Confounder Adjustment in Shape-on-Scalar Regression Model: Corpus Callosum Shape Alterations in Alzheimer’s Disease
Abstract
:1. Introduction
2. Methods
2.1. Preliminaries and Notations
2.2. Shape-on-Scalar Regression Model
2.3. Estimation Procedure
2.4. Hypothesis Testing
- 1.
- Fit Model (4) on and under and compute all the coefficients , , , , , and the global test statistic .
- 2.
- Generate independent random vectors and from standard normal distribution for and generate
- 3.
- Based on from previous step and , recompute and the global test statistic .
- 4.
- Repeat Steps 2 and 3 M times to obtain and calculate the p-value as .
3. Case Study
3.1. Data Description and Processing
3.2. Data Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mueller, S.G.; Weiner, M.W.; Thal, L.J.; Petersen, R.C.; Jack, C.; Jagust, W.; Trojanowski, J.Q.; Toga, A.W.; Beckett, L. The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. N. Am. 2005, 15, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W.E.; Li, C.; Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8, 118–127. [Google Scholar] [CrossRef]
- Pomponio, R.; Erus, G.; Habes, M.; Doshi, J.; Srinivasan, D.; Mamourian, E.; Bashyam, V.; Nasrallah, I.M.; Satterthwaite, T.D.; Fan, Y.; et al. Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan. NeuroImage 2020, 208, 116450. [Google Scholar] [CrossRef] [PubMed]
- Leek, J.T.; Storey, J.D. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 2007, 3, e161. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Liu, Y.; Yang, E.; Yap, P.T.; Shen, D.; Liu, M. Multi-site MRI harmonization via attention-guided deep domain adaptation for brain disorder identification. Med Image Anal. 2021, 71, 102076. [Google Scholar] [CrossRef]
- An, L.; Chen, J.; Chen, P.; Zhang, C.; He, T.; Chen, C.; Zhou, J.H.; Yeo, B.T.; Alzheimer’s Disease Neuroimaging Initiative; Australian Imaging Biomarkers and Lifestyle Study of Aging. Goal-specific brain MRI harmonization. Neuroimage 2022, 263, 119570. [Google Scholar] [CrossRef]
- Bayer, J.M.; Thompson, P.M.; Ching, C.R.; Liu, M.; Chen, A.; Panzenhagen, A.C.; Jahanshad, N.; Marquand, A.; Schmaal, L.; Sämann, P.G. Site effects how-to and when: An overview of retrospective techniques to accommodate site effects in multi-site neuroimaging analyses. Front. Neurol. 2022, 13, 923988. [Google Scholar] [CrossRef]
- Acquitter, C.; Piram, L.; Sabatini, U.; Gilhodes, J.; Moyal Cohen-Jonathan, E.; Ken, S.; Lemasson, B. Radiomics-based detection of radionecrosis using harmonized multiparametric MRI. Cancers 2022, 14, 286. [Google Scholar] [CrossRef]
- Hu, F.; Chen, A.A.; Horng, H.; Bashyam, V.; Davatzikos, C.; Alexander-Bloch, A.; Li, M.; Shou, H.; Satterthwaite, T.D.; Yu, M.; et al. Image harmonization: A review of statistical and deep learning methods for removing batch effects and evaluation metrics for effective harmonization. NeuroImage 2023, 274, 120125. [Google Scholar] [CrossRef]
- Fortin, J.P.; Parker, D.; Tunç, B.; Watanabe, T.; Elliott, M.A.; Ruparel, K.; Roalf, D.R.; Satterthwaite, T.D.; Gur, R.C.; Gur, R.E.; et al. Harmonization of multi-site diffusion tensor imaging data. Neuroimage 2017, 161, 149–170. [Google Scholar] [CrossRef]
- Fortin, J.P.; Cullen, N.; Sheline, Y.I.; Taylor, W.D.; Aselcioglu, I.; Cook, P.A.; Adams, P.; Cooper, C.; Fava, M.; McGrath, P.J.; et al. Harmonization of cortical thickness measurements across scanners and sites. Neuroimage 2018, 167, 104–120. [Google Scholar] [CrossRef] [PubMed]
- Jirsaraie, R.J.; Kaczkurkin, A.N.; Rush, S.; Piiwia, K.; Adebimpe, A.; Bassett, D.S.; Bourque, J.; Calkins, M.E.; Cieslak, M.; Ciric, R.; et al. Accelerated cortical thinning within structural brain networks is associated with irritability in youth. Neuropsychopharmacology 2019, 44, 2254–2262. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Linn, K.A.; Cook, P.A.; Phillips, M.L.; McInnis, M.; Fava, M.; Trivedi, M.H.; Weissman, M.M.; Shinohara, R.T.; Sheline, Y.I. Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data. Hum. Brain Mapp. 2018, 39, 4213–4227. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, A.; Yahata, N.; Itahashi, T.; Lisi, G.; Yamada, T.; Ichikawa, N.; Takamura, M.; Yoshihara, Y.; Kunimatsu, A.; Okada, N.; et al. Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias. PLoS Biol. 2019, 17, e3000042. [Google Scholar] [CrossRef] [PubMed]
- Bookstein, F.L. Morphometric Tools for Landmark Data: Geometry and Biology; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Small, C.G. The Statistical Theory of Shape; Springer: New York, NY, USA, 1996. [Google Scholar]
- Kendall, D.G.; Barden, D.; Carne, T.K.; Le, H. Shape and Shape Theory; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Huang, C.; Srivastava, A.; Liu, R. Geo-FARM: Geodesic factor regression model for misaligned pre-shape responses in statistical shape analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; IEEE Computer Society: Washington, DC, USA, 2021; pp. 11496–11505. [Google Scholar]
- Walterfang, M.; Luders, E.; Looi, J.C.; Rajagopalan, P.; Velakoulis, D.; Thompson, P.M.; Lindberg, O.; Östberg, P.; Nordin, L.E.; Svensson, L.; et al. Shape analysis of the corpus callosum in Alzheimer’s disease and frontotemporal lobar degeneration subtypes. J. Alzheimer’s Dis. 2014, 40, 897–906. [Google Scholar] [CrossRef]
- Di Paola, M.; Spalletta, G.; Caltagirone, C. In vivo structural neuroanatomy of corpus callosum in Alzheimer’s disease and mild cognitive impairment using different MRI techniques: A review. J. Alzheimer’s Dis. 2010, 20, 67–95. [Google Scholar] [CrossRef]
- Wang, X.D.; Ren, M.; Zhu, M.W.; Gao, W.P.; Zhang, J.; Shen, H.; Lin, Z.G.; Feng, H.L.; Zhao, C.J.; Gao, K. Corpus callosum atrophy associated with the degree of cognitive decline in patients with Alzheimer’s dementia or mild cognitive impairment: A meta-analysis of the region of interest structural imaging studies. J. Psychiatr. Res. 2015, 63, 10–19. [Google Scholar] [CrossRef]
- Jiang, Z.; Yang, H.; Tang, X. Deformation-based statistical shape analysis of the corpus callosum in mild cognitive impairment and Alzheimer’s disease. Curr. Alzheimer Res. 2018, 15, 1151–1160. [Google Scholar] [CrossRef]
- Kamal, S.; Park, I.; Kim, Y.J.; Kim, Y.J.; Lee, U. Alteration of the corpus callosum in patients with Alzheimer’s disease: Deep learning-based assessment. PLoS ONE 2021, 16, e0259051. [Google Scholar] [CrossRef]
- Srivastava, A.; Klassen, E. Functional and Shape Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Srivastava, A.; Wu, W.; Kurtek, S.; Klassen, E.; Marron, J.S. Registration of functional data using Fisher-Rao metric. arXiv 2011, arXiv:1103.3817. [Google Scholar]
- Ruppert, D.; Wand, M.P. Multivariate locally weighted least squares regression. Ann. Stat. 1994, 22, 1346–1370. [Google Scholar] [CrossRef]
- Fan, J.; Gijbels, I. Local Polynomial Modelling and Its Applications: Monographs on Statistics and Applied Probability 66; CRC Press: Chapman Hall, London, 1996; Volume 66. [Google Scholar]
- Huang, C.; Zhu, H. Functional hybrid factor regression model for handling heterogeneity in imaging studies. Biometrika 2022, 109, 1133–1148. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, J. Statistical inference for functional data. Ann. Stat. 2007, 35, 1052–1079. [Google Scholar] [CrossRef]
- Zhu, H.; Li, R.; Kong, L. Multivariate varying coefficient model for functional responses. Ann. Stat. 2012, 40, 2634–2666. [Google Scholar] [CrossRef]
- Onatski, A. Determining the number of factors from empirical distribution of eigenvalues. Rev. Econ. Stat. 2010, 92, 1004–1016. [Google Scholar] [CrossRef]
- Fischl, B. FreeSurfer. Neuroimage 2012, 62, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Vachet, C.; Yvernault, B.; Bhatt, K.; Smith, R.G.; Gerig, G.; Hazlett, H.C.; Styner, M. Automatic corpus callosum segmentation using a deformable active Fourier contour model. In Proceedings of the Medical Imaging 2012: Biomedical Applications in Molecular, Structural, and Functional Imaging, San Diego, CA, USA, 4–9 February 2012; Volume 8317, pp. 79–85. [Google Scholar]
- Prendergast, D.M.; Ardekani, B.; Ikuta, T.; John, M.; Peters, B.; DeRosse, P.; Wellington, R.; Malhotra, A.K.; Szeszko, P.R. Age and sex effects on corpus callosum morphology across the lifespan. Hum. Brain Mapp. 2015, 36, 2691–2702. [Google Scholar] [CrossRef]
- Rushton, J.P.; Ankney, C.D. Brain size and cognitive ability: Correlations with age, sex, social class, and race. Psychon. Bull. Rev. 1996, 3, 21–36. [Google Scholar] [CrossRef]
- Deary, I.J.; Corley, J.; Gow, A.J.; Harris, S.E.; Houlihan, L.M.; Marioni, R.E.; Penke, L.; Rafnsson, S.B.; Starr, J.M. Age-associated cognitive decline. Br. Med. Bull. 2009, 92, 135–152. [Google Scholar] [CrossRef]
- Guadalupe, T.; Willems, R.M.; Zwiers, M.P.; Arias Vasquez, A.; Hoogman, M.; Hagoort, P.; Fernandez, G.; Buitelaar, J.; Franke, B.; Fisher, S.E.; et al. Differences in cerebral cortical anatomy of left-and right-handers. Front. Psychol. 2014, 5, 261. [Google Scholar] [CrossRef]
- Matura, S.; Prvulovic, D.; Jurcoane, A.; Hartmann, D.; Miller, J.; Scheibe, M.; O’Dwyer, L.; Oertel-Knöchel, V.; Knöchel, C.; Reinke, B.; et al. Differential effects of the ApoE4 genotype on brain structure and function. Neuroimage 2014, 89, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Montagne, A.; Nation, D.A.; Sagare, A.P.; Barisano, G.; Sweeney, M.D.; Chakhoyan, A.; Pachicano, M.; Joe, E.; Nelson, A.R.; D’Orazio, L.M.; et al. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nature 2020, 581, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Berrocal, M.; Marcos, D.; Sepúlveda, M.R.; Pérez, M.; Ávila, J.; Mata, A.M. Altered Ca2+ dependence of synaptosomal plasma membrane Ca2+-ATPase in human brain affected by Alzheimer’s disease. FASEB J. 2009, 23, 1826–1834. [Google Scholar] [CrossRef] [PubMed]
- Berridge, M.J. Calcium signalling remodelling and disease. Biochem. Soc. Trans. 2012, 40, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Castro-Caldas, A.; Miranda, P.C.; Carmo, I.; Reis, A.; Leote, F.; Ribeiro, C.; Ducla-Soares, E. Influence of learning to read and write on the morphology of the corpus callosum. Eur. J. Neurol. 1999, 6, 23–28. [Google Scholar] [CrossRef] [PubMed]
Variable | Male | Female |
---|---|---|
Gender | 420 | 287 |
RA (years) | [54.40, 89.30] | [55.10, 90.90] |
Handiness (R/L) | 386/34 | 266/21 |
REL (years) | [6, 20] | [6, 20] |
APOE-4 (0/1/2) | 205/169/46 | 147/107/33 |
SNP rs11719939 (0/1/2) | 234/154/32 | 163/110/14 |
Variable | p-Value | ||
---|---|---|---|
Our Method [28] | MVCM [30] | ComBat [2] | |
Gender | 0.022 * | 0.000 * | 0.025 * |
Age | 0.004 * | 0.000 * | 0.045 * |
Handiness | 0.016 * | 0.880 | 0.466 |
APOE-4 | 0.008 * | 0.348 | 0.364 |
PC1 | 0.002 * | 0.540 | 0.340 |
PC2 | 0.002 * | 0.008 * | 0.225 |
Education | 0.004 * | 0.170 | 0.363 |
SNP rs11719939 | 0.014 * | 0.000 * | 0.000 * |
Variable | Hidden Factors | |
---|---|---|
Factor 1 | Factor 2 | |
Gender | −0.140 | 0.007 |
(0.002) | (0.887) | |
Age | −0.113 | −0.003 |
(0.003) | (0.934) | |
Handiness | 0.020 | −0.001 |
(0.772) | (0.989) | |
APOE4 | −0.109 | 0.002 |
(0.011) | (0.970) | |
PC1 | −0.041 | 0.009 |
(0.271) | (0.819) | |
PC2 | 0.048 | 0.0141 |
(0.199) | (0.708) | |
Education | −0.049 | −0.001 |
(0.197) | (0.989) | |
SNP rs11719939 | −0.209 | 0.011 |
(0.000) | (0.794) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dogra, H.; Ding, S.; Yeon, M.; Liu, R.; Huang, C. Confounder Adjustment in Shape-on-Scalar Regression Model: Corpus Callosum Shape Alterations in Alzheimer’s Disease. Stats 2023, 6, 980-989. https://doi.org/10.3390/stats6040061
Dogra H, Ding S, Yeon M, Liu R, Huang C. Confounder Adjustment in Shape-on-Scalar Regression Model: Corpus Callosum Shape Alterations in Alzheimer’s Disease. Stats. 2023; 6(4):980-989. https://doi.org/10.3390/stats6040061
Chicago/Turabian StyleDogra, Harshita, Shengxian Ding, Miyeon Yeon, Rongjie Liu, and Chao Huang. 2023. "Confounder Adjustment in Shape-on-Scalar Regression Model: Corpus Callosum Shape Alterations in Alzheimer’s Disease" Stats 6, no. 4: 980-989. https://doi.org/10.3390/stats6040061
APA StyleDogra, H., Ding, S., Yeon, M., Liu, R., & Huang, C. (2023). Confounder Adjustment in Shape-on-Scalar Regression Model: Corpus Callosum Shape Alterations in Alzheimer’s Disease. Stats, 6(4), 980-989. https://doi.org/10.3390/stats6040061