Terroir in View of Bibliometrics
Abstract
:1. Introduction
- What revisions have occurred in the literature on terroir?
- Which research articles, authors, and manuscripts have had the most influence in terroir based on publications in Scopus?
- What are the most important topics discussed in the research field of terroir?
2. Materials and Methods
3. Results
- The red cluster comprises 15 terms primarily related to agriculture, climate change, sustainability, and the wine industry. It includes terms associated with countries known for their wine production, such as Italy and France.
- The green cluster focuses on winemaking’s microbiological, genetic, and biotechnological aspects. Key terms in this cluster include yeasts, fermentation, genetics, microbial diversity, microbiology, and Saccharomyces cerevisiae.
- The blue cluster highlights the significance of grape physiology and its physicochemical characteristics in shaping the sensory properties of wine. Terms such as anthocyanins, chemistry, mass spectrometry, metabolomics, phenols, sensory analysis, and taste are representative of this cluster.
- The presence of terms like climate, fruit, grapevine, soil, Vitaceae, Vitis, and Vitis vinifera in the yellow cluster indicates a focus on various aspects of Vitis cultivation and the interrelationships between soil properties, climate, and grapevine production within the concept of terroir.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- OIV. Definition of Vitivinicultural “Terroir”. The International Organization of Vine and Wine, Resolution OIV/VITI 333/2010. 2010. Available online: https://www.oiv.int/public/medias/379/viti-2010-1-en.pdf (accessed on 1 June 2023).
- Thode, S.; Maskulka, J. Place-based marketing strategies, brand equity and vineyard valuation. J. Prod. Brand Manag. 1998, 7, 379–399. [Google Scholar] [CrossRef]
- Fernández-Marín, M.I.; Guerrero, R.F.; García-Parrilla, M.C.; Puertas, B.; Pilar, R.; Cantos-Villar, E. Terroir and variety: Two key factors for obtaining stilbene-enriched grapes. J. Food Compos. Anal. 2013, 31, 191–198. [Google Scholar] [CrossRef]
- Peng, Y.; Roell, Y.E.; Odgers, N.P.; Møller, A.B.; Beucher, A.; Greve, M.B.; Greve, M.H. Mapping and describing natural terroir units in Denmark. Geoderma 2021, 394, 115014. [Google Scholar] [CrossRef]
- Bonfante, A.; Brillante, L. Terroir analysis and its complexity. XIVth International Terroir Congress and 2nd ClimWine Symposium, 3–8 July 2022, Bordeaux, France. Oeno One 2022, 56, 375–388. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Barbe, J.-C.; Darriet, P.; Geffroy, O.; Gomès, E.; Guillaumie, S.; Helwi, P.; Laboyrie, J.; Lytra, G.; Le Menn, N.; et al. Recent advancements in understanding the terroir effect on aromas in grapes and wines: This article is published in cooperation with the XIIIth International Terroir Congress November 17–18 2020, Adelaide, Australia. Guest editors: Cassandra Collins and Roberta De Bei. Oeno One 2020, 54, 985–1006. [Google Scholar] [CrossRef]
- Spielmann, N.; Ge’linas-Chebat, C. Terroir? That’s not how I would describe it. Int. J. Wine Bus. Res. 2012, 24, 254–270. [Google Scholar] [CrossRef]
- Clark, L.F.; William, A.K. Climate change and terroir: The challenge of adapting geographical indications. J. World Intellect. Prop. 2017, 20, 88–102. [Google Scholar] [CrossRef]
- Tarr, P.; Dreyer, M.; Athanas, M.; Shahgholi, M.; Keith, S.; Second, T. A metabolomics based approach for understanding the influence of terroir in Vitis vinifera L. Metabolomoics 2013, 9, 170–177. [Google Scholar] [CrossRef]
- Deloire, A.; Vaudour, E.; Carey, V.A.; Bonnardot, V.; van Leeuwen, C. Grapevine responses to terroir: A global approach. Oeno One 2005, 39, 149–162. [Google Scholar] [CrossRef]
- Felder, D.; Burns, D.; Chang, D. Defining microbial terroir: The use of native fungi for the study of traditional fermentative processes. Int. J. Gastron. Food Sci. 2012, 1, 64–69. [Google Scholar] [CrossRef]
- Knight, S.; Klaere, S.; Fedrizzi, B.; Goddard, M.R. Regional microbial signatures positively correlate with differential wine phenotypes: Evidence for a microbial aspect to terroir. Sci. Rep. 2015, 5, 14233. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.A.; Thorngate, J.H.; Richardson, P.M.; Mills, D.A. PNAS Plus: From the Cover: Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl. Acad. Sci. USA 2014, 111, E139–E148. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Rousseaux, S.; Tourdot-Maréchal, R.; Sadoudi, M.; Gougeon, R.; Schmitt-Kopplin, P.; Alexandre, H. Wine microbiome: A dynamic world of microbial interactions. Crit. Rev. Food Sci. Nutr. 2017, 57, 856–873. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, H. Wine Yeast Terroir: Separating the Wheat from the Chaff—For an Open Debate. Microorganisms 2020, 8, 787. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB J. 2007, 22, 338–342. [Google Scholar] [CrossRef]
- Yataganbaba, A.; Kurtba, I. A scientific approach with bibliometric analysis related to brick and tile drying: A review. Sustain. Energy Rev. 2016, 59, 206–224. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Orduna-Malea, E.; Thelwall, M.; Delgado López-Cózar, E. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. J. Informetr. 2018, 12, 1160–1177. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Fuchs-Hanusch, D. Mapping of climate change research in the Arab world: A bibliometric analysis. Environ. Sci. Pollut. Res. 2019, 27, 3523–3540. [Google Scholar] [CrossRef]
- Stefanis, C.; Giorgi, E.; Kalentzis, K.; Tselemponis, A.; Tsigalou, C.; Nena, E.; Kontogiorgis, C.; Kourkoutas, Y.; Voidarou, C.; Chatzaki, E.; et al. Assessing Worldwide Research Activity on ICT in Climate Change Using Scopus Database: A Bibliometric Analysis. Front. Environ. Sci. 2022, 10, 868197. [Google Scholar] [CrossRef]
- Stefanis, C.; Stavropoulou, E.; Giorgi, E.; Voidarou, C.; Constantinidis, T.C.; Vrioni, G.; Tsakris, A. Honey’s Antioxidant and Antimicrobial Properties: A Bibliometric Study. Antioxidants 2023, 12, 414. [Google Scholar] [CrossRef]
- Akin, M.; Eyduran, S.P.; Krauter, V. Food packaging related research trends in the academic discipline of food science and technology: A bibliometric analysis. Clean. Circ. Bioeconomy 2023, 5, 100046. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Viena, Austria, 2021. [Google Scholar]
- van Leeuwen, C.; Friant, P.; Choné, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. Influence of Climate, Soil, and Cultivar on Terroir. Am. J. Enol. Vitic. 2004, 55, 207–217. [Google Scholar] [CrossRef]
- Barham, E. Translating terroir: The global challenge of French AOC labeling. J. Rural Stud. 2003, 19, 127–138. [Google Scholar] [CrossRef]
- Feagan, R. The place of food: Mapping out the ‘local’ in local food systems. Prog. Hum. Geogr. 2007, 31, 23–42. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Seguin, G. The concept of terroir in viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar] [CrossRef]
- Szomszor, M.; Adams, J.; Fry, R.; Gebert, C.; Pendlebury, D.A.; Potter, R.W.K.; Rogers, G. Interpreting Bibliometric Data. Front. Res. Metr. Anal. 2021, 5, 628703. [Google Scholar] [CrossRef] [PubMed]
- Thomson Reuters. White Paper Using Bibliometrcs: A Guide to Evaluating Research Performance with Citation Data Scientific. 2008. Available online: http://openscience.ens.fr/MARIE_FARGE/CONFERENCES/2014_12_02_BIBLIOMETRIE_ET_EVALUATION_DE_LA_RECHERCHE_ABDU_PARIS/InCites_Thomson-Reuters.pdf (accessed on 31 May 2023).
- Mas-Tur, A.; Roig-Tierno, N.; Sarin, S.; Haon, C.; Sego, T.; Belkhouja, M.; Porter, A.; Merigó, J.M. Co-citation, bibliographic coupling and leading authors, institutions and countries in the 50 years of Technological Forecasting and Social Change. Technol. Forecast. Soc. Chang. 2021, 165, 120487. [Google Scholar] [CrossRef]
- Sahu, M.K. Bibliographic Coupling and Co-Citation Networking Analysis Determining Research Contributions of Business School between 1965-June, 2020: With Special Reference to Indian Institute of Management, India. Libr. Philos. Pract. 2021, 1–14. [Google Scholar]
- Sevukan, R.; Sankar, S. Application of Author Bibliographic Coupling Analysis and Author Keywords Ranking in Identifying Research Fronts of Indian Neurosciences Research. Libr. Philos. Pract. 2019, 3, 24–39. [Google Scholar]
- Smith, M.J.; Weinberger, C.; Bruna, E.M.; Allesina, S. The Scientific Impact of Nations: Journal Placement and Citation Performance. Edited by Vincent Larivière. PLoS ONE 2014, 9, e109195. [Google Scholar] [CrossRef] [PubMed]
- Lowenthal, D. Caribbean views of Caribbean land. Can. Geogr./Le Géographe Can. 1961, 5, 1–9. [Google Scholar] [CrossRef]
- Brierley, J.S. Idle land in Grenada: A review of its causes and the PRGS’S approach to reducing the problem. Can. Geogr./Le Géographe Can. 1985, 29, 298–309. [Google Scholar] [CrossRef]
- Petruzzellis, F.; Natale, S.; Bariviera, L.; Calderan, A.; Mihelčič, A.; Reščič, J.; Sivilotti, P.; Šuklje, K.; Lisjak, K.; Vanzo, A.; et al. High spatial heterogeneity of water stress levels in Refošk grapevines cultivated in Classical Karst. Agric. Water Manag. 2022, 260, 107288. [Google Scholar] [CrossRef]
- Kumšta, M.; Pavloušek, P.; Kárník, P. Use of anthocyanin profiles when differentiating individual varietal wines and terroirs. Food Technol. Biotechnol. 2014, 52, 383–390. [Google Scholar] [CrossRef]
- Tsiakkas, O.; Escott, C.; Loira, I.; Morata, A.; Rauhut, D.; Suárez-Lepe, J.A. Determination of anthocyanin and volatile profile of wines from varieties yiannoudi and maratheftiko from the island of Cyprus. Beverages 2020, 6, 4. [Google Scholar] [CrossRef]
- De Andrade, R.H.S.; Do Nascimento, L.S.; Pereira, G.E.; Hallwass, F.; Paim, A.P.S. Anthocyanic composition of Brazilian red wines and use of HPLC-UV-Vis associated to chemometrics to distinguish wines from different regions. Microchem. J. 2013, 110, 256–262. [Google Scholar] [CrossRef]
- Gonzaga, L.S.; Capone, D.L.; Bastian, E.P.; Jeffery, D.W. Defining wine typicity: Sensory characterisation and consumer perspectives. Aust. J. Grape Wine Res. 2021, 27, 246–256. [Google Scholar] [CrossRef]
- Gatti, M.; Garavani, A.; Squeri, C.; Diti, I.; De Monte, A.; Scotti, C.; Poni, S. Effects of intra-vineyard variability and soil heterogeneity on vine performance, dry matter and nutrient partitioning. Precis. Agric. 2022, 23, 150–177. [Google Scholar] [CrossRef]
- Lawrence, D.M. The Science of Terroir. Elements 2018, 14, 153–158. [Google Scholar] [CrossRef]
- Reynard, J.-S.; Zufferey, V.; Nicol, G.-C.; Murisier, F. Vine water status as a parameter of the ≪terroir≫ effect under the non-irrigated conditions of the vaud viticultural area (Switzerland). J. Int. Sci. Vigne Vin 2011, 45, 139–147. [Google Scholar] [CrossRef]
- White, R.; Balachandra, L.; Edis, R.; Chen, D. The soil component of terroir. J. Vine Wine Sci. 2007, 41, 9–18. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; De Rességuier, L. Major soil-related factors in terroir expression and vineyard siting. Elements 2018, 14, 159–165. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Roby, J.-P.; De Rességuier, L. Soil-related terroir factors: A review. Oeno One 2018, 52, 173–188. [Google Scholar] [CrossRef]
- Hunter, J.J.; Volschenk, C.G.; Novello, V.; Strever, A.E.; Fouché, G.W. Integrative effects of vine water relations and grape ripeness level of vitis vinifera L. cv. Shiraz/Richter 99. I. physiological changes and vegetative-reproductive growth balances. S. Afr. J. Enol. Vitic. 2014, 35, 332–358. [Google Scholar] [CrossRef]
- Mania, E.; Petrella, F.; Giovannozzi, M.; Piazzi, M.; Wilson, A.; Guidoni, S. Managing Vineyard Topography and Seasonal Variability to Improve Grape Quality and Vineyard Sustainability. Agronomy 2021, 11, 1142. [Google Scholar] [CrossRef]
- Koundouras, S. Environmental and Viticultural Effects on Grape Composition and Wine Sensory Properties. Elements 2018, 14, 173–178. [Google Scholar] [CrossRef]
- Perin, C.; Lucchin, M.; Vannozzi, A. Singular effect of soil and climate on grapevine development and berry traits in two Italian cultivars, ‘Glera’ and ‘Corvina’. Acta Hortic. 2019, 1248, 249–256. [Google Scholar] [CrossRef]
- Palčić, I.; Jagatić Korenika, A.M.; Jakobović, S.; Pasković, I.; Major, N.; Ban, D.; Goreta Ban, S.; Karoglan, M.; Petek, M.; Ćustić, M.H.; et al. Soil type affects grape juice free amino acids profile during ripening of cv. Malvasia Istriana (Vitis vinifera L.). N. Z. J. Crop Hortic. Sci. 2020, 48, 22–33. [Google Scholar] [CrossRef]
- White, R.E. The Value of Soil Knowledge in Understanding Wine Terroir. Front. Environ. Sci. 2020, 8, 12. [Google Scholar] [CrossRef]
- Belda, I.; Zarraonaindia, I.; Perisin, M.; Palacios, A.; Acedo, A. From Vineyard Soil to Wine Fermentation: Microbiome Approximations to Explain the “terroir” Concept. Front. Microbiol. 2017, 8, 247040. [Google Scholar] [CrossRef] [PubMed]
- Gobbi, A.; Acedo, A.; Imam, N.; Santini, R.G.; Ortiz-Álvarez, R.; Ellegaard-Jensen, L.; Belda, I.; Hansen, L.H. A global microbiome survey of vineyard soils highlights the microbial dimension of viticultural terroirs. Commun. Biol. 2022, 5, 241. [Google Scholar] [CrossRef] [PubMed]
- Nerva, L.; Moffa, L.; Giudice, G.; Giorgianni, A.; Tomasi, D.; Chitarra, W. Microscale analysis of soil characteristics and microbiomes reveals potential impacts on plants and fruit: Vineyard as a model case study. Plant Soil 2021, 462, 525–541. [Google Scholar] [CrossRef]
- Miura, T.; Sánchez, R.; Castañeda, L.E.; Godoy, K.; Barbosa, O. Is microbial terroir related to geographic distance between vineyards? Environ. Microbiol. Rep. 2017, 9, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Darriaut, R.; Lailheugue, V.; Masneuf-Pomarède, I.; Marguerit, E.; Martins, G.; Compant, S.; Ballestra, P.; Upton, S.; Ollat, N.; Lauvergeat, V. Grapevine and soil microbiome interactions: Keys for a resilient viticulture. Hortic. Res. 2022, 9, 19. [Google Scholar] [CrossRef]
- Zarraonaindia, I.; Gilbert, J.A. Understanding grapevine-microbiome interactions: Implications for viticulture industry. Microb. Cell 2015, 2, 171. [Google Scholar] [CrossRef]
- Burns, K.N.; Kluepfel, D.A.; Strauss, S.L.; Bokulich, N.A.; Cantu, D.; Steenwerth, K.L. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: Differentiation by geographic features. Soil Biol. Biochem. 2015, 91, 232–247. [Google Scholar] [CrossRef]
- Biget, M.; Mony, C.; Aubry, M.; Jambon, O.; Quaiser, A.; Chable, V.; Pernet, S.; Vandenkoornhuyse, P. The drivers of vine-plant root microbiota endosphere composition include both abiotic and plant-specific factors. Oeno One 2021, 55, 299–315. [Google Scholar] [CrossRef]
- Griggs, R.G.; Steenwerth, K.L.; Mills, D.A.; Cantu, D.; Bokulich, N.A. Sources and Assembly of Microbial Communities in Vineyards as a Functional Component of Winegrowing. Front. Microbiol. 2021, 12, 673810. [Google Scholar] [CrossRef]
- Nardi, T.; Gaiotti, F.; Tomasi, D. Characterization of Indigenous Microbial Communities in Vineyards Employing Different Agronomic Practices: The Importance of Trunk Bark as a Source of Microbial Biodiversity. Agronomy 2021, 11, 1752. [Google Scholar] [CrossRef]
- Setati, M.E.; Jacobson, D.; Andong, U.C.; Bauer, F. The Vineyard Yeast Microbiome, a Mixed Model Microbial Map. PLoS ONE 2012, 7, e52609. [Google Scholar] [CrossRef]
- Li, R.; Yang, S.; Lin, M.; Guo, S.; Han, X.; Ren, M.; Du, L.; Song, Y.; You, Y.; Zhan, J.; et al. The Biogeography of Fungal Communities across Different Chinese Wine-Producing Regions Associated with Environmental Factors and Spontaneous Fermentation Performance. Front. Microbiol. 2022, 12, 636639. [Google Scholar] [CrossRef]
- Chalvantzi, I.; Banilas, G.; Tassou, C.; Nisiotou, A. Biogeographical Regionalization of Wine Yeast Communities in Greece and Environmental Drivers of Species Distribution at a Local Scale. Front. Microbiol. 2021, 12, 705001. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.A.; Collins, T.S.; Masarweh, C.; Allen, G.; Heymann, H.; Ebeler, S.E.; Mills, D.A. Associations among wine grape microbiome, metabolome, and fermentation behavior suggest microbial contribution to regional wine characteristics. mBio 2016, 7, e00631-16. [Google Scholar] [CrossRef] [PubMed]
- Camilo, S.; Chandra, M.; Branco, P.; Malfeito-Ferreira, M. Wine Microbial Consortium: Seasonal Sources and Vectors Linking Vineyard and Winery Environments. Fermentation 2022, 8, 324. [Google Scholar] [CrossRef]
- Fernández, E.; Simpson, J. Product quality or market regulation? Explaining the slow growth of Europe’s wine cooperatives, 1880–1980. Econ. Hist. Rev. 2017, 70, 122–142. [Google Scholar] [CrossRef]
- Carter, E. For what it’s worth: The political construction of quality in French and Italian wine markets. Socio-Econ. Rev. 2018, 16, 479–498. [Google Scholar] [CrossRef]
- Batat, W. The role of luxury gastronomy in culinary tourism: An ethnographic study of Michelin-Starred restaurants in France. Int. J. Tour. Res. 2021, 23, 150–163. [Google Scholar] [CrossRef]
- Meloni, G.; Swinnen, J. Trade and terroir. The political economy of the world’s first geographical indications. Food Policy 2018, 81, 1–20. [Google Scholar] [CrossRef]
- Haeck, C.; Meloni, G.; Swinnen, J. The Value of Terroir: A Historical Analysis of the Bordeaux and Champagne Geographical Indications. Appl. Econ. Perspect. Policy 2019, 41, 598–619. [Google Scholar] [CrossRef]
- Camanzi, L.; Grazia, L.; Giraud-Héraud, E.; Glorgio, J. Quality differentiation in the Italian wine industry: Terroir-based vs. brand-based strategies. Int. J. Glob. Small Bus. 2017, 9, 86–104. [Google Scholar] [CrossRef]
- Zheng, X. Narrating terroir: The place-making of wine in China’s southwest. Food Cult. Soc. 2019, 22, 280–298. [Google Scholar] [CrossRef]
- Tracy, M. Pasteurizing China’s grasslands and sealing in terroir. Am. Anthropol. 2013, 115, 437–451. [Google Scholar] [CrossRef]
- Wang, X.; Song, X. Terroir and Trade War: Reforming China’s Legislation on Generic Terms Under the Influence of the EU and USA. J. World Trade 2022, 56, 165–186. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.-M.; Wang, L.-E.; Zhu, H.; Lin, J. Tourism resource assessment and spatial analysis of wine tourism development: A case study of the eastern foothills of China’s Helan Mountains. J. Mt. Sci. 2018, 15, 645–656. [Google Scholar] [CrossRef]
- Bauer, A.; Wolz, S.; Schormann, A.; Fischer, U. Authentication of different terroirs of German Riesling applying sensory and flavor analysis. ACS Symp. Ser. 2011, 1081, 131–149. [Google Scholar] [CrossRef]
- Lepper, J.; Dettmer, M. Geology and wine in Germany A review with special regard to the terroirs of Franconia («Franken»). Boll. Della Soc. Geol. Ital. 2006, 6, 49–61. [Google Scholar]
- Alaimo, S.; Marceca, G.P.; Giugno, R.; Ferro, A.; Pulvirenti, A. Current Knowledge and Computational Techniques for Grapevine Meta-Omics Analysis. Front. Plant Sci. 2017, 8, 295330. [Google Scholar] [CrossRef]
- Fabres, P.J.; Collins, C.; Cavagnaro, T.R.; Rodríguez López, C.M. A Concise Review on Multi-Omics Data Integration for Terroir Analysis in Vitis vinifera. Front. Plant Sci. 2017, 8, 259101. [Google Scholar] [CrossRef]
- Lubin, B.-C.R.; Inbar, N.; Pinkus, A.; Stanevsky, M.; Cohen, J.; Rahimi, O.; Anker, Y.; Shoseyov, O.; Drori, E. Ecogeographic Conditions Dramatically Affect Trans-Resveratro land Other Major Phenolics’ Levels in Wine at a Semi-Arid Area. Plants 2022, 11, 629. [Google Scholar] [CrossRef]
- Sun, R.; He, F.; Lan, Y.; Xing, R.; Liu, R.; Pan, Q.; Wang, J.; Duan, C. Transcriptome comparison of Cabernet Sauvignon grape berries from two regions with distinct climate. J. Plant Physiol. 2015, 15, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Alañón, M.; Pérez-Coello, M.; Marina, M. Wine science in the metabolomics era. TrAC Trends Anal. Chem. 2015, 74, 1–20. [Google Scholar] [CrossRef]
- Fischer, N.; Efferth, T. The impact of ‘omics’ technologies for grapevine (Vitis vinifera) research. J. Berry Res. 2021, 11, 567–581. [Google Scholar] [CrossRef]
- Cassago, A.L.L.; Artêncio, M.M.; de Moura Engracia Giraldi, J.; Da Costa, F.B. Metabolomics as a marketing tool for geographical indication products: A literature review. Eur. Food Res. Technol. 2021, 247, 2143–2159. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Stepp, J.R. Beyond yields: Climate change effects on specialty crop quality and agroecological management. Elementa 2016, 4, 000092. [Google Scholar] [CrossRef]
- Leedon, G.; L’Espoir Decosta, J.P.; Buttriss, G.; Lu, V.N. Consuming the earth? Terroir and rural sustainability. J. Rural Stud. 2021, 87, 415–422. [Google Scholar] [CrossRef]
- Kerr, W.A.; Clark, L.F. Are Geographical Indications sustainable in the face of climate change? Queen Mary J. Intellect. Prop. 2022, 12, 226–241. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Holland, T.; Smit, B. Climate Change and the Wine Industry: Current Research Themes and New Directions. J. Wine Res. 2010, 21, 125–136. [Google Scholar] [CrossRef]
- Jones, G.V. The Climate Component of Terroir. Elements 2018, 14, 167–172. [Google Scholar] [CrossRef]
- Jones, G.V. Climate, grapes and wine: Structure and suitability in a changing climate. Acta Hortic. 2012, 931, 19–28. [Google Scholar] [CrossRef]
The Main Information of Data | Document by Type N (%) | Top 5 Institutions (N of Documents) | Top 5 Productive Authors (N of Documents) | Authors h Index |
---|---|---|---|---|
Sources (Journals, Books, etc.) 417 Annual Growth Rate 7.81% Average Citations per Doc 23.21 Keywords Plus (ID) 3191 Author’s Keywords (DE) 2598 Single-authored Docs 179 Co-Authors per Doc 4 International Co-authorships 24.7% | Article 771 (85%) Review 70 (7.7%) Conference Paper 66 (7.3%) SUM = 907 | Université de Bordeaux-France (30) | Reynolds, A.G. (20) | 35 |
Institut National De Recherche Pour L’agriculture, L’alimentation Et L’environnement-INRAE-France (25) | Van Leeuwen, C. (16) | 42 | ||
Brock University-Canada (23) | Bramley, R.G.V. (13) | 31 | ||
Stellenbosch University-South Africa (20) | Bowen, S. (8) | 18 | ||
University of California, Davis-USA (17) | Hunter, J.J. (8) | 14 |
Author | Title | Year | Source | Cited by |
---|---|---|---|---|
(1) Bokulich, N.A., Thorngate, J.H., Richardson, P.M., Mills, D.A. | Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate | 2014 | Proceedings of the National Academy of Sciences of the United States of America 111(1), pp. E139–E148 | 626 |
(2) Van Leeuwen, C., Friant, P., Choné, X., (...), Koundouras, S., Dubourdieu, D. | Influence of climate, soil, and cultivar on terroir | 2005 | American Journal of Enology and Viticulture 55(3), pp. 207–217 | 536 |
(3) Barham, E. | Translating terroir: The global challenge of French AOC labeling | 2003 | Journal of Rural Studies 19(1), pp. 127–138 | 522 |
(4) Feagan, R. | The place of food: Mapping out the ‘local’ in local food systems | 2007 | Progress in Human Geography 31(1), pp. 23–42 | 472 |
(5) Van Leeuwen, C., Seguin, G. | The concept of terroir in viticulture | 2006 | Journal of Wine Research 17(1), pp. 1–10 | 416 |
Top Ten Countries in Wine Production from 1961 to 2019 (Metric Tons) (Source: https://www.nationmaster.com/nmx/ranking/wine-production (accessed on 31 May 2023)) | Top Ten Countries in Table Wine Production (Million Euros) (Source: https://www.nationmaster.com/nmx/ranking/table-wine-production (accessed on 31 May 2023)) | ||
---|---|---|---|
Italy | 5,213,986 | France | 1,736.95 |
France | 4,546,365 | Italy | 740.6 |
Spain | 4,188,058 | Spain | 499.14 |
USA | 2,341,985 | Romania | 346.14 |
China | 1,961,678 | Portugal | 285.09 |
Argentina | 1,346,850 | Germany | 191.31 |
Australia | 1,324,121 | Croatia | 130.73 |
Chile | 1,229,248 | Switzerland | 72.63 |
South Africa | 993,377 | Cyprus | 24.76 |
Portugal | 680,741 | Greece | 20.81 |
Cluster Identification | Keywords |
---|---|
red | agriculture, climate change, cultivar, food quality, France, geographical indications, Italy, soils, sustainability, terroir, vine, vineyard, viticulture, wine, wine industry |
green | biodiversity, classification, fermentation, genetics, grape, metabolism, microbial community, microbial diversity, microbiology, Saccharomyces cerevisiae, yeast |
blue | anthocyanins, chemistry, mass spectrometry, metabolomics, phenols, principal component analysis, procedures, sensory analysis, taste |
yellow | climate, fruit, grapevine, soil, Vitaceae, Vitis, Vitis vinifera |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanis, C.; Giorgi, E.; Tselemponis, G.; Voidarou, C.; Skoufos, I.; Tzora, A.; Tsigalou, C.; Kourkoutas, Y.; Constantinidis, T.C.; Bezirtzoglou, E. Terroir in View of Bibliometrics. Stats 2023, 6, 956-979. https://doi.org/10.3390/stats6040060
Stefanis C, Giorgi E, Tselemponis G, Voidarou C, Skoufos I, Tzora A, Tsigalou C, Kourkoutas Y, Constantinidis TC, Bezirtzoglou E. Terroir in View of Bibliometrics. Stats. 2023; 6(4):956-979. https://doi.org/10.3390/stats6040060
Chicago/Turabian StyleStefanis, Christos, Elpida Giorgi, Giorgios Tselemponis, Chrysa Voidarou, Ioannis Skoufos, Athina Tzora, Christina Tsigalou, Yiannis Kourkoutas, Theodoros C. Constantinidis, and Eugenia Bezirtzoglou. 2023. "Terroir in View of Bibliometrics" Stats 6, no. 4: 956-979. https://doi.org/10.3390/stats6040060
APA StyleStefanis, C., Giorgi, E., Tselemponis, G., Voidarou, C., Skoufos, I., Tzora, A., Tsigalou, C., Kourkoutas, Y., Constantinidis, T. C., & Bezirtzoglou, E. (2023). Terroir in View of Bibliometrics. Stats, 6(4), 956-979. https://doi.org/10.3390/stats6040060