Comments on the Bernoulli Distribution and Hilbe’s Implicit Extra-Dispersion
Abstract
:1. Introduction
2. Selected Relationships between Bernoulli and Beta-Binomial Random Variables
3. Extra-Dispersion and Bernoulli Random Variables
4. An Empirical Example with Discussion: Spatial Autocorrelation in a Real World Binary Georeferenced Random Variable (Also See [18])
4.1. The Bernoulli Auto-Logistic Spatial Statistical Model
4.2. The Bernoulli RE Spatial Statistical Model
4.3. The Bernoulli MESF Spatial Statistical Model
5. Concluding Comments
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poisson, S.-D. Recherches sur la Probabilitƺé des Jugements en Matiére Criminelle et en Matiére Civile Précédées des Régles Générales du Calcul des Probabilités; Bachelier: Paris, France, 1837. [Google Scholar]
- Cramer, J. The Origins of Logistic Regression; Discussion Paper No. 2002-119/4; Tinbergen Institute: Amsterdam, The Netherlands, 2002. [Google Scholar] [CrossRef]
- Verhulst, P.-F. La loi d’Accroissement de la population. Nou-Veaux Mem. L’academie R. Des Sci. Belles-Lett. Brux. 1845, 18, 1–59. [Google Scholar]
- David, H. First (?) occurrence of common terms in mathematical statistics. Am. Stat. 1995, 49, 121–133. [Google Scholar]
- Berkson, J. Application of the logistic function to bio-assay. J. Am. Stat. Assoc. 1944, 39, 357–365. [Google Scholar]
- Bayes, T. An essay towards solving a problem in the doctrine of chances. Philos. Trans. R. Soc. Lond. 1763, 53, 370–418. [Google Scholar] [CrossRef]
- Skellam, J. A probability distribution derived from the binomial distribution by regarding the probability of success as variable between the sets of trials. J. R. Stat. Soc. B 1948, 10, 257–261. [Google Scholar] [CrossRef]
- Skrondal, A.; Rabe-Hesketh, S. Redundant overdispersion parameters in multilevel models for categorical responses. J. Educ. Behav. Stat. 2007, 32, 419–430. [Google Scholar] [CrossRef]
- Morrissey, M.; de Villemereuil, P.; Doligez, B.; Gimenez, O. Chapter 14: Bayesian approaches to the quantitative genetic analysis of natural populations. In Quantitative Genetics in the Wild; Charmantier, A., Garant, D., Kruuk, L., Eds.; Oxford University Press: Oxford, UK; New York, NY, USA, 2014; pp. 228–253. [Google Scholar]
- Dohoo, I.; Martin, W.; Stryhn, H. Chapter 16: Logistic Regression, Veterinary Epidemiology Research; VER Inc.: Charlottetown, PE, Canada, 2014; pp. 395–426. Available online: http://projects.upei.ca/ver/files/2022/08/VER_ch16.pdf (accessed on 10 February 2024).
- Hilbe, J. Can Binary Logistic Models Be Overdispersed? Unpublished Manuscript. 2013. Available online: http://www.highstat.com/Books/BGS/GLMGLMM/pdfs/HILBE-Can_binary_logistic_models_be_overdispersed2Jul2013.pdf (accessed on 30 November 2023).
- Feller, W. An Introduction to Probability Theory and Its Applications; Wiley: New York, NY, USA, 1971; Volume 2. [Google Scholar]
- Schonlau, M. Applied Statistical Learning: With Case Studies in Stata; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Available online: https://math.stackexchange.com/questions/2905844/beta-distribution-with-parameters-alpha-beta-to-0-is-bernoulli-distribution (accessed on 25 February 2024).
- Siwale, I. A New Proof of Fisher’s Invariance Theorem; Technical Report No. RD-26-2015; Zenith Genetica Ltd.: London, UK, 1997; Available online: https://www.researchgate.net/publication/285928037_A_New_Proof_of_Fisher%27s_Invariance_Theorem (accessed on 10 February 2024).
- Mielke, P.W. Convenient Beta Distribution Likelihood Techniques for Describing and Comparing Meteorological Data. J. Appl. Meteorol. 1975, 14, 985–990. [Google Scholar] [CrossRef]
- Wedderburn, R. Quasi-likelihood functions, generalized linear models, and the Gauss—Newton method. Biometrika 1974, 61, 439–447. [Google Scholar]
- Leach, J.; Aban, I.; Yi, N. Incorporating spatial structure into inclusion probabilities for Bayesian variable selection in generalized linear models with the spike-and-slab elastic net. J. Stat. Plan. Inference 2021, 217, 141–152. [Google Scholar] [CrossRef]
- Graham, J. Markov chain Monte Carlo methods for modeling the spatial pattern of disease spread in bell pepper. In Proceedings of the 8th Annual Conference on Applied Statistics in Agriculture, Manhattan, KS, USA, 28–30 April 1996; Milliken, G., Ed.; Department of Statistics, Kansas State University, New Prairie Press: Manhattan, KS, USA, 1996; pp. 91–108. [Google Scholar] [CrossRef]
- Gumpertz, M.; Graham, J.; Ristaino, J. Autologistic model of spatial pattern of Phytophthora epidemic in bell pepper: Effects of soil variables on disease presence. J. Agric. Biol. Environ. Stat. 1997, 2, 131–156. [Google Scholar] [CrossRef]
- Besag, J. Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B 1974, 36, 192–225. [Google Scholar] [CrossRef]
- Griffith, D. Spatial Autocorrelation and Spatial Filtering: Gaining Understanding through Theory and Scientific Visualization; Springer: Berlin, Germany, 2003. [Google Scholar]
- Griffith, D. The Moran Coefficient for non-normal data. J. Stat. Plan. Inference 2010, 140, 2980–2990. [Google Scholar] [CrossRef]
- Ferrari, S.; Cribari-Neto, F. Beta regression for modelling rates and proportions. J. Appl. Stat. 2004, 31, 799–815. [Google Scholar] [CrossRef]
- Lohnes, P.; Cooley, W. Chapter 7: Normal curve theory. In Introduction to Statistical Procedures: With Computer Exercises; Wiley: New York, NY, USA, 1968; pp. 107–125. [Google Scholar]
- Graham, J. Monte Carlo Markov Chain Likelihood Ratio Test and Wald Test for Binary Spatial Lattice Data; Technical Report; Department of Statistics, North Carolina State University: Raleigh, NC, USA, 1994. [Google Scholar]
- Strauss, D. The many faces of logistic regression. Am. Stat. 1992, 46, 321–327. [Google Scholar]
- Besag, J. Statistical analysis of non-lattice data. Statistician 1975, 24, 179. [Google Scholar] [CrossRef]
- Cressie, N. Statistics for Spatial Data; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Caragea, P.C.; Kaiser, M.S. Autologistic models with interpretable parameters. J. Agric. Biol. Environ. Stat. 2009, 14, 281–300. [Google Scholar] [CrossRef]
- Kaiser, M.S.; Cressie, N. Modeling Poisson variables with positive spatial dependence. Stat. Probab. Lett. 1997, 35, 423–432. [Google Scholar] [CrossRef]
- Besag, J.; York, J.; Mollié, A. Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Stat. Math. 1991, 43, 1–20. [Google Scholar] [CrossRef]
- Fisher, R. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb. 1918, 52, 399–433. [Google Scholar] [CrossRef]
- Eisenhart, C. The Assumptions Underlying the Analysis of Variance. Biometrics 1947, 3, 1–21. [Google Scholar] [CrossRef]
- Kimpton, L.; Challenor, P.; Wynn, H. Modelling correlated Bernoulli data Part I: Theory and run lengths. arXiv 2022, arXiv:2211.16921. [Google Scholar] [CrossRef]
- Agresti, A.; Booth, J.; Hobert, J.; Caffo, B. Random-effects modeling of categorical response data. Sociol. Methodol. 2000, 30, 27–80. [Google Scholar] [CrossRef]
- Ntzoufras, I. Chapter 3: WinBUGS software: Introduction, setup, and basic analysis. In Bayesian Modeling Using WinBUGS; Wiley: New York, NY, USA, 2008; pp. 83–123. [Google Scholar]
- Anselin, L. The Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local spatial autocorrelation statistics: Distributional issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Besag, J.; Kooperberg, C. On conditional and intrinsic autoregressions. Biometrika 1995, 82, 733–746. [Google Scholar]
- Wang, G. Laplace approximation for conditional autoregressive models for spatial data of diseases. MethodsX 2022, 9, 101872. [Google Scholar] [CrossRef] [PubMed]
- Rue, H.; Riebler, A.; Sørbye, S.; Illian, J.; Simpson, D.; Lindgren, F. Bayesian computing with INLA: A review. Annu. Rev. Stat. Its Appl. 2017, 4, 395–421. [Google Scholar] [CrossRef]
- Bakka, H.; Rue, H.; Fuglstad, G.; Riebler, A.; Bolin, D.; Illian, J.; Krainski, E.; Simpson, D.; Lindgren, F. Spatial modeling with R-INLA: A review. Wiley Interdiscip. Rev. Comput. Stat. 2018, 10, e1443. [Google Scholar] [CrossRef]
- Blom, G. Statistical Estimates and Transformed Beta-Variables; Wiley: New York, NY, USA, 1958. [Google Scholar]
- Hodges, J.S.; Reich, B.J. Adding spatially-correlated errors can mess up the fixed effect you love. Am. Stat. 2010, 64, 325–334. [Google Scholar] [CrossRef]
- Griffith, D. A spatial filtering specification for the auto-logistic model. Environ. Plan. A 2004, 36, 1791–1811. [Google Scholar] [CrossRef]
- Borcard, D.; Legendre, P.; Avois-Jacquet, C.; Tuomisto, H. Dissecting the spatial structure of ecological data at multiple scales. Ecology 2004, 85, 1826–1832. [Google Scholar] [CrossRef]
- G’Sell, M.G.; Wager, S.; Chouldechova, A.; Tibshirani, R. Sequential selection procedures and false discovery rate control. J. R. Stat. Soc. 2015, 78, 423–444. [Google Scholar] [CrossRef]
- Tiefelsdorf, M.; Griffith, D. Semi-parametric filtering of spatial autocorrelation: The eigenvector approach. Environ. Plan. A 2007, 39, 1193–1221. [Google Scholar] [CrossRef]
- Hardin, J.; Hilbe, J. Generalized Linear Models and Extensions, 4th ed.; Stata Press: College Station, TX, USA, 2018. [Google Scholar]
Besag’s Auto-Logistic | INLA Approximated ICAR RE | MESF GLM |
---|---|---|
predicted beta ≈ 0.1525 | predicted beta ≈ 0.1537 | predicted beta ≈ 0.1525 |
Bernoulli round off ≈ 0.0825 | Bernoulli round off ≈ 0.0325 | Bernoulli round off ≈ 0.0875 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Griffith, D.A. Comments on the Bernoulli Distribution and Hilbe’s Implicit Extra-Dispersion. Stats 2024, 7, 269-283. https://doi.org/10.3390/stats7010016
Griffith DA. Comments on the Bernoulli Distribution and Hilbe’s Implicit Extra-Dispersion. Stats. 2024; 7(1):269-283. https://doi.org/10.3390/stats7010016
Chicago/Turabian StyleGriffith, Daniel A. 2024. "Comments on the Bernoulli Distribution and Hilbe’s Implicit Extra-Dispersion" Stats 7, no. 1: 269-283. https://doi.org/10.3390/stats7010016
APA StyleGriffith, D. A. (2024). Comments on the Bernoulli Distribution and Hilbe’s Implicit Extra-Dispersion. Stats, 7(1), 269-283. https://doi.org/10.3390/stats7010016