartner, W.B. What are we talking about when we talk about entrepreneurship? J. Bus. Ventur. 1990, 5, 15–28. [Google Scholar] [CrossRef]
- Lundstrom, A.; Stevenson, L.A. Entrepreneurship Policy: Theory and Practice; Kluwer Academic Publishers: New York, NY, USA, 2005. [Google Scholar]
- Schaper, M. The essence of ecopreneurship, GMI Theme Issue: Environ. Entrep 2002, 38, 26–38. [Google Scholar]
- Gartner, W.B.; Shane, S.A. Measuring entrepreneurship over time. J. Bus. Ventur. 1995, 10, 283–301. [Google Scholar] [CrossRef]
- Acs, Z.J.; Arenius, P.; Hay, M.; Minniti, M. Global Entrepreneurship Monitor, 2004. Executive Report; London Business School: London, UK; Babson College: Wellesley, MA, USA, 2005. [Google Scholar]
- Minniti, M. Global Entrepreneurship Monitor, 2005 Executive Report; Babson College: Babson Park, MA, USA; London Business School: London, UK, 2006. [Google Scholar]
- Jones-Evans, D.; Brooksbank, D.J. GEM UK Regional Summary: Wales 2004; University of Illinois at Urbana-Champaign’s Academy for Entrepreneurial Leadership Historical Research Reference in Entrepreneurship: Champaign, IL, USA, 2004. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar]
- Reynolds, P.D.; Bygrave, W.D.; Autio, E. GEM 2003 Global Report; Babson College, the London Business School, and the Ewing Marion Kauffman Foundation: Babson, MA, USA, 2004. [Google Scholar]
- Ioannidis, S. Entrepreneurship in Greece, Foundation for Economic and Industrial Research (IOBE), Global Entrepreneurship Monitor 2003; Entrepreneurship in Greece, Foundation for Economic and Industrial Research (IOBE): Athens, Greek, 2004. (In Greek) [Google Scholar]
- Ioannidis, S.; Politis, T.; Tsakanikas, A. Entrepreneurship in Greece 2004–2005, Foundation for Economic and Industrial Research (IOBE), Global Entrepreneurship Monitor 2005, Athens, October; Entrepreneurship in Greece, Foundation for Economic and Industrial Research (IOBE): Athens, Greek, 2005. (In Greek) [Google Scholar]
- Pereira, M.A.; Ferreira, D.C.; Figueira, J.R.; Marques, R.C. Measuring the efficiency of the Portuguese public hospitals: A valuemodelled network data envelopment analysis with simulation. Expert Syst. Appl. 2021, 181, 115169. [Google Scholar] [CrossRef]
- Mahmoudi, R.; Emrouznejad, A.; Shetab-Boushehri, S.N.; Hejazi, S.R. The origins, development and future directions of Data Envelopment Analysis approach in transportation systems. Socio-Econ. Plan. Sci. 2020, 69, 100672. [Google Scholar] [CrossRef]
- Martín, J.C.; Indelicato, A. A DEA MCDM approach applied to ESS8 dataset for measuring immigration and refugees citizens’ openness. J. Int. Migr. Integr. 2021. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Yang, G.L. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Econ. Plan. Sci. 2018, 61, 4–8. [Google Scholar]
- Liu, J.S.; Lu, L.Y.; Lu, W.M.; Lin, B.J. A survey of DEA applications. Omega 2013, 41, 893–902. [Google Scholar]
- Sutter, R.; Stough, R.R. Measuring entrepreneurship and knowledge capital: Metropolitan economic efficiency in the USA. Entrep. Reg. Dev. 2009, 21, 351–373. [Google Scholar] [CrossRef]
- Fried, H.O.; Tauer, L.W. An entrepreneur performance index. J. Product. Anal. 2015, 44, 69–77. [Google Scholar] [CrossRef]
- Cazals, C.; Florens, J.P.; Simar, L. Nonparametric frontier estimation: A robust approach. J. Econom. 2002, 106, 1–25. [Google Scholar] [CrossRef]
- Lafuente, E.; Szerb, L.; Acs, Z.J. Country level efficiency and national systems of entrepreneurship: A data envelopment analysis approach. J. Technol. Transf. 2016, 41, 1260–1283. [Google Scholar] [CrossRef]
- Du, K.; O’Connor, A. Entrepreneurship and advancing national level economic efficiency. Small Bus. Econ. 2018, 50, 91–111. [Google Scholar] [CrossRef]
- Silva, P.M.; Moutinho, V.F.; Moreira, A.C. Do social and economic factors affect the technical efficiency in entrepreneurship activities? Evidence from European countries using a two-stage DEA model. Socio-Econ. Plan. Sci. 2022, 82, 101314. [Google Scholar] [CrossRef]
- Rezaei, J.; Ortt, R.; Scholten, V. Measuring entrepreneurship: Expert-based vs. data-based methodologies. Expert Syst. Appl. 2012, 39, 4063–4074. [Google Scholar] [CrossRef]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. 1957, 120, 253–290. [Google Scholar]
- Banker, R.; Charnes, A.; Cooper, W. Some models for estimating technical and scale efficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar]
- Norman, M.; Stoker, B. Data Envelopment Analysis: The Assessment of Performance; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Thanassoulis, E. Introduction to the Theory and Application of Data Envelopment Analysis: A Foundation Text with Integrated Software; Kluwer Academic Publishers: Hingham, MA, USA, 2001. [Google Scholar]
- Cooper, W.W.; Seiford, L.M.; Tone, T. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software; Springer Science+Business Media, Inc.: New York, NY, USA, 2007. [Google Scholar]
- Cooper, W.W.; Seiford, L.M.; Zhu, J. Handbook on Data Envelopment Analysis, 2nd ed.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Osman, I.H.; Berbary, L.N.; Sidani, Y.; Al-Ayoubi, B.; Emrouznejad, A. Data envelopment analysis model for the appraisal and relative performance evaluation of nurses at an intensive care unit. J. Med. Syst. 2011, 35, 1039–1062. [Google Scholar] [CrossRef]
- Golany, B.A.; Roll, Y. An application procedure for data envelopment analysis. Omega 1989, 17, 237–250. [Google Scholar]
- Dyson, R.G.; Allen, R.; Camanho, A.S.; Podinovski, V.V.; Sarrico, C.S.; Shale, E.A. Pitfalls and protocols and DEA. Eur. J. Oper. Res. 2001, 132, 245–259. [Google Scholar] [CrossRef]
- Sarkis, J. Preparing your data for DEA. In Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis; Zhu, J., Cook, W.D., Eds.; Springer: New York, NY, USA, 2007; pp. 305–320. [Google Scholar]
- Hollingsworth, B.; Smith, P. Use of ratios in data envelopment analysis. Appl. Econ. Lett. 2003, 10, 733–735. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models. Manag. Sci. 1998, 44, 49–61. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Statistical inference in nonparametric frontier models: The state of the art. J. Product. Anal. 2000, 13, 49–78. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. A general methodology for bootstrapping in nonparametric frontier models, J. Appl. Stat. 2000, 27, 779–802. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Two-stage dea: Caveat emptor. J. Product. Anal. 2011, 36, 205–218. [Google Scholar] [CrossRef]
- Avkiran, N.K. The evidence of efficiency gains: The role of mergers and the benefits to the public. J. Bank. Financ. 1999, 23, 991–1013. [Google Scholar] [CrossRef]
- Evanoff, D.D.; Israilevich, P.R. Productive efficiency in banking. Econom. Perspect. 1991, 15, 11–32. [Google Scholar]
- Simar, L.; Wilson, P.W. Statistical inference in nonparametric frontier models: Recent developments and perspectives. In The Measurement of Productive Efficiency and Productivity Growth, 2nd ed.; Fried, H.O., Lovell, C.A.K., Schmidt, S.S., Eds.; Oxford University Press: Oxford, UK, 2008; pp. 421–521. [Google Scholar]
- Hellenic Statistical Authority (ELSTAT). Statistical Business Register; ELSTAT: Piraeus, Greece, 2015. [Google Scholar]
- Hellenic Statistical Authority (ELSTAT). Newly Established or Expanded Manufacturing Units (Licenses to Operate Expanded); ELSTAT: Piraeus, Greece, 2015. [Google Scholar]
- Simar, L.; Wilson, P.W. Estimation and inference in two-stage, semi-parametric models of productive processes. J. Econom. 2007, 136, 31–64. [Google Scholar] [CrossRef]
Measures of Regional Entrepreneurship Activity | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|
Number of enterprises a per 1000 persons of labor force | 204.13 | 436.51 | 344.01 | 62.41 |
Number of new enterprises b in manufacturing per 1000 persons of labor force | 0.01 | 0.21 | 0.06 | 0.05 |
Employment rate | 0.69 | 0.85 | 0.76 | 0.04 |
Single DEA | DEA-Bootstrapping Estimates | ||||||||
---|---|---|---|---|---|---|---|---|---|
Regions | DEA-BCC Point Estimates | Bias | Variance | r | Bias-Corrected Point Estimates | Lower Bound | Upper Bound | Ranking a | Classification |
Attica | 1.0000 | 0.0460 | 0.0012 | 453.16 | 0.9540 | 0.9060 | 0.9987 | 5 | HLR |
Central Macedonia | 0.9331 | 0.0153 | 0.0001 | 5812.17 | 0.9177 | 0.8944 | 0.9319 | 10 | MLR |
Crete | 0.9201 | 0.0148 | 0.0001 | 5901.32 | 0.9053 | 0.8806 | 0.9190 | 11 | MLR |
Eastern Macedonia and Thrace | 0.9517 | 0.0134 | 0.0001 | 7935.58 | 0.9382 | 0.9178 | 0.9505 | 7 | MLR |
Epirus | 0.9772 | 0.0214 | 0.0002 | 2863.59 | 0.9560 | 0.9246 | 0.9763 | 2 | |
Ionian Islands | 1.0000 | 0.0462 | 0.0012 | 462.13 | 0.9538 | 0.9061 | 0.9991 | 6 | HLR |
Mainland Greece | 0.9409 | 0.0159 | 0.0001 | 6640.96 | 0.9249 | 0.9025 | 0.9396 | 9 | MLR |
Northern Aegean | 1.0000 | 0.0251 | 0.0004 | 1661.56 | 0.9749 | 0.9397 | 0.9987 | 1 | HLR |
Peloponnesus | 0.9445 | 0.0144 | 0.0001 | 4129.23 | 0.9301 | 0.9021 | 0.9435 | 8 | MLR |
Southern Aegean | 1.0000 | 0.0453 | 0.0009 | 803.72 | 0.9547 | 0.9208 | 0.9986 | 3 | HLR |
Thessaly | 0.9057 | 0.0149 | 0.0001 | 7031.98 | 0.8908 | 0.8701 | 0.9048 | 12 | LLR |
Western Greece | 1.0000 | 0.0453 | 0.0013 | 431.87 | 0.9547 | 0.9055 | 0.9989 | 4 | HLR |
Western Macedonia | 0.9092 | 0.0220 | 0.0002 | 2697.25 | 0.8870 | 0.8561 | 0.9079 | 13 | LLR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsolas, I.E. Assessing Regional Entrepreneurship: A Bootstrapping Approach in Data Envelopment Analysis. Stats 2022, 5, 1221-1230. https://doi.org/10.3390/stats5040073
Tsolas IE. Assessing Regional Entrepreneurship: A Bootstrapping Approach in Data Envelopment Analysis. Stats. 2022; 5(4):1221-1230. https://doi.org/10.3390/stats5040073
Chicago/Turabian StyleTsolas, Ioannis E. 2022. "Assessing Regional Entrepreneurship: A Bootstrapping Approach in Data Envelopment Analysis" Stats 5, no. 4: 1221-1230. https://doi.org/10.3390/stats5040073
APA StyleTsolas, I. E. (2022). Assessing Regional Entrepreneurship: A Bootstrapping Approach in Data Envelopment Analysis. Stats, 5(4), 1221-1230. https://doi.org/10.3390/stats5040073