Analysis, Assessment, and Mitigation of Stress Corrosion Cracking in Austenitic Stainless Steels in the Oil and Gas Sector: A Review
Abstract
:1. Introduction
2. SCC Failure Events
3. Required Parameters for SCC
3.1. Stress
3.2. Environment
3.3. Material
3.3.1. Carbon and Low-Alloy Steels
3.3.2. High-Strength Steels
3.3.3. Stainless Steels
3.3.4. Nickel Alloys
3.3.5. Copper Alloys
3.3.6. Aluminum Alloys
3.3.7. Hexagonal Alloys: Magnesium, Zirconium, and Titanium
3.3.8. Austenitic Stainless Steel (ASS)
4. SCC Mechanism
4.1. Dissolution Mechanism
4.2. Cleavage Mechanism
4.3. SCC Development
5. Chloride-Induced Stress Corrosion Cracking (Cl-SCC)
5.1. Factors Affecting Cl-SCC
5.1.1. Materials
5.1.2. Temperature and Limiting Relative Humidity
5.1.3. Types of Salts
5.1.4. Residual Stress
5.1.5. Sensitization and Failure
5.1.6. Localized Corrosion Potentials
5.2. CI-SCC Mechanism
5.2.1. Initiation Stage
5.2.2. Propagation Stage
6. Assessment of SCC
6.1. SCC Assessment Using SSRT
6.2. Complementary Test Methods for Assessing SCC
6.3. Non-Destructive Testing
6.3.1. Ultrasonic Testing
6.3.2. Acoustic Emission
6.3.3. Eddy Current Testing
6.3.4. Radiographic Testing
6.3.5. Magnetic Particle Testing
6.4. Predictive Models for Assessing SCC
6.4.1. Finite Element Method
6.4.2. Molecular Dynamics
6.4.3. Machine Learning for Assessing SCC
7. Prevention of SCC
7.1. Material Selection
7.2. Electrochemical Methods
7.2.1. Cathodic Protection
7.2.2. Passivation
7.2.3. Anodization
7.3. Chemical Methods
7.3.1. Coatings
7.3.2. New Trends in SCC Prevention by Coatings
Self-Healing Coatings
Advanced Coating Materials
Environmental Sustainability
Nanomaterial Additives
SCC-Specific Strategies
7.3.3. Inhibitors
7.4. Physical Methods
7.4.1. Physical Vapor Deposition
7.4.2. Other Physical Methods
7.5. Thermal Methods
Additive Manufacturing
7.6. Environmental Considerations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Byun, T.S.; Garrison, B.E.; McAlister, M.R.; Chen, X.; Gussev, M.N.; Lach, T.G.; Le Coq, A.; Linton, K.; Joslin, C.B.; Carver, J.K.; et al. Mechanical behavior of additively manufactured and wrought 316L stainless steels before and after neutron irradiation. J. Nucl. Mater. 2021, 548, 152849. [Google Scholar] [CrossRef]
- Martin, M.L.; Dadfarnia, M.; Nagao, A.; Wang, S.; Sofronis, P. Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials. Acta Mater. 2018, 165, 734–750. [Google Scholar] [CrossRef]
- Parikin, P.; Dani, M.; Dimyati, A.; Purnamasari, N.D.; Sugeng, B.; Panitra, M.; Insani, A.; Priyanto, T.; Mustofa, S.; Syahbuddin, S.; et al. Effect of Arc Plasma Sintering on the Structural and Microstructural Properties of Fe-Cr-Ni Austenitic Stainless Steels. Makara J. Technol. 2021, 25, 71–78. [Google Scholar] [CrossRef]
- Nuthalapati, S.; Kee, K.; Pedapati, S.R.; Jumbri, K. A review of chloride induced stress corrosion cracking characterization in austenitic stainless steels using acoustic emission technique. Nucl. Eng. Technol. 2024, 56, 688–706. [Google Scholar] [CrossRef]
- Quej-Ake, L.M.; Rivera-Olvera, J.N.; Domínguez-Aguilar, Y.d.R.; Avelino-Jiménez, I.A.; Garibay-Febles, V.; Zapata-Peñasco, I. Analysis of the Physicochemical, Mechanical, and Electrochemical Parameters and Their Impact on the Internal and External SCC of Carbon Steel Pipelines. Materials 2020, 13, 5771. [Google Scholar] [CrossRef] [PubMed]
- Muraleedharan, P. 6—Metallurgical Influences on Stress Corrosion Cracking. In Corrosion of Austenitic Stainless Steels; Khatak, H.S., Raj, B., Eds.; Woodhead Publishing: Cambridgeshire, UK, 2002; pp. 139–165. [Google Scholar]
- Serafim, F.M.; Alabi, W.O.; Oguocha, I.N.; Odeshi, A.G.; Evitts, R.; Gerspacher, R.J.; Ohaeri, E.G. Stress corrosion cracking behavior of selected stainless steels in saturated potash brine solution at different temperatures. Corros. Sci. 2020, 178, 109025. [Google Scholar] [CrossRef]
- Alireza, K. Stress Corrosion Cracking Behavior of Materials. In Engineering Failure Analysis; Kary, T., Ed.; IntechOpen: Rijeka, Croatia, 2020; Chapter 3. [Google Scholar]
- Mohtadi-Bonab, M.A. Effects of Different Parameters on Initiation and Propagation of Stress Corrosion Cracks in Pipeline Steels: A Review. Metals 2019, 9, 590. [Google Scholar] [CrossRef]
- Galvão, T.L.P.; Novell-Leruth, G.; Kuznetsova, A.; Tedim, J.; Gomes, J.R.B. Elucidating Structure–Property Relationships in Aluminum Alloy Corrosion Inhibitors by Machine Learning. J. Phys. Chem. C 2020, 124, 5624–5635. [Google Scholar] [CrossRef]
- Yan, X.; Rong, H.; Fan, W.; Yang, J.; Zhou, C.; Li, S.; Zhao, X. Effect and simulation of tensile stress on corrosion behavior of 7050 aluminum alloy in a simulated harsh marine environment. Eng. Fail. Anal. 2024, 156, 107843. [Google Scholar] [CrossRef]
- Khodamorad, S.H.; Alinezhad, N.; Fatmehsari, D.H.; Ghahtan, K. Stress corrosion cracking in Type.316 plates of a heat exchanger. Case Stud. Eng. Fail. Anal. 2016, 5, 59–66. [Google Scholar] [CrossRef]
- Zhang, W.; Dunbar, L.; Tice, D. Monitoring of stress corrosion cracking of sensitised 304H stainless steel in nuclear applications by electrochemical methods and acoustic emission. Energy Mater. 2008, 3, 59–71. [Google Scholar] [CrossRef]
- Beavers, J.; Bubenik, T.A. 12—Stress corrosion cracking. In Trends in Oil and Gas Corrosion Research and Technologies; El-Sherik, A.M., Ed.; Woodhead Publishing: Boston, MA, USA, 2017; pp. 295–314. [Google Scholar]
- Manfredi, C.; Otegui, J. Failures by SCC in buried pipelines. Eng. Fail. Anal. 2002, 9, 495–509. [Google Scholar] [CrossRef]
- Fang, B.Y.; Atrens, A.; Wang, J.Q.; Han, E.H.; Zhu, Z.Y.; Ke, W. Review of stress corrosion cracking of pipeline steels in “low” and “high” pH solutions. J. Mater. Sci. 2003, 38, 127–132. [Google Scholar] [CrossRef]
- Shehata, M.T.; Elboujdaini, M.; Revie, R.W. Initiation of Stress Corrosion Cracking and Hydrogen-Induced Cracking in Oil and Gas Line-Pipe Steels; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Sen, R.R.F.M. Characteristics, causes, and management of circumferential stress-corrosion cracking. In Proceedings of the 10th International Pipeline Conference IPC2014-33059, Calgary, AB, Canada, 29 September–3 October 2014. [Google Scholar]
- Yahi, S.; Bensmaili, A.; Haddad, A.; Benmohamed, M. Experimental Approach to Monitoring the Degradation Status of Pipelines Transporting Hydrocarbons. Eur. J. Eng. Sci. Technol. 2021, 4, 34–44. [Google Scholar] [CrossRef]
- Xie, M.; Tian, Z. A review on pipeline integrity management utilizing in-line inspection data. Eng. Fail. Anal. 2018, 92, 222–239. [Google Scholar] [CrossRef]
- Khasanova, A. Corrosion cracking under main pipelines stress. J. Physics Conf. Ser. 2022, 2176, 012051. [Google Scholar] [CrossRef]
- Hussain, M.; Zhang, T.; Chaudhry, M.; Jamil, I.; Kausar, S.; Hussain, I. Review of Prediction of Stress Corrosion Cracking in Gas Pipelines Using Machine Learning. Machines 2024, 12, 42. [Google Scholar] [CrossRef]
- Vanboven, G.; Chen, W.; Rogge, R. The role of residual stress in neutral pH stress corrosion cracking of pipeline steels. Part I: Pitting and cracking occurrence. Acta Mater. 2007, 55, 29–42. [Google Scholar] [CrossRef]
- Vakili, M.; Koutník, P.; Kohout, J. Corrosion by Polythionic Acid in the Oil and Gas Sector: A Brief Overview. Materials 2023, 16, 7043. [Google Scholar] [CrossRef] [PubMed]
- Vakili, M.; Koutník, P.; Kohout, J. Addressing Hydrogen Sulfide Corrosion in Oil and Gas Industries: A Sustainable Perspective. Sustainability 2024, 16, 1661. [Google Scholar] [CrossRef]
- Withers, P.J.; Bhadeshia, H. Residual stress. Part 1–measurement techniques. Mater. Sci. Technol. 2001, 17, 355–365. [Google Scholar] [CrossRef]
- Freitas, V.L.d.A.; de Albuquerque, V.H.C.; Silva, E.d.M.; Silva, A.A.; Tavares, J.M.R. Nondestructive characterization of microstructures and determination of elastic properties in plain carbon steel using ultrasonic measurements. Mater. Sci. Eng. A 2010, 527, 4431–4437. [Google Scholar] [CrossRef]
- Beavers, J.A.; Johnson, J.T.; Sutherby, R.L. Materials factors influencing the initiation of near-neutral pH SCC on underground pipelines. In International Pipeline Conference; American Society of Mechanical Engineers: New York, NY, USA, 2000. [Google Scholar]
- Chen, W.; Vanboven, G.; Rogge, R. The role of residual stress in neutral pH stress corrosion cracking of pipeline steels—Part II: Crack dormancy. Acta Mater. 2007, 55, 43–53. [Google Scholar] [CrossRef]
- Khalifeh, A.; Banaraki, A.D.; Daneshmanesh, H.; Paydar, M. Stress corrosion cracking of a circulation water heater tubesheet. Eng. Fail. Anal. 2017, 78, 55–66. [Google Scholar] [CrossRef]
- Ghosh, S.; Rana, V.P.S.; Kain, V.; Mittal, V.; Baveja, S. Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel. Mater. Des. 2011, 32, 3823–3831. [Google Scholar] [CrossRef]
- Kannan, M.B.; Shukla, P. Stress corrosion cracking (SCC) of copper and copper-based alloys. In Stress Corrosion Cracking; Elsevier: Amsterdam, The Netherlands, 2011; pp. 409–426. [Google Scholar]
- Alyousif, O.M.; Nishimura, R. The Effect of Applied Stress on Environment-Induced Cracking of Aluminum Alloy 5052-H3 in 0.5 M NaCl Solution. Int. J. Corros. 2012, 2012, 894875. [Google Scholar] [CrossRef]
- Kan, W.; Pan, H. Failure analysis of a stainless steel hydrotreating reactor. Eng. Fail. Anal. 2011, 18, 110–116. [Google Scholar] [CrossRef]
- Alireza, K. Stress Corrosion Cracking Damages. In Failure Analysis; Huang, Z.-M., Hemeda, S., Eds.; IntechOpen: Rijeka, Croatia, 2019; Chapter 3. [Google Scholar]
- Fairweather, N.; Platts, N.; Tice, D. Stress-corrosion crack initiation of type 304 stainless steel in atmospheric environments containing chloride: Influence of surface condition, relative humidity, temperature and thermal sensitization. In NACE Corrosion; NACE: New Orleans, LA, USA, 2008. [Google Scholar]
- Hayashibara, H.; Mayuzumi, M.; Mizutani, Y.; Tani, J.I. Effects of temperature and humidity on atmospheric stress corrosion cracking of 304 stainless steel. In NACE Corrosion; NACE: Houston, TX, USA, 2008. [Google Scholar]
- Singh, P.M.; Ige, O.; Mahmood, J. Stress corrosion cracking of 304L stainless steel in sodium sulfide containing caustic solutions. J. Corros. Sci. Eng. 2003, 59, 843–850. [Google Scholar] [CrossRef]
- Rodríguez, J.J.; Hernández, F.S.; González, J.E. The effect of environmental and meteorological variables on atmospheric corrosion of carbon steel, copper, zinc and aluminium in a limited geographic zone with different types of environment. Corros. Sci. 2003, 45, 799–815. [Google Scholar] [CrossRef]
- Iakovleva, E.; Mäkilä, E.; Salonen, J.; Sitarz, M.; Sillanpää, M. Industrial products and wastes as adsorbents for sulphate and chloride removal from synthetic alkaline solution and mine process water. Chem. Eng. J. 2015, 259, 364–371. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Liu, L.; Wang, F. Study of the failure mechanism of an epoxy coating system under high hydrostatic pressure. Corros. Sci. 2013, 74, 59–70. [Google Scholar] [CrossRef]
- Arafin, M.; Szpunar, J. Effect of bainitic microstructure on the susceptibility of pipeline steels to hydrogen induced cracking. Mater. Sci. Eng. A 2011, 528, 4927–4940. [Google Scholar] [CrossRef]
- Mustapha, A.; Charles, E.; Hardie, D. Evaluation of environment-assisted cracking susceptibility of a grade X100 pipeline steel. Corros. Sci. 2012, 54, 5–9. [Google Scholar] [CrossRef]
- Oskuie, A.; Shahrabi, T.; Shahriari, A.; Saebnoori, E. Electrochemical impedance spectroscopy analysis of X70 pipeline steel stress corrosion cracking in high pH carbonate solution. Corros. Sci. 2012, 61, 111–122. [Google Scholar] [CrossRef]
- Maocheng, Y.; Jin, X.; Libao, Y.; Tangqing, W.; Cheng, S.; Wei, K. EIS analysis on stress corrosion initiation of pipeline steel under disbonded coating in near-neutral pH simulated soil electrolyte. Corros. Sci. 2016, 110, 23–34. [Google Scholar] [CrossRef]
- Kang, Y.; Chen, W.; Kania, R.; Van Boven, G.; Worthingham, R. Simulation of crack growth during hydrostatic testing of pipeline steel in near-neutral pH environment. Corros. Sci. 2011, 53, 968–975. [Google Scholar] [CrossRef]
- Marshakov, A.; Ignatenko, V.; Bogdanov, R.; Arabey, A. Effect of electrolyte composition on crack growth rate in pipeline steel. Corros. Sci. 2014, 83, 209–216. [Google Scholar] [CrossRef]
- Mohtadi-Bonab, M.A.; Eskandari, M.; Karimdadashi, R.; Szpunar, J.A. Effect of different microstructural parameters on hydrogen induced cracking in an API X70 pipeline steel. Met. Mater. Int. 2017, 23, 726–735. [Google Scholar] [CrossRef]
- Mohtadi-Bonab, M.; Eskandari, M.; Szpunar, J. Role of cold rolled followed by annealing on improvement of hydrogen induced cracking resistance in pipeline steel. Eng. Fail. Anal. 2018, 91, 172–181. [Google Scholar] [CrossRef]
- Fan, Z.; Hu, X.; Liu, J.; Li, H.; Fu, J. Stress corrosion cracking of L360NS pipeline steel in sulfur environment. Petroleum 2017, 3, 377–383. [Google Scholar] [CrossRef]
- Wang, J.Q.; Atrens, A. SCC initiation for X65 pipeline steel in the “high” pH carbonate/bicarbonate solution. Corros. Sci. 2003, 45, 2199–2217. [Google Scholar] [CrossRef]
- Chen, W. 30—Modeling and prediction of stress corrosion cracking of pipeline steels. In Trends in Oil and Gas Corrosion Research and Technologies; El-Sherik, A.M., Ed.; Woodhead Publishing: Boston, MA, USA, 2017; pp. 707–748. [Google Scholar]
- Krivonosova, E.A. A Review of Stress Corrosion Cracking of Welded Stainless Steels. OALib 2018, 5, 1. [Google Scholar] [CrossRef]
- Adair, S.T.; Attwood, P.A. In-service stress corrosion cracking of AISI 316L stainless steel in an H2S environment. Corros. Eng. Sci. Technol. 2014, 49, 396–400. [Google Scholar] [CrossRef]
- Yazovskikh, V.M.; Krivonosova, E.K. Structure Formation and Properties of Corrosion-Resistant Steel with Treatment by a Highly Concentrated Energy Source. Metallurgist 2016, 59, 912–916. [Google Scholar] [CrossRef]
- Krivonosova, E.A.; Sinkina, E.A.; Gorchakov, A.I. Effect of the type of electrode coating on the corrosion resistance of weld metal in 08Cr18Ni10Ti steel. Weld. Int. 2013, 27, 489–492. [Google Scholar] [CrossRef]
- Ghosh, G.; Rostron, P.; Garg, R.; Panday, A. Hydrogen induced cracking of pipeline and pressure vessel steels: A review. Eng. Fract. Mech. 2018, 199, 609–618. [Google Scholar] [CrossRef]
- Truman, J.E. Stress-corrosion cracking of martensitic and ferritic stainless steels. Int. Met. Rev. 1981, 26, 301–349. [Google Scholar] [CrossRef]
- Mohtadi-Bonab, M.; Szpunar, J.; Basu, R.; Eskandari, M. The mechanism of failure by hydrogen induced cracking in an acidic environment for API 5L X70 pipeline steel. Int. J. Hydrogen Energy 2015, 40, 1096–1107. [Google Scholar] [CrossRef]
- Mohtadi-Bonab, M.; Eskandari, M. A focus on different factors affecting hydrogen induced cracking in oil and natural gas pipeline steel. Eng. Fail. Anal. 2017, 79, 351–360. [Google Scholar] [CrossRef]
- Mohtadi-Bonab, M.A.; Eskandari, M.; Ghaednia, H.; Das, S. Effect of Microstructural Parameters on Fatigue Crack Propagation in an API X65 Pipeline Steel. J. Mater. Eng. Perform. 2016, 25, 4933–4940. [Google Scholar] [CrossRef]
- Mohtadi-Bonab, M.; Eskandari, M.; Sanayei, M.; Das, S. Microstructural aspects of intergranular and transgranular crack propagation in an API X65 steel pipeline related to fatigue failure. Eng. Fail. Anal. 2018, 94, 214–225. [Google Scholar] [CrossRef]
- Shi, X.; Yan, W.; Wang, W.; Shan, Y.; Yang, K. Novel Cu-bearing high-strength pipeline steels with excellent resistance to hydrogen-induced cracking. Mater. Des. 2016, 92, 300–305. [Google Scholar] [CrossRef]
- Baba, K.; Mizuno, D.; Yasuda, K.; Nakamichi, H.; Ishikawa, N. Effect of Cu Addition in Pipeline Steels on Prevention of Hydrogen Permeation in Mildly Sour Environments. Corrosion 2016, 72, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Du, C.; Li, X.; Liu, Z.; Wang, S.; Zhao, T.; Jia, J. Effect of Strength and Microstructure on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in High pH Carbonate/Bicarbonate Solution. J. Mater. Eng. Perform. 2014, 23, 1358–1365. [Google Scholar] [CrossRef]
- González, J.; Gutiérrez-Solana, F.; Varona, J.M. The effects of microstructure, strength level, and crack propagation mode on stress corrosion cracking behavior of 4135 steel. Met. Mater. Trans. A 1996, 27, 281–290. [Google Scholar] [CrossRef]
- Mohtadi-Bonab, M.; Eskandari, M.; Szpunar, J. Effect of arisen dislocation density and texture components during cold rolling and annealing treatments on hydrogen induced cracking susceptibility in pipeline steel. J. Mater. Res. 2016, 31, 3390–3400. [Google Scholar] [CrossRef]
- Fang, B.; Wang, J.; Xiao, S.; Han, E.-H.; Zhu, Z.; Ke, W. Stress corrosion cracking of X-70 pipeline steels by eletropulsing treatment in near-neutral pH solution. J. Mater. Sci. 2005, 40, 6545–6552. [Google Scholar] [CrossRef]
- Lu, B.T.; Luo, J.L. Crack Initiation and Early Propagation of X70 Steel in Simulated Near-Neutral pH Groundwater. Corrosion 2006, 62, 723–731. [Google Scholar] [CrossRef]
- Contreras, A.; Hernández, S.; Orozco-Cruz, R.; Galvan-Martínez, R. Mechanical and environmental effects on stress corrosion cracking of low carbon pipeline steel in a soil solution. Mater. Des. 2012, 35, 281–289. [Google Scholar] [CrossRef]
- Hänninen, H.E. 6.01—Stress Corrosion Cracking. In Comprehensive Structural Integrity; Milne, I., Ritchie, R.O., Karihaloo, B., Eds.; Pergamon: Oxford, UK, 2003; pp. 1–29. [Google Scholar]
- El-Amoush, A.S.; Zamil, A.; Jaber, D.; Ismail, N. Stress corrosion cracking of the pre-immersed tin brass heat exchanger tube in an ammoniacal solution. Mater. Des. 2014, 56, 842–847. [Google Scholar] [CrossRef]
- Popović, M.; Romhanji, E. Stress corrosion cracking susceptibility of Al–Mg alloy sheet with high Mg content. J. Mater. Process. Technol. 2002, 125, 275–280. [Google Scholar] [CrossRef]
- Jones, R.H.; Baer, D.R.; Danielson, M.J.; Vetrano, J.S. Role of Mg in the stress corrosion cracking of an Al-Mg alloy. Met. Mater. Trans. A 2001, 32, 1699–1711. [Google Scholar] [CrossRef]
- Rao, A.U.; Vasu, V.; Govindaraju, M.; Srinadh, K.S. Stress corrosion cracking behaviour of 7xxx aluminum alloys: A literature review. Trans. Nonferrous Met. Soc. China 2016, 26, 1447–1471. [Google Scholar] [CrossRef]
- Pilchak, A.; Young, A.; Williams, J. Stress corrosion cracking facet crystallography of Ti–8Al–1Mo–1V. Corros. Sci. 2010, 52, 3287–3296. [Google Scholar] [CrossRef]
- Parnian, N. Failure analysis of austenitic stainless steel tubes in a gas fired steam heater. Mater. Des. 2012, 36, 788–795. [Google Scholar] [CrossRef]
- Pal, S.; Ibrahim, R.N.; Raman, R. S. Studying the effect of sensitization on the threshold stress intensity and crack growth for chloride stress corrosion cracking of austenitic stainless steel using circumferential notch tensile technique. Eng. Fract. Mech. 2012, 82, 158–171. [Google Scholar] [CrossRef]
- Singh, R.; Sachan, D.; Verma, R.; Goel, S.; Jayaganthan, R.; Kumar, A. Mechanical behavior of 304 Austenitic stainless steel processed by cryogenic rolling. Mater. Today: Proc. 2018, 5, 16880–16886. [Google Scholar] [CrossRef]
- Kappes, M.A. Localized corrosion and stress corrosion cracking of stainless steels in halides other than chlorides solutions: A review. Corros. Rev. 2020, 38, 1–24. [Google Scholar] [CrossRef]
- Knyazeva, M.; Pohl, M. Duplex Steels. Part II: Carbides and Nitrides. Met. Microstruct. Anal. 2013, 2, 343–351. [Google Scholar] [CrossRef]
- Rodríguez, M.A. Corrosion control of nuclear steam generators under normal operation and plant-outage conditions: A review. Corros. Rev. 2020, 38, 195–230. [Google Scholar] [CrossRef]
- Féron, D. 2—Overview of nuclear materials and nuclear corrosion science and engineering. In Nuclear Corrosion Science and Engineering; Féron, D., Ed.; Woodhead Publishing: Cambridge, UK, 2012; pp. 31–56. [Google Scholar]
- Shiwa, M.; Masuda, H.; Yamawaki, H.; Ito, K.; Enoki, M. Acoustic emission monitoring of micro cell corrosion testing in type 304 stainless steels. Strength Fract. Complex. 2011, 7, 71–78. [Google Scholar] [CrossRef]
- Mackey, E.D.; Seacord, T.F. Guidelines for Using Stainless Steel in the Water and Desalination Industries. J.-Am. Water Work. Assoc. 2017, 109, E158–E169. [Google Scholar] [CrossRef]
- Yoon, H.; Ha, H.-Y.; Lee, T.-H.; Kim, S.-D.; Jang, J.H.; Moon, J.; Kang, N. Pitting Corrosion Resistance and Repassivation Behavior of C-Bearing Duplex Stainless Steel. Metals 2019, 9, 930. [Google Scholar] [CrossRef]
- Maziasz, P.J.; Busby, J.T. 2.09—Properties of Austenitic Steels for Nuclear Reactor Applications. In Comprehensive Nuclear Materials; Konings, R.J.M., Ed.; Elsevier: Oxford, UK, 2012; pp. 267–283. [Google Scholar]
- Pal, S.; Bhadauria, S.S.; Kumar, P. Pitting Corrosion Behavior of F304 Stainless Steel Under the Exposure of Ferric Chloride Solution. J. Bio-Tribo-Corros. 2019, 5, 91. [Google Scholar] [CrossRef]
- Jung, R.-H.; Tsuchiya, H.; Fujimoto, S. XPS characterization of passive films formed on Type 304 stainless steel in humid atmosphere. Corros. Sci. 2012, 58, 62–68. [Google Scholar] [CrossRef]
- Sastry, K.Y.; Narayanan, R.; Shamantha, C.R.; Sundaresan, S.; Seshadri, S.K.; Radhakrishnan, V.M.; Iyer, K.J.L.; Sundararajan, S. Stress corrosion cracking of maraging steel weldments. Mater. Sci. Technol. 2003, 19, 375–381. [Google Scholar] [CrossRef]
- Cui, C.; Ma, R.; Martínez-Pañeda, E. A phase field formulation for dissolution-driven stress corrosion cracking. J. Mech. Phys. Solids 2021, 147, 104254. [Google Scholar] [CrossRef]
- Ahmad, Z. Chapter 4—Types of corrosion: Materials and Environments. In Principles of Corrosion Engineering and Corrosion Control; Ahmad, Z., Ed.; Butterworth-Heinemann: Oxford, UK, 2006; pp. 120–270. [Google Scholar]
- Nguyen, T.-T.; Bolivar, J.; Réthoré, J.; Baietto, M.-C.; Fregonese, M. A phase field method for modeling stress corrosion crack propagation in a nickel base alloy. Int. J. Solids Struct. 2017, 112, 65–82. [Google Scholar] [CrossRef]
- Jawan, H.A. Some Thoughts on Stress Corrosion Cracking of (7xxx) Aluminum Alloys. Int. J. Mater. Sci. Eng. 2019, 7, 40–51. [Google Scholar] [CrossRef]
- Li, Z.; Lu, Y.; Wang, X. Modeling of stress corrosion cracking growth rates for key structural materials of nuclear power plant. J. Mater. Sci. 2020, 55, 439–463. [Google Scholar] [CrossRef]
- Alkateb, M.; Tadić, S.; Sedmak, A.; Ivanović, I.; Marković, S. Crack Growth Rate Analysis of Stress Corrosion Cracking. Teh. Vjesn.-Tech. Gaz. 2021, 28, 240–247. [Google Scholar] [CrossRef]
- Lynch, S.P. 1—Mechanistic and fractographic aspects of stress-corrosion cracking (SCC). In Stress Corrosion Cracking; Raja, V.S., Shoji, T., Eds.; Woodhead Publishing: Cambridge, UK, 2011; pp. 3–89. [Google Scholar]
- Zaferani, S.H.; Miresmaeili, R.; Pourcharmi, M.K. Mechanistic models for environmentally-assisted cracking in sour service. Eng. Fail. Anal. 2017, 79, 672–703. [Google Scholar] [CrossRef]
- Pereira, H.B.; Panossian, Z.; Baptista, I.P.; Azevedo, C.R.d.F. Investigation of Stress Corrosion Cracking of Austenitic, Duplex and Super Duplex Stainless Steels under Drop Evaporation Test using Synthetic Seawater. Mater. Res. 2019, 22, e20180211. [Google Scholar] [CrossRef]
- Galvele, J. Surface mobility mechanism of stress-corrosion cracking. Corros. Sci. 1993, 35, 419–434. [Google Scholar] [CrossRef]
- Chatterjee, U.K. Stress corrosion cracking and component failure: Causes and prevention. Sadhana 1995, 20, 165–184. [Google Scholar] [CrossRef]
- Pal, S.; Bhadauria, S.S.; Kumar, P. Studies on Stress Corrosion Cracking of F304 Stainless Steel in Boiling Magnesium Chloride Solution. J. Bio-Tribo-Corros. 2021, 7, 62. [Google Scholar] [CrossRef]
- Almubarak, A.; Abuhaimed, W.; Almazrouee, A. Corrosion Behavior of the Stressed Sensitized Austenitic Stainless Steels of High Nitrogen Content in Seawater. Int. J. Electrochem. 2013, 2013, 970835. [Google Scholar] [CrossRef]
- Wu, K.; Briffod, F.; Ito, K.; Shinozaki, I.; Chivavibul, P.; Enoki, M. In-Situ Observation and Acoustic Emission Monitoring of the Initiation-to-Propagation Transition of Stress Corrosion Cracking in SUS420J2 Stainless Steel. Mater. Trans. 2019, 60, 2151–2159. [Google Scholar] [CrossRef]
- Song, M.; Wang, M.; Lou, X.; Rebak, R.B.; Was, G.S. Radiation damage and irradiation-assisted stress corrosion cracking of additively manufactured 316L stainless steels. J. Nucl. Mater. 2019, 513, 33–44. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Was, G.S. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Mayuzumi, M.; Arai, T.; Hide, K. Chloride Induced Stress Corrosion Cracking of Type 304 and 304L Stainless Steels in Air. Zairyo-Kankyo 2003, 52, 166–170. [Google Scholar] [CrossRef]
- Xie, X.; Ning, D.; Chen, B.; Lu, S.; Sun, J. Stress corrosion cracking behavior of cold-drawn 316 austenitic stainless steels in simulated PWR environment. Corros. Sci. 2016, 112, 576–584. [Google Scholar] [CrossRef]
- Yeom, H.; Dabney, T.; Pocquette, N.; Ross, K.; Pfefferkorn, F.E.; Sridharan, K. Cold spray deposition of 304L stainless steel to mitigate chloride-induced stress corrosion cracking in canisters for used nuclear fuel storage. J. Nucl. Mater. 2020, 538, 152254. [Google Scholar] [CrossRef]
- Roffey, P.; Davies, E. The generation of corrosion under insulation and stress corrosion cracking due to sulphide stress cracking in an austenitic stainless steel hydrocarbon gas pipeline. Eng. Fail. Anal. 2014, 44, 148–157. [Google Scholar] [CrossRef]
- Shoji, T.; Lu, Z.; Peng, Q. Factors affecting stress corrosion cracking (SCC) and fundamental mechanistic understanding of stainless steels. In Stress Corrosion Cracking; Elsevier: Amsterdam, The Netherlands, 2011; pp. 245–272. [Google Scholar]
- Caines, S.; Khan, F.; Shirokoff, J. Analysis of pitting corrosion on steel under insulation in marine environments. J. Loss Prev. Process. Ind. 2013, 26, 1466–1483. [Google Scholar] [CrossRef]
- Al-Moubaraki, A.H.; Obot, I.B. Corrosion challenges in petroleum refinery operations: Sources, mechanisms, mitigation, and future outlook. J. Saudi Chem. Soc. 2021, 25, 101370. [Google Scholar] [CrossRef]
- Hao, W.; Liu, Z.; Wu, W.; Li, X.; Du, C.; Zhang, D. Electrochemical characterization and stress corrosion cracking of E690 high strength steel in wet-dry cyclic marine environments. Mater. Sci. Eng. A 2018, 710, 318–328. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, J. Chloride-induced stress corrosion cracking of used nuclear fuel welded stainless steel canisters: A review. J. Nucl. Mater. 2015, 466, 85–93. [Google Scholar] [CrossRef]
- Mayuzumi, M.; Tani, J.; Arai, T. Chloride induced stress corrosion cracking of candidate canister materials for dry storage of spent fuel. Nucl. Eng. Des. 2008, 238, 1227–1232. [Google Scholar] [CrossRef]
- Wataru, M.; Takeda, H.; Shirai, K.; Saegusa, T. Thermal hydraulic analysis compared with tests of full-scale concrete casks. Nucl. Eng. Des. 2008, 238, 1213–1219. [Google Scholar] [CrossRef]
- Navidi, W.; Shayer, Z. An application of stochastic modeling to pitting of Spent Nuclear Fuel canisters. Prog. Nucl. Energy 2018, 107, 48–56. [Google Scholar] [CrossRef]
- Newman, R.C. 2001 W.R. Whitney Award Lecture: Understanding the Corrosion of Stainless Steel. Corrosion 2001, 57, 1030–1041. [Google Scholar] [CrossRef]
- Andresen, P.L. Effects of Temperature on Crack Growth Rate in Sensitized Type 304 Stainless Steel and Alloy 600. Corrosion 1993, 49, 714–725. [Google Scholar] [CrossRef]
- Truman, J. The influence of chloride content, pH and temperature of test solution on the occurrence of stress corrosion cracking with austenitic stainless steel. Corros. Sci. 1977, 17, 737–746. [Google Scholar] [CrossRef]
- Akpanyung, K.; Loto, R.; Fajobi, M. An overview of ammonium chloride (NH4Cl) corrosion in the refining unit. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019. [Google Scholar] [CrossRef]
- Ashida, Y.; Daigo, Y.; Sugahara, K. An Industrial Perspective on Environmentally Assisted Cracking of Some Commercially Used Carbon Steels and Corrosion-Resistant Alloys. Jom 2017, 69, 1381–1388. [Google Scholar] [CrossRef]
- Fujisawa, R.; Nishimura, K.; Nishida, T.; Sakaihara, M.; Kurata, Y.; Watanabe, Y. Corrosion behavior of ni base alloys and 316 stainless steel in less oxidizing or reducing SCW containing HCl. Corrosion 2006, 62, 270–274. [Google Scholar] [CrossRef]
- Ford, F.P.; Silverman, M. The Prediction of Stress Corrosion Cracking of Sensitized 304 Stainless Steel in 0.01M Na2SO4at 97 C. Corrosion 1980, 36, 558–565. [Google Scholar] [CrossRef]
- Tani, J.-I.; Mayuzumi, M.; Hara, N. Stress corrosion cracking of stainless-steel canister for concrete cask storage of spent fuel. J. Nucl. Mater. 2008, 379, 42–47. [Google Scholar] [CrossRef]
- Matsumoto, S.; Uchiya, G.; Ozawa, M.; Kobayashi, Y.; Shirato, K. Research Committee on Ruthenium and Technetium Chemistry in PUREX System, Organized by the Atomic Energy Society of Japan. Radiochemistry 2003, 45, 219–224. [Google Scholar] [CrossRef]
- Turnbull, A.; Zhou, S. Impact of temperature excursion on stress corrosion cracking of stainless steels in chloride solution. Corros. Sci. 2008, 50, 913–917. [Google Scholar] [CrossRef]
- Oldfield, J.W.; Todd, B. Room temperature stress corrosion cracking of stainless steels in indoor swimming pool atmospheres. Br. Corros. J. 1991, 26, 173–182. [Google Scholar] [CrossRef]
- Baker, H.R.; Bloom, M.C.; Bolster, R.N.; Singleterry, C.R. Film and pH Effects in the Stress Corrosion Cracking of Type 304 Stainless Steel. Corrosion 2013, 26, 420–426. [Google Scholar] [CrossRef]
- Korovin, Y.M.; Ulanovskii, I.B. Effect of Oxygen Concentration and pH on Electrode Potential of Stainless Steels and Operation of Microcouples. Corrosion 2013, 22, 16–20. [Google Scholar] [CrossRef]
- Tani, J.-I.; Mayuzumi, M.; Hara, N. Initiation and Propagation of Stress Corrosion Cracking of Stainless Steel Canister for Concrete Cask Storage of Spent Nuclear Fuel. Corrosion 2009, 65, 187–194. [Google Scholar] [CrossRef]
- Feliu, S.; Morcillo, M.; Feliu, S. The prediction of atmospheric corrosion from meteorological and pollution parameters—I. Annual corrosion. Corros. Sci. 1993, 34, 403–414. [Google Scholar] [CrossRef]
- Kosaki, A. Evaluation method of corrosion lifetime of conventional stainless steel canister under oceanic air environment. Nucl. Eng. Des. 2008, 238, 1233–1240. [Google Scholar] [CrossRef]
- Chen, P.C.-S.; Shinohara, T.; Tsujikawa, S. Applicability of the Competition Concept in Determining the Stress Corrosion Cracking Behavior of Austenitic Stainless Steels in Chloride Solutions. Zair.-Kankyo/Corros. Eng. 1997, 46, 313–320. [Google Scholar] [CrossRef]
- Yu, H.; Na, E.; Chung, S. Assessment of stress corrosion cracking susceptibility by a small punch test. Fatigue Fract. Eng. Mater. Struct. 1999, 22, 889–896. [Google Scholar] [CrossRef]
- Bruchhausen, M.; Altstadt, E.; Austin, T.; Dymacek, P.; Holmström, S.; Jeffs, S.; Lacalle, R.; Lancaster, R.; Matocha, K.; Petzova, J. European standard on small punch testing of metallic materials. In Pressure Vessels and Piping Conference; American Society of Mechanical Engineers: New York, NY, USA, 2017. [Google Scholar]
- Salazar, M.; Espinosa-Medina, M.A.; Hernández, P.; Contreras, A. Evaluation of SCC susceptibility of supermartensitic stainless steel using slow strain rate tests. Corros. Eng. Sci. Technol. 2011, 46, 464–470. [Google Scholar] [CrossRef]
- Contreras, A.; Quej-Aké, L.M.; Lizárraga, C.R.; Pérez, T. The Role of Calcareous Soils in SCC of X52 Pipeline Steel. MRS Online Proc. Libr. (OPL) 2015, 1766, 95–106. [Google Scholar] [CrossRef]
- Velazquez, Z.; Guzman, E.; Espinosa-Medina, M.; Contreras, A. Stress Corrosion Cracking Behavior of X60 Pipe Steel in Soil Environment. MRS Online Proc. Libr. (OPL) 2009, 1242, S4-P131. [Google Scholar] [CrossRef]
- Contreras, A.; Salazar, M.; Albiter, A.; Galván, R.; Vega, O. Assessment of stress corrosion cracking on pipeline steels weldments used in the petroleum industry by slow strain rate tests. In Arc Welding; Sudnik, W., Ed.; IntechOpen: Zagreb, Croatia, 2011; pp. 127–150. [Google Scholar]
- Quej-Aké, L.M.; Galván-Martínez, R.; Contreras-Cuevas, A. Electrochemical and Tension Tests Behavior of API 5L X60 Pipeline Steel in a Simulated Soil Solution. Mater. Sci. Forum 2013, 755, 153–161. [Google Scholar] [CrossRef]
- Cheng, Y.F. Stress Corrosion Cracking of Pipelines; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Afanasyev, A.; Mel’nikov, A.A.; Konovalov, S.V.; Vaskov, M.I. The Analysis of the Influence of Various Factors on the Development of Stress Corrosion Defects in the Main Gas Pipeline Walls in the Conditions of the European Part of the Russian Federation. Int. J. Corros. 2018, 2018, 1258379. [Google Scholar] [CrossRef]
- Kamachi Mudali, U.; Jayaraj, J.; Raman, R.K.S.; Raj, B. Corrosion: An Overview of Types, Mechanism, and Requisites of Evaluation. In Non-Destructive Evaluation of Corrosion and Corrosion-Assisted Cracking; Wiley: Hoboken, NJ, USA, 2019; pp. 56–74. [Google Scholar]
- Silva, M.I.; Malitckii, E.; Santos, T.G.; Vilaça, P. Review of conventional and advanced non-destructive testing techniques for detection and characterization of small-scale defects. Prog. Mater. Sci. 2023, 138, 101155. [Google Scholar] [CrossRef]
- Venkatraman, B.; Raj, B. Nondestructive Testing: An Overview of Techniques and Application for Quality Evaluation. In Non-Destructive Evaluation of Corrosion and Corrosion-Assisted Cracking; Wiley: Hoboken, NJ, USA, 2019; pp. 1–55. [Google Scholar]
- Reddy, M.S.B.; Ponnamma, D.; Sadasivuni, K.K.; Aich, S.; Kailasa, S.; Parangusan, H.; Ibrahim, M.; Eldeib, S.; Shehata, O.; Ismail, M.; et al. Sensors in advancing the capabilities of corrosion detection: A review. Sensors Actuators A Phys. 2021, 332, 113086. [Google Scholar] [CrossRef]
- Atamturktur, H.S.; Gilligan, C.R.; Salyards, K.A. Detection of internal defects in concrete members using global vibration characteristics. ACI Mater. J. 2013, 110, 529–538. [Google Scholar]
- Yi, D.; Pei, C.; Liu, T.; Chen, Z. Inspection of cracks with focused angle beam laser ultrasonic wave. Appl. Acoust. 2019, 145, 1–6. [Google Scholar] [CrossRef]
- Howard, R.; Cegla, F. Detectability of corrosion damage with circumferential guided waves in reflection and transmission. NDT E Int. 2017, 91, 108–119. [Google Scholar] [CrossRef]
- Demo, J.; Rajamani, R. Corrosion Sensing. In Corrosion Processes: Sensing, Monitoring, Data Analytics, Prevention/Protection, Diagnosis/Prognosis and Maintenance Strategies; Vachtsevanos, G., Natarajan, K., Rajamani, R., Sandborn, P., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 83–104. [Google Scholar]
- Megid, W.A.; Chainey, M.-A.; Lebrun, P.; Hay, D.R. Monitoring fatigue cracks on eyebars of steel bridges using acoustic emission: A case study. Eng. Fract. Mech. 2019, 211, 198–208. [Google Scholar] [CrossRef]
- Delaunois, F.; Tshimombo, A.; Stanciu, V.; Vitry, V. Monitoring of chloride stress corrosion cracking of austenitic stainless steel: Identification of the phases of the corrosion process and use of a modified accelerated test. Corros. Sci. 2016, 110, 273–283. [Google Scholar] [CrossRef]
- Mazille, H.; Rothea, R.; Tronel, C. An acoustic emission technique for monitoring pitting corrosion of austenitic stainless steels. Corros. Sci. 1995, 37, 1365–1375. [Google Scholar] [CrossRef]
- Jones, R.H.; Friesel, M.A. Acoustic Emission During Pitting and Transgranular Crack Initiation in Type 304 Stainless Steel. Corrosion 1992, 48, 751–758. [Google Scholar] [CrossRef]
- Kim, Y.; Fregonese, M.; Mazille, H.; Féron, D.; Santarini, G. Ability of acoustic emission technique for detection and monitoring of crevice corrosion on 304L austenitic stainless steel. NDT E Int. 2003, 36, 553–562. [Google Scholar] [CrossRef]
- Shaikh, H.; Amirthalingam, R.; Anita, T.; Sivaibharasi, N.; Jaykumar, T.; Manohar, P.; Khatak, H. Evaluation of stress corrosion cracking phenomenon in an AISI type 316LN stainless steel using acoustic emission technique. Corros. Sci. 2007, 49, 740–765. [Google Scholar] [CrossRef]
- Light, G. Nondestructive evaluation technologies for monitoring corrosion. In Techniques for Corrosion Monitoring; Elsevier: Amsterdam, The Netherlands, 2021; pp. 285–304. [Google Scholar]
- Sophian, A.; Tian, G.; Fan, M. Pulsed Eddy Current Non-destructiveTesting and Evaluation: A Review. Chin. J. Mech. Eng. 2017, 30, 500–514. [Google Scholar]
- Kelidari, Y.; Kashefi, M.; Mirjalili, M.; Seyedi, M.; Krause, T.W. Eddy current technique as a nondestructive method for evaluating the degree of sensitization of 304 stainless steel. Corros. Sci. 2020, 173, 108742. [Google Scholar] [CrossRef]
- Mardaninejad, R.; Safizadeh, M.S. Gas Pipeline Corrosion Mapping Through Coating Using Pulsed Eddy Current Technique. Russ. J. Nondestruct. Test. 2019, 55, 858–867. [Google Scholar] [CrossRef]
- Edalati, K.; Rastkhah, N.; Kermani, A.; Seiedi, M.; Movafeghi, A. The use of radiography for thickness measurement and corrosion monitoring in pipes. Int. J. Press. Vessel. Pip. 2006, 83, 736–741. [Google Scholar] [CrossRef]
- Vasylenko, I.V.; Kazakevych, M.L.; Pavlishchuk, V.V. Design of Ferrofluids and Luminescent Ferrofluids Derived from CoFe2O4 Nanoparticles for Nondestructive Defect Monitoring. Theor. Exp. Chem. 2019, 54, 365–368. [Google Scholar] [CrossRef]
- Li, S.; Li, C.; Wang, F. Computational experiments of metal corrosion studies: A review. Mater. Today Chem. 2024, 37, 101986. [Google Scholar] [CrossRef]
- Xu, D.; Pei, Z.; Yang, X.; Li, Q.; Zhang, F.; Zhu, R.; Cheng, X.; Ma, L. A Review of Trends in Corrosion-Resistant Structural Steels Research—From Theoretical Simulation to Data-Driven Directions. Materials 2023, 16, 3396. [Google Scholar] [CrossRef]
- Turnbull, A.; Wright, L.; Crocker, L. New insight into the pit-to-crack transition from finite element analysis of the stress and strain distribution around a corrosion pit. Corros. Sci. 2010, 52, 1492–1498. [Google Scholar] [CrossRef]
- Scheider, I.; Pfuff, M.; Dietzel, W. Simulation of hydrogen assisted stress corrosion cracking using the cohesive model. Eng. Fract. Mech. 2008, 75, 4283–4291. [Google Scholar] [CrossRef]
- Raykar, N.; Maiti, S.; Raman, R.S. Modelling of mode-I stable crack growth under hydrogen assisted stress corrosion cracking. Eng. Fract. Mech. 2011, 78, 3153–3165. [Google Scholar] [CrossRef]
- Wei, X.; Dong, C.; Chen, Z.; Xiao, K.; Li, X. The effect of hydrogen on the evolution of intergranular cracking: A cross-scale study using first-principles and cohesive finite element methods. RSC Adv. 2016, 6, 27282–27292. [Google Scholar] [CrossRef]
- Álvarez, D.; Blackman, B.; Guild, F.; Kinloch, A. Mode I fracture in adhesively-bonded joints: A mesh-size independent modelling approach using cohesive elements. Eng. Fract. Mech. 2014, 115, 73–95. [Google Scholar] [CrossRef]
- Xu, L.; Cheng, Y.F. A direct assessment of failure pressure of high-strength steel pipelines with considerations of the synergism of corrosion defects, internal pressure and soil strain. In NACE Corrosion; NACE: Orlando, FL, USA, 2013. [Google Scholar]
- Criscenti, L.J.; Cygan, R.T.; Kooser, A.S.; Moffat, H.K. Water and Halide Adsorption to Corrosion Surfaces: Molecular Simulations of Atmospheric Interactions with Aluminum Oxyhydroxide and Gold. Chem. Mater. 2008, 20, 4682–4693. [Google Scholar] [CrossRef]
- Praveen, B.M.; Alhadhrami, A.; Prasanna, B.M.; Hebbar, N.; Prabhu, R. Anti-Corrosion Behavior of Olmesartan for Soft-Cast Steel in 1 mol dm−3 HCl. Coatings 2021, 11, 965. [Google Scholar] [CrossRef]
- Matad, P.B.; Mokshanatha, P.B.; Hebbar, N.; Venkatesha, V.T.; Tandon, H.C. Ketosulfone Drug as a Green Corrosion Inhibitor for Mild Steel in Acidic Medium. Ind. Eng. Chem. Res. 2014, 53, 8436–8444. [Google Scholar] [CrossRef]
- Beyerlein, I.; Caro, A.; Demkowicz, M.; Mara, N.; Misra, A.; Uberuaga, B. Radiation damage tolerant nanomaterials. Mater. Today 2013, 16, 443–449. [Google Scholar] [CrossRef]
- Bhattacharya, B.; Kumar, G.D.; Agarwal, A.; Erkoç, Ş.; Singh, A.; Chakraborti, N. Analyzing Fe–Zn system using molecular dynamics, evolutionary neural nets and multi-objective genetic algorithms. Comput. Mater. Sci. 2009, 46, 821–827. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.; Zhu, T.; Gao, Y.; Zhao, J. Nanoscale interface of metals for withstanding momentary shocks of compression. Nanoscale 2010, 2, 2818–2825. [Google Scholar] [CrossRef]
- Yan, L.; Diao, Y.; Lang, Z.; Gao, K. Corrosion rate prediction and influencing factors evaluation of low-alloy steels in marine atmosphere using machine learning approach. Sci. Technol. Adv. Mater. 2020, 21, 359–370. [Google Scholar] [CrossRef]
- Salami, B.A.; Rahman, S.M.; Oyehan, T.A.; Maslehuddin, M.; Al Dulaijan, S.U. Ensemble machine learning model for corrosion initiation time estimation of embedded steel reinforced self-compacting concrete. Measurement 2020, 165, 108141. [Google Scholar] [CrossRef]
- Ossai, C.I. A Data-Driven Machine Learning Approach for Corrosion Risk Assessment—A Comparative Study. Big Data Cogn. Comput. 2019, 3, 28. [Google Scholar] [CrossRef]
- Fulkerson, B.; Michie, D.; Spiegelhalter, D.J.; Taylor, C.C. Machine Learning, Neural and Statistical Classification. Technometrics 1995, 37, 459. [Google Scholar] [CrossRef]
- Polikreti, K.; Argyropoulos, V.; Charalambous, D.; Vossou, A.; Perdikatsis, V.; Apostolaki, C. Tracing correlations of corrosion products and microclimate data on outdoor bronze monuments by Principal Component Analysis. Corros. Sci. 2009, 51, 2416–2422. [Google Scholar] [CrossRef]
- Khayati, G.R.; Rajabi, Z.; Ehteshamzadeh, M.; Beirami, H. A Hybrid Particle Swarm Optimization with Dragonfly for Adaptive ANFIS to Model the Corrosion Rate in Concrete Structures. Int. J. Concr. Struct. Mater. 2022, 16, 28. [Google Scholar] [CrossRef]
- Memon, A.M.; Imran, I.H.; Alhems, L.M. Neural network based corrosion modeling of Stainless Steel 316L elbow using electric field mapping data. Sci. Rep. 2023, 13, 13088. [Google Scholar] [CrossRef]
- Li, Q.; Xia, X.; Pei, Z.; Cheng, X.; Zhang, D.; Xiao, K.; Wu, J.; Li, X. Long-term corrosion monitoring of carbon steels and environmental correlation analysis via the random forest method. npj Mater. Degrad. 2022, 6, 1. [Google Scholar] [CrossRef]
- Wei, B.; Xu, J.; Pang, J.; Huang, Z.; Wu, J.; Cai, Z.; Yan, M.; Sun, C. Prediction of electrochemical impedance spectroscopy of high-entropy alloys corrosion by using gradient boosting decision tree. Mater. Today Commun. 2022, 32, 104047. [Google Scholar] [CrossRef]
- Forkan, A.R.M.; Kang, Y.-B.; Jayaraman, P.P.; Liao, K.; Kaul, R.; Morgan, G.; Ranjan, R.; Sinha, S. CorrDetector: A framework for structural corrosion detection from drone images using ensemble deep learning. Expert Syst. Appl. 2022, 193, 116461. [Google Scholar] [CrossRef]
- Ao, M.; Ji, Y.; Sun, X.; Guo, F.; Xiao, K.; Dong, C. Image Deep Learning Assisted Prediction of Mechanical and Corrosion Behavior for Al-Zn-Mg Alloys. IEEE Access 2022, 10, 35620–35631. [Google Scholar] [CrossRef]
- Dogan, G.; Arslan, M.H.; Ilki, A. Detection of damages caused by earthquake and reinforcement corrosion in RC buildings with Deep Transfer Learning. Eng. Struct. 2023, 279, 115629. [Google Scholar] [CrossRef]
- Asahi, H.; Kushida, T.; Kimura, M.; Fukai, H.; Okano, S. Role of Microstructures on Stress Corrosion Cracking of Pipeline Steels in Carbonate-Bicarbonate Solution. Corrosion 1999, 55, 644–652. [Google Scholar] [CrossRef]
- Gonzalez-Rodriguez, J.G.; Casales, M.; Salinas-Bravo, V.M.; Albarran, J.L.; Martinez, L. Effect of Microstructure on the Stress Corrosion Cracking of X-80 Pipeline Steel in Diluted Sodium Bicarbonate Solutions. Corrosion 2002, 58, 584–590. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X.; Du, C.; Lu, L.; Zhang, Y.; Cheng, Y. Effect of inclusions on initiation of stress corrosion cracks in X70 pipeline steel in an acidic soil environment. Corros. Sci. 2009, 51, 895–900. [Google Scholar] [CrossRef]
- Al-Mansour, M.; Alfantazi, A.; El-Boujdaini, M. Sulfide stress cracking resistance of API-X100 high strength low alloy steel. Mater. Des. 2009, 30, 4088–4094. [Google Scholar] [CrossRef]
- Lu, Z.P.; Shoji, T.; Takeda, Y. Effects of water chemistry on stress corrosion cracking of 316NG weld metals in high temperature water. Corros. Eng. Sci. Technol. 2015, 50, 41–48. [Google Scholar] [CrossRef]
- Honeycombe, J.; Gooch, T.G. Corrosion and Stress Corrosion of Arc Welds in 18% Chromium–2% Molybdenum–Titanium Stabilised Stainless Steel. Br. Corros. J. 1983, 18, 25–34. [Google Scholar] [CrossRef]
- Kuroda, T.; Matsuda, F.; Bunno, K. Stress corrosion cracking of duplex stainless steel in high-temperature/high-pressure water. Weld. Int. 1995, 9, 788–796. [Google Scholar] [CrossRef]
- Baroux, B. Passivation and localized corrosion of stainless steelS. In Passivity of Metals and Semiconductors; Froment, M., Ed.; Elsevier: Amsterdam, The Netherlands, 1983; pp. 531–545. [Google Scholar]
- Kain, V. 5—Stress corrosion cracking (SCC) in stainless steels. In Stress Corrosion Cracking; Raja, V.S., Shoji, T., Eds.; Woodhead Publishing: Cambridge, UK, 2011; pp. 199–244. [Google Scholar]
- Pan, Y.; Sun, B.; Liu, Z.; Wu, W.; Li, X. Hydrogen effects on passivation and SCC of 2205 DSS in acidified simulated seawater. Corros. Sci. 2022, 208, 110640. [Google Scholar] [CrossRef]
- Runge, J.M.; Runge, J.M. A brief history of anodizing aluminum. In The Metallurgy of Anodizing Aluminum: Connecting Science to Practice; Springer International Publishing: Cham, Switzerland, 2018; pp. 65–148. [Google Scholar]
- Zhu, H.; Li, J. Advancements in corrosion protection for aerospace aluminum alloys through surface treatment. Int. J. Electrochem. Sci. 2024, 19, 100487. [Google Scholar] [CrossRef]
- Minagar, S.; Berndt, C.C.; Wang, J.; Ivanova, E.; Wen, C. A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater. 2012, 8, 2875–2888. [Google Scholar] [CrossRef]
- Rezayat, M.; Karamimoghadam, M.; Moradi, M.; Casalino, G.; Rovira, J.J.R.; Mateo, A. Overview of Surface Modification Strategies for Improving the Properties of Metastable Austenitic Stainless Steels. Metals 2023, 13, 1268. [Google Scholar] [CrossRef]
- Fürstner, R.; Barthlott, W.; Neinhuis, C.; Walzel, P. Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces. Langmuir 2005, 21, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Bellido-Aguilar, D.A.; Zheng, S.; Huang, Y.; Zeng, X.; Zhang, Q.; Chen, Z. Solvent-Free Synthesis and Hydrophobization of Biobased Epoxy Coatings for Anti-Icing and Anticorrosion Applications. ACS Sustain. Chem. Eng. 2019, 7, 19131–19141. [Google Scholar] [CrossRef]
- Cheng, Y. Fundamentals of hydrogen evolution reaction and its implications on near-neutral pH stress corrosion cracking of pipelines. Electrochimica Acta 2007, 52, 2661–2667. [Google Scholar] [CrossRef]
- Yan, M.; Wang, J.; Han, E.; Ke, W. Local environment under simulated disbonded coating on steel pipelines in soil solution. Corros. Sci. 2008, 50, 1331–1339. [Google Scholar] [CrossRef]
- Yan, M.; Sun, C.; Xu, J.; Wu, T.; Yang, S.; Ke, W. Stress corrosion of pipeline steel under occluded coating disbondment in a red soil environment. Corros. Sci. 2015, 93, 27–38. [Google Scholar] [CrossRef]
- Chen, X.; Wang, G.; Gao, F.; Wang, Y.; He, C. Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeline steel under disbonded coatings. Corros. Sci. 2015, 101, 1–11. [Google Scholar] [CrossRef]
- Beavers, J.A.; Thompson, N.G. External Corrosion of Oil and Natural Gas Pipelines. In ASM Handbook; ASM International: Materials Park, OH, USA, 2006; pp. 1015–1026. [Google Scholar]
- Fu, A.; Tang, X.; Cheng, Y. Characterization of corrosion of X70 pipeline steel in thin electrolyte layer under disbonded coating by scanning Kelvin probe. Corros. Sci. 2009, 51, 186–190. [Google Scholar] [CrossRef]
- Quej, L.; Mireles, M.; Galván-Martínez, R.; Contreras, A. Electrochemical characterization of X60 steel exposed to different soils from South of México. In Materials Characterization; Springer: Berlin/Heidelberg, Germany, 2015; pp. 101–116. [Google Scholar]
- Zhang, F.; Ju, P.; Pan, M.; Zhang, D.; Huang, Y.; Li, G.; Li, X. Self-healing mechanisms in smart protective coatings: A review. Corros. Sci. 2018, 144, 74–88. [Google Scholar] [CrossRef]
- Stankiewicz, A.; Szczygieł, I.; Szczygieł, B. Self-healing coatings in anti-corrosion applications. J. Mater. Sci. 2013, 48, 8041–8051. [Google Scholar] [CrossRef]
- Karpakam, V.; Kamaraj, K.; Sathiyanarayanan, S.; Venkatachari, G.; Ramu, S. Electrosynthesis of polyaniline–molybdate coating on steel and its corrosion protection performance. Electrochimica Acta 2011, 56, 2165–2173. [Google Scholar] [CrossRef]
- Solovyeva, V.A.; Almuhammadi, K.H.; Badeghaish, W.O. Current Downhole Corrosion Control Solutions and Trends in the Oil and Gas Industry: A Review. Materials 2023, 16, 1795. [Google Scholar] [CrossRef]
- Nikafshar, S.; McCracken, J.; Dunne, K.; Nejad, M. Improving UV-Stability of epoxy coating using encapsulated halloysite nanotubes with organic UV-Stabilizers and lignin. Prog. Org. Coat. 2021, 151, 105843. [Google Scholar] [CrossRef]
- Nawaz, M.; Habib, S.; Khan, A.; Shakoor, R.A.; Kahraman, R. Cellulose microfibers (CMFs) as a smart carrier for autonomous self-healing in epoxy coatings. New J. Chem. 2020, 44, 5702–5710. [Google Scholar] [CrossRef]
- Tanvir, A.; El-Gawady, Y.H.; Al-Maadeed, M. Cellulose nanofibers to assist the release of healing agents in epoxy coatings. Prog. Org. Coatings 2017, 112, 127–132. [Google Scholar] [CrossRef]
- Rafiee, M.A.; Rafiee, J.; Wang, Z.; Song, H.; Yu, Z.-Z.; Koratkar, N. Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. ACS Nano 2009, 3, 3884–3890. [Google Scholar] [CrossRef] [PubMed]
- Varzeghani, H.N.; Amraei, I.A.; Mousavi, S.R. Dynamic Cure Kinetics and Physical-Mechanical Properties of PEG/Nanosilica/Epoxy Composites. Int. J. Polym. Sci. 2020, 2020, 7908343. [Google Scholar] [CrossRef]
- Ahmadi, Z. Epoxy in nanotechnology: A short review. Prog. Org. Coatings 2019, 132, 445–448. [Google Scholar] [CrossRef]
- Loto, R.T.; Leramo, R.; Oyebade, B. Synergistic Combination Effect of Salvia officinalis and Lavandula officinalis on the Corrosion Inhibition of Low-Carbon Steel in the Presence of SO42−- and Cl−-Containing Aqueous Environment. J. Fail. Anal. Prev. 2018, 18, 1429–1438. [Google Scholar] [CrossRef]
- Aslam, R.; Mobin, M.; Zehra, S.; Aslam, J. A comprehensive review of corrosion inhibitors employed to mitigate stainless steel corrosion in different environments. J. Mol. Liq. 2022, 364, 119992. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, Y.; Li, P.; Zeng, X.; Guo, B.; Pan, J.; Hou, L.; Yin, X. Novel Schiff base-based cationic Gemini surfactants as corrosion inhibitors for Q235 carbon steel and printed circuit boards. Colloids Surfaces A: Physicochem. Eng. Asp. 2021, 623, 126717. [Google Scholar] [CrossRef]
- Sivapragash, M.; Kumaradhas, P.; Vettivel, S.; Retnam, B.S.J. Optimization of PVD process parameter for coating AZ91D magnesium alloy by Taguchi grey approach. J. Magnes. Alloy. 2018, 6, 171–179. [Google Scholar] [CrossRef]
- Daroonparvar, M.; Bakhsheshi-Rad, H.R.; Saberi, A.; Razzaghi, M.; Kasar, A.K.; Ramakrishna, S.; Menezes, P.L.; Misra, M.; Ismail, A.F.; Sharif, S.; et al. Surface modification of magnesium alloys using thermal and solid-state cold spray processes: Challenges and latest progresses. J. Magnes. Alloy. 2022, 10, 2025–2061. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, T.; Li, H.; Liu, Q. UV-durable superhydrophobic ZnO/SiO2 nanorod arrays on an aluminum substrate using catalyst-free chemical vapor deposition and their corrosion performance. Appl. Surf. Sci. 2023, 623, 157085. [Google Scholar] [CrossRef]
- Deng, K.; Wang, X.; Huang, S.; Li, P.; Jiang, Q.; Yin, H.; Fan, J.; Wei, K.; Zheng, Y.; Shi, J.; et al. Effective Suppression of Amorphous Ga2O and Related Deep Levels on the GaN Surface by High-Temperature Remote Plasma Pretreatments in GaN-Based Metal–Insulator–Semiconductor Electronic Devices. ACS Appl. Mater. Interfaces 2023, 15, 25058–25065. [Google Scholar] [CrossRef]
- Kencana, S.D.; Kuo, Y.-L.; Yen, Y.-W.; Schellkes, E.; Chuang, W. Improving the solder wettability via atmospheric plasma technology. In Proceedings of the 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 28–31 May 2019. [Google Scholar]
- Ramezani, M.; Ripin, Z.M.; Pasang, T.; Jiang, C.-P. Surface Engineering of Metals: Techniques, Characterizations and Applications. Metals 2023, 13, 1299. [Google Scholar] [CrossRef]
- Liu, B.; Xiao, F.; Zhu, H.; Tang, M. Promising WC-30WB-10Co Cemented Carbide Coating with Improved Density and Hardness Deposited by High Velocity Oxy-Fuel Spraying: Microstructure and Mechanical Properties. J. Mater. Eng. Perform. 2023, 32, 6405–6411. [Google Scholar] [CrossRef]
- Ko, G.; Kim, W.; Kwon, K.; Lee, T.-K. The Corrosion of Stainless Steel Made by Additive Manufacturing: A Review. Metals 2021, 11, 516. [Google Scholar] [CrossRef]
- Pasco, J.; Lei, Z.; Aranas, C. Additive Manufacturing in Off-Site Construction: Review and Future Directions. Buildings 2022, 12, 53. [Google Scholar] [CrossRef]
- Kong, D.-J.; Wu, Y.-Z.; Long, D. Stress Corrosion of X80 Pipeline Steel Welded Joints by Slow Strain Test in NACE H2S Solutions. J. Iron Steel Res. Int. 2013, 20, 40–46. [Google Scholar] [CrossRef]
- Javidi, M.; Horeh, S.B. Investigating the mechanism of stress corrosion cracking in near-neutral and high pH environments for API 5L X52 steel. Corros. Sci. 2014, 80, 213–220. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X.; Cheng, Y. Electrochemical state conversion model for occurrence of pitting corrosion on a cathodically polarized carbon steel in a near-neutral pH solution. Electrochimica Acta 2011, 56, 4167–4175. [Google Scholar] [CrossRef]
- Li, M.; Cheng, Y. Corrosion of the stressed pipe steel in carbonate–bicarbonate solution studied by scanning localized electrochemical impedance spectroscopy. Electrochimica Acta 2008, 53, 2831–2836. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X.; Cheng, Y. Mechanistic aspect of near-neutral pH stress corrosion cracking of pipelines under cathodic polarization. Corros. Sci. 2012, 55, 54–60. [Google Scholar] [CrossRef]
- Fu, A.; Cheng, Y. Electrochemical polarization behavior of X70 steel in thin carbonate/bicarbonate solution layers trapped under a disbonded coating and its implication on pipeline SCC. Corros. Sci. 2010, 52, 2511–2518. [Google Scholar] [CrossRef]
- Yin, Z.F.; Zhao, W.Z.; Feng, Y.R.; Zhu, S.D. Characterisation of CO2 corrosion scale in simulated solution with Cl– ion under turbulent flow conditions. Corros. Eng. Sci. Technol. 2009, 44, 453–461. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X.; Du, C.; Zhai, G.; Cheng, Y. Stress corrosion cracking behavior of X70 pipe steel in an acidic soil environment. Corros. Sci. 2008, 50, 2251–2257. [Google Scholar] [CrossRef]
- Dong, C.; Fu, A.; Li, X.; Cheng, Y. Localized EIS characterization of corrosion of steel at coating defect under cathodic protection. Electrochimica Acta 2008, 54, 628–633. [Google Scholar] [CrossRef]
- Quej-Ake, L.; Marín-Cruz, J.; Contreras, A. Electrochemical study of the corrosion rate of API steels in clay soils. Anti-Corrosion Methods Mater. 2017, 64, 61–68. [Google Scholar] [CrossRef]
- Quej-Aké, L.; Nava, N.; Espinosa-Medina, M.A.; Liu, H.B.; Alamilla, J.L.; Sosa, E. Characterisation of soil/pipe interface at a pipeline failure after 36 years of service under impressed current cathodic protection. Corros. Eng. Sci. Technol. 2015, 50, 311–319. [Google Scholar] [CrossRef]
- Cole, I.S.; Marney, D. The science of pipe corrosion: A review of the literature on the corrosion of ferrous metals in soils. Corros. Sci. 2021, 56, 5–16. [Google Scholar] [CrossRef]
- Liao, K.; Yao, Q.; Wu, X.; Jia, W. A Numerical Corrosion Rate Prediction Method for Direct Assessment of Wet Gas Gathering Pipelines Internal Corrosion. Energies 2012, 5, 3892–3907. [Google Scholar] [CrossRef]
Metal | Environment |
---|---|
Titanium alloys | Methanol-HCl |
Seawater | |
Red-fuming nitric acid | |
Stainless steels | Condensing steam from chloride waters |
NaOH-H2S solutions | |
H2S | |
Seawater | |
NaCl-H2O2 solutions | |
Acidic chloride solutions | |
Steels | Carbonate–bicarbonate solutions |
Seawater | |
Acidic H2S solutions | |
Mixed acids (H2SO4-HNO3) | |
Calcium, ammonium, and sodium nitrite solutions | |
NaOH-Na2SiO4 solutions | |
NaOH solutions | |
Nickel | Fused caustic soda |
Magnesium alloys | Distilled water |
Seawater | |
Rural and coastal atmospheres | |
NaCl-Na2CrO4 solutions | |
Lead | Lead acetate solutions |
Inconel | Caustic soda solutions |
Gold alloys | Acetic acid–salt solutions |
FeCl3 solutions | |
Copper alloys | Water or water vapor |
Amines | |
Ammonia vapor and solutions | |
Al alloys | Seawater |
NaCl solutions | |
NaCl-H2O2 solutions |
ASS | Element (wt.%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cr | Ni | S | P | Mn | Mo | Si | N | C | Others | |
SS302 | 17.00 | 8.00 | 0.030 | 0.045 | 2.00 | – | 0.75 | 0.10 | 0.15 | – |
SS310 | 24.00 | 19.00 | 0.030 | 0.045 | 2.00 | – | 1.50 | – | 0.25 | – |
SS347 | 17.00 | 9.00 | 0.030 | 0.045 | 2.00 | – | 0.75 | – | 0.08 | Nb1.00 |
SS321 | 17.00 | 9.00 | 0.030 | 0.045 | 2.00 | – | 0.75 | 0.10 | 0.08 | Ti 0.70 |
SS316 | 18.00 | 10.00 | 0.030 | 0.045 | 2.00 | 2.00 | 0.75 | 0.10 | 0.08 | – |
SS304 | 18.23 | 8.13 | 0.004 | 0.029 | 1.65 | – | 0.35 | 0.10 | 0.06 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vakili, M.; Koutník, P.; Kohout, J.; Gholami, Z. Analysis, Assessment, and Mitigation of Stress Corrosion Cracking in Austenitic Stainless Steels in the Oil and Gas Sector: A Review. Surfaces 2024, 7, 589-642. https://doi.org/10.3390/surfaces7030040
Vakili M, Koutník P, Kohout J, Gholami Z. Analysis, Assessment, and Mitigation of Stress Corrosion Cracking in Austenitic Stainless Steels in the Oil and Gas Sector: A Review. Surfaces. 2024; 7(3):589-642. https://doi.org/10.3390/surfaces7030040
Chicago/Turabian StyleVakili, Mohammadtaghi, Petr Koutník, Jan Kohout, and Zahra Gholami. 2024. "Analysis, Assessment, and Mitigation of Stress Corrosion Cracking in Austenitic Stainless Steels in the Oil and Gas Sector: A Review" Surfaces 7, no. 3: 589-642. https://doi.org/10.3390/surfaces7030040