In Situ Gas-Phase Polymerization of Polypyrrole-Coated Lithium-Rich Nanotubes for High-Performance Lithium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Li1.2Mn0.54Co0.13Ni0.13O2 (LMNCO) Nanotubes
2.2. Preparation of PPy-Coated Li1.2Mn0.54Co0.13Ni0.13O2 (P-LMNCO) Nanotubes
2.3. Characterization
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Morphology and Structure
3.2. Electrochemical Performance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Csernica, P.M.; Kalirai, S.S.; Gent, W.E.; Lim, K.; Yu, Y.S.; Liu, Y.; Ahn, S.-J.; Kaeli, E.; Xu, X.; Stone, K.H. Persistent and partially mobile oxygen vacancies in Li-rich layered oxides. Nat. Energy 2021, 6, 642–652. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.; Wong, D.; Zhang, N.; Ren, G.; Gu, L.; Schulz, C.; He, L.; Yu, Y.; Liu, X. Addressing voltage decay in Li-rich cathodes by broadening the gap between metallic and anionic bands. Nat. Commun. 2021, 12, 3071. [Google Scholar] [CrossRef]
- Yu, M.; Wei, X.; Min, X.; Yuan, A.; Xu, J. Graphene Quantum Dot Surface Coating for Improving the Electrochemical Performance of Li-Rich Li1.2Mn0.54Ni0.13Co0.13O2. Energy Fuels 2022, 36, 5502–5512. [Google Scholar] [CrossRef]
- Thackeray, M.; Kang, S.; Johnson, C.; Vaughey, J.; Hacknye, S. Li2MnO3-Stabilized LiMO2 (M = Mn, Ni, Co) Electrodes for Lithium-Ion Batteries. J. Mater. Chem. 2007, 17, 3112–3125. [Google Scholar] [CrossRef]
- Johnson, C.; Li, N.; Lefief, C.; Thackeray, M. Anomalous capacity and cycling stability of xLi2MnO3·(1 − x) LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50 C. Electrochem. Commun. 2007, 9, 787–795. [Google Scholar] [CrossRef]
- Johnson, C.; Li, N.; Lefief, C.; Vaughey, J.; Thackeray, M. Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: xLi2MnO3·(1 − x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem. Mater. 2008, 20, 6095–6106. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, Y.; Huo, H.; Jian, J.; Sun, D.; Zhang, X.; Du, C.; Zuo, P.; Yin, G.; Ma, Y. Surface-Phase Engineering via Lanthanum Doping Enables Enhanced Electrochemical Performance of Li-Rich Layered Cathode. ACS Appl. Energy Mater. 2022, 5, 9648–9656. [Google Scholar] [CrossRef]
- Li, W.Y.; Zhao, B.C.; Bai, J.; Ma, H.Y.; Li, K.Z.; Wang, P.Y.; Mao, Y.J.; Zhu, X.B.; Sun, Y.P. Rate Performance Modification of a Lithium-Rich Manganese-Based Material through Surface Self-Doping and Coating Strategies. Langmuir 2021, 37, 3223–3230. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhou, Y.; Du, C.; Zuo, P.; Cheng, X.; Han, L.; Nordlund, D.; Gao, Y.; Yin, G.; Xin, H.L. A New Anion Receptor for Improving the Interface between Lithium- and Manganese-Rich Layered Oxide Cathode and the Electrolyte. Chem. Mat. 2017, 29, 2141–2149. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Yang, X.; Jiang, X.; Zhang, Y.; Shu, H.; Gao, P.; Liu, L.; Wang, X. Synchronous Tailoring Surface Structure and Chemical Composition of Li-Rich–Layered Oxide for High-Energy Lithium-Ion Batteries. Adv. Funct. Mater. 2018, 28, 1803392. [Google Scholar] [CrossRef]
- Dixit, H.; Zhou, W.; Idrobo, J.; Nanda, J.; Cooper, V. Facet-dependent disorder in pristine high-voltage lithium-manganese-rich cathode material. ACS Nano. 2014, 8, 12710–12716. [Google Scholar] [CrossRef]
- Wu, W.; Sun, Z.; He, Q.; Shi, X.; Ge, X.; Cheng, J.; Zhang, Z. Boosting Lithium-Ion Transport Kinetics by Increasing the Local Lithium-Ion Concentration Gradient in Composite Anodes of Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 14752–14758. [Google Scholar] [CrossRef]
- Ahn, J.; Kim, J.; Cho, B.; Chung, K.; Kim, S.; Choi, J.; Oh, S. Nanoscale Zirconium-Abundant Surface Layers on Lithium- and Manganese-Rich Layered Oxides for High-Rate Lithium-Ion Batteries. Nano Lett. 2017, 17, 7869–7877. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Xu, L.; Dong, C.; Zhang, H.; Zhang, M.; Liu, Y. Enhanced cycling stability of boron-doped lithium-rich layered oxide cathode materials by suppressing transition metal migration. J. Mater. Chem. A 2019, 7, 3375–3383. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Z.; Xia, M.; Cao, C.; Luo, Y. Toward Alleviating Voltage Decay by Sodium Substitution in Lithium-Rich Manganese-Based Oxide Cathodes. ACS Appl. Energy Mater. 2018, 1, 4065–4074. [Google Scholar] [CrossRef]
- Yang, H.; Wu, H.; Ge, M.; Li, L.; Yuan, Y.; Yao, Q.; Lu, J. Simultaneously Dual Modification of Ni-Rich Layered Oxide Cathode for High-Energy Lithium-Ion Batteries. Adv. Funct. Mater. 2019, 29, 1808825. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Zhang, J.; Chen, B.; Xu, J.; Zhang, S.; Zhang, L. Al2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 nanotubes as cathode materials for high-performance lithium-ion batteries. RSC Adv. 2019, 9, 2172–2179. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Sun, B.; Yan, K.; Zhang, J.; Wang, C.; Wang, G. Aegis of Lithium-Rich Cathode Materials via Hetero structured LiAlF4 Coating for High-Performance Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 33260–33268. [Google Scholar] [CrossRef]
- Zhou, M.; Zhao, J.; Wang, X.; Shen, J.; Tang, W.; Deng, Y.; Liu, R. Surface engineering for high stable lithium-rich manganese-based cathode materials. Chin. Chem. Lett. 2022, 107793, 1001–8417. [Google Scholar] [CrossRef]
- Shang, H.; Ning, F.; Li, B.; Zuo, Y.; Lu, S.; Xia, D. Suppressing Voltage Decay of a Lithium-Rich Cathode Material by Surface Enrichment with Atomic Ruthenium. ACS Appl. Mater. Interfaces 2018, 10, 21349–21355. [Google Scholar] [CrossRef]
- Liu, H.; Chen, C.; Du, C.; He, X.; Yin, G.; Song, B.; Gao, Y. Lithium-Rich Li1.2Ni0.13Co0.13Mn0.54O2 Oxide Coated by Li3PO4 and Carbon Nanocomposite Layer as a High Performance Cathode Material for Lithium Ion Batteries. J. Mater. Chem. A 2014, 3, 2634–2641. [Google Scholar] [CrossRef]
- Yang, F.; Liu, Y.; Martha, S.; Wu, Z.; Andrews, J.; Ice, G.; Nanda, J. Nanoscale morphological and chemical changes of high voltage lithium-manganese rich NMC composite cathodes with cycling. Nano Lett. 2014, 14, 4334–4341. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Li, Y.; Zhang, P.; Cooper, A.; Abdelkader, A.; Ren, X.; Deng, L. Mesoporous Li1.2Ni0.13Co0.13Mn0.54O2 nanotubes for high-performance cathodes in Li-ion batteries. J. Power Sources 2016, 311, 35–41. [Google Scholar] [CrossRef]
- Luo, K.; Roberts, M.; Hao, R.; Guerrini, N.; Liberti, E.; Allen, C.; Bruce, P. One-pot Synthesis of Lithium-rich Cathode Material with Hierarchical Morphology. Nano Lett. 2016, 16, 7503–7508. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Cho, J.; Kim, S.; Kim, W.; Lee, S.; Lee, S. A novel ion-conductive protection skin based on polyimide gel polymer electrolyte: Application to nanoscale coating layer of high voltage LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium-ion batteries. J. Mater. Chem. 2012, 22, 12574–12581. [Google Scholar] [CrossRef]
- Ramkumar, R.; Minakshi Sundaram, M. A biopolymer gel-decorated cobalt molybdate nanowafer: Effective graft polymer cross-linked with an organic acid for better energy storage. New J. Chem. 2016, 40, 2863–2877. [Google Scholar] [CrossRef]
- Wu, C.; Fang, X.; Guo, X.; Mao, Y.; Ma, J.; Zhao, C.; Chen, L. Surface modification of Li1.2Ni0.13Co0.13Mn0.54O2 with conducting polypyrrole. J. Power Sources 2013, 231, 44–49. [Google Scholar] [CrossRef]
- Yin, E.; Grimaud, A.; Rousse, G.; Abakumov, A.; Senyshyn, A.; Zhang, L.; Tarascon, J. Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Co0.13Mn0.54O2. Nat. Commun. 2020, 11, 1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, R.; Zhang, X.; Liu, T.; Yang, L.; Liu, L.; Wang, Y.; Yang, X. Spinel/Layered Heterostructured Lithium-Rich Oxide Nanowires as Cathode Material for High-Energy Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 41210–41223. [Google Scholar] [CrossRef]
- Minakshi, M.; Sharma, N.; Ralph, D.; AppAdoo, D.; Nallathamby, K. Synthesis and Characterization of Li(CO0.5Ni0.5)PO4 Cathode for Li-Ion Aqueous Battery Applications. Electro. Solid-State Lett. 2011, 14, A86–A89. [Google Scholar] [CrossRef]
- Li, B.; Yan, H.; Ma, J.; Yu, P.; Xia, D.; Huang, W.; Wu, Z. Manipulating the Electronic Structure of Li-Rich Manganese-Based Oxide Using Polyanions: Towards Better Electrochemical Performance. Adv. Funct. Mater. 2014, 24, 5112–5118. [Google Scholar] [CrossRef]
- Gu, M.; Belharouak, I.; Zheng, J.; Wu, H.; Xiao, J.; Genc, A.; Wang, C. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 2013, 7, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Kumar Nayak, P.; Grinblat, J.; Levi, E.; Penki, T.; Levi, M.; Sun, Y.; Aurbach, D. Remarkably Improved Electrochemical Performance of Li- and Mn-Rich Cathodes upon Substitution of Mn with Ni. ACS Appl. Mater. Interfaces 2017, 9, 4309. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Wang, G.; Liu, M.; Zhang, X.; Wang, X.; Shu, H.; Huang, W. Mitigating voltage and capacity fading of lithium-rich layered cathodes by lanthanum doping. J. Power Sources 2016, 335, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Yuan, Y.; Zhu, M.; Yin, S.; Cheng, J.; Guo, S. Superior rate-capability and long-lifespan carbon nanotube-in-nanotube@Sb2S3 anode for lithium-ion storage. J. Mater. Chem. A 2021, 9, 22334–22346. [Google Scholar] [CrossRef]
- Ma, D.; Li, Y.; Wu, M.; Deng, L.; Ren, X.; Zhang, P. Enhanced cycling stability of Li-rich nanotube cathodes by 3D graphene hierarchical architectures for Li-ion batteries. Acta Mater. 2016, 112, 11–19. [Google Scholar] [CrossRef]
- Zhao, W.; Shi, Z.; Qi, Y.; Cheng, J. The Carbon-Coated ZnCo2O4 Nanowire Arrays Pyrolyzed from PVA for Enhancing Lithium Storage Capacity. Processes 2020, 8, 1501. [Google Scholar] [CrossRef]
- He, Q.; Sun, Z.; Shi, X.; Wu, W.; Cheng, J.; Zhuo, R.; Wang, J. Electrochemical Performance Enhancement of Nitrogen-Doped TiO2 for Lithium-Ion Batteries Investigated by a Film Electrode Model. Energy Fuels 2021, 35, 2717–2726. [Google Scholar] [CrossRef]
- Zhu, Z.; Yu, D.; Yang, Y.; Su, C.; Huang, Y.; Dong, Y.; Li, J. Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment. Nat. Energy 2019, 4, 1049–1058. [Google Scholar] [CrossRef]
- House, R.A.; Marie, J.J.; Pérez-Osorio, M.A.; Rees, G.J.; Boivin, E.; Bruce, P.G. The role of O2 in O-redox cathodes for Li-ion batteries. Nat. Energy 2021, 6, 781–789. [Google Scholar] [CrossRef]
- Batool, S.A.; Salman Maqbool, M.; Javed, M.A.; Niaz, A.; Rehman, M.A.U. A Review on the Fabrication and Characterization of Titania Nanotubes Obtained Via Electrochemical Anodization. Surfaces 2022, 5, 456–480. [Google Scholar] [CrossRef]
1st | 100th | |||||
---|---|---|---|---|---|---|
Sample | Re (ohm) | Rs (ohm) | Rct (ohm) | Re (ohm) | Rs (ohm) | Rct (ohm) |
LMNCO | 2.2 | 0.719 | 559.0 | 2.9 | 1528.0 | 402.7 |
P-LMNCO | 2.0 | 555.7 | 162.3 | 2.5 | 886.9 | 192.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Sun, B.; Wang, X.; Xu, J.; Zhang, L.; Cheng, J. In Situ Gas-Phase Polymerization of Polypyrrole-Coated Lithium-Rich Nanotubes for High-Performance Lithium-Ion Batteries. Surfaces 2023, 6, 53-63. https://doi.org/10.3390/surfaces6010005
Chen Y, Sun B, Wang X, Xu J, Zhang L, Cheng J. In Situ Gas-Phase Polymerization of Polypyrrole-Coated Lithium-Rich Nanotubes for High-Performance Lithium-Ion Batteries. Surfaces. 2023; 6(1):53-63. https://doi.org/10.3390/surfaces6010005
Chicago/Turabian StyleChen, Yangwen, Beibei Sun, Xinchang Wang, Junmin Xu, Liwei Zhang, and Jipeng Cheng. 2023. "In Situ Gas-Phase Polymerization of Polypyrrole-Coated Lithium-Rich Nanotubes for High-Performance Lithium-Ion Batteries" Surfaces 6, no. 1: 53-63. https://doi.org/10.3390/surfaces6010005
APA StyleChen, Y., Sun, B., Wang, X., Xu, J., Zhang, L., & Cheng, J. (2023). In Situ Gas-Phase Polymerization of Polypyrrole-Coated Lithium-Rich Nanotubes for High-Performance Lithium-Ion Batteries. Surfaces, 6(1), 53-63. https://doi.org/10.3390/surfaces6010005