State of the Art Synthesis of Ag-ZnO-Based Nanomaterials by Atmospheric Pressure Microplasma Techniques
Abstract
:1. Introduction
2. Atmospheric Pressure Microplasma for Nanosynthesis
2.1. Background
2.2. Synthesis of Nanomaterials
2.2.1. Plasma Jet System
2.2.2. Dielectric Barrier Discharge
2.2.3. Plasma Torch Method
2.2.4. Plasma–Liquid System
3. State-of-the-Art of the Microplasma Technique Applications
4. Summary of Review
5. Conclusions and Final Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Kumar, A.; Jayeoye, T.J.; Mohite, P.; Singh, S.; Rajput, T.; Munde, S.; Eze, F.N.; Chidrawar, V.R.; Puri, A.; Prajapati, B.G. Sustainable and consumer-centric nanotechnology-based materials: An update on the multifaceted applications, risks and tremendous opportunities. Nano Struct. Nano Objects 2024, 38, 101148. [Google Scholar] [CrossRef]
- Zhou, A.F.; Feng, P.X. One-Dimensional and Two-Dimensional Nanomaterials for Sensor Applications. Crystals 2024, 14, 622. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Kim, H.-J.; Park, H.J.; Kim, T.; Khalid, Z.; Park, J.K.; Oh, J.-M. Controlling the Surface Morphology of Two-Dimensional Nano-Materials upon Molecule-Mediated Crystal Growth. Nanomaterials 2023, 13, 2363. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.; Verma, N.; Bedi, R.K. Ethanol gas sensor based upon ZnO nanoparticles prepared by different techniques. Results Phys. 2017, 7, 801–806. [Google Scholar] [CrossRef]
- Prete, P.; Lovergine, N. Dilute nitride III-V nanowires for high-efficiency intermediate-band photovoltaic cells: Materials requirements, self-assembly methods and properties. Prog. Cryst. Growth Charact. Mater. 2020, 66, 100510. [Google Scholar] [CrossRef]
- Di Carlo, V.; Prete, P.; Dubrovskii, V.G.; Berdnikov, Y.; Lovergine, N. CdTe Nanowires by Au-Catalyzed Metalorganic Vapor Phase Epitaxy. Nano Lett. 2017, 17, 4075–4082. [Google Scholar] [CrossRef]
- Nagpal, K.; Rapenne, L.; Wragg, D.S.; Rauwel, E.; Rauwel, P. The role of CNT in surface defect passivation and UV emission intensification of ZnO nanoparticles. Nanomater. Nanotechnol. 2022, 12, 18479804221079419. [Google Scholar] [CrossRef]
- Bimberg, D. Semiconductor nanostructures for flying q-bits and green photonics. Nanophotonics 2018, 7, 1245–1257. [Google Scholar] [CrossRef]
- Mirzaei, H.; Darroudi, M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram. Int. 2017, 43, 907–914. [Google Scholar] [CrossRef]
- Lee, Y.-Y.; Sriram, B.; Wang, S.-F.; Kogularasu, S.; Chang-Chien, G.-P. Advanced nanomaterial-based biosensors for N-terminal pro-brain natriuretic peptide biomarker detection: Progress and future challenges in cardiovascular disease diagnostics. Nanomaterials 2024, 14, 153. [Google Scholar] [CrossRef]
- Gatou, M.-A.; Vagena, I.-A.; Pippa, N.; Gazouli, M.; Pavlatou, E.A.; Lagopati, N. The Use of Crystalline Carbon-Based Nanomaterials (CBNs) in Various Biomedical Applications. Crystals 2023, 13, 1236. [Google Scholar] [CrossRef]
- Cao, M. Recent Development of Nanomaterials for Chemical Engineering. Nanomaterials 2024, 14, 456. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Chen, L.; Huang, W.; Gao, Z.; Jin, M. Current Advances of Nanomaterial-Based Oral Drug Delivery for Colorectal Cancer Treatment. Nanomaterials 2024, 14, 557. [Google Scholar] [CrossRef]
- Gaci, Y.; Guittoum, A.; Hemmous, M.; Nez-Blanco, D.M.; Gorria, P.; Blanco, J.A.; Aouaroun, T. Effect of Fe content on the structural and magnetic properties of ternary (Ni60Co40)100−xFex nanomaterials synthesized by hydrothermal route. Surf. Rev. Lett. 2024, 31, 1–9. [Google Scholar] [CrossRef]
- Gatou, M.-A.; Skylla, E.; Dourou, P.; Pippa, N.; Gazouli, M.; Lagopati, N.; Pavlatou, E.A. Magnesium Oxide (MgO) Nanoparticles: Synthetic Strategies and Biomedical Applications. Crystals 2024, 14, 215. [Google Scholar] [CrossRef]
- Hadi, A.J.; Nayef, U.M.; Jabir, M.S.; Mutlak, F.A.H. Titanium dioxide nanoparticles prepared via laser ablation: Evaluation of their antibacterial and anticancer activity. Surf. Rev. Lett. 2023, 30, 1–10. [Google Scholar] [CrossRef]
- Casiano-Muñiz, I.M.; Ortiz-Román, M.I.; Lorenzana-Vázquez, G.; Román-Velázquez, F.R. Synthesis, Characterization, and Ecotoxicology Assessment of Zinc Oxide Nanoparticles by In Vivo Models. Nanomaterials 2024, 14, 255. [Google Scholar] [CrossRef]
- Alhoqail, W.A.; Alothaim, A.S.; Suhail, M.; Iqbal, D.; Kamal, M.; Asmari, M.M.; Jamal, A. Husk-like zinc oxide nanoparticles induce apoptosis through ROS generation in epidermoid carcinoma cells: Effect of incubation period on sol-gel synthesis and anti-cancerous properties. Biomedicines 2023, 11, 320. [Google Scholar] [CrossRef]
- Zenkin, K.; Durmus, S.; Demir, A. Investigating Magnetic, Dielectric, Optic and Morphologic Properties of Nano-Nickel Oxide-Doped NdFeO3. Surf. Rev. Lett. 2024, 31, 1–16. [Google Scholar] [CrossRef]
- Kumar, P.; Ramesh, M.R.; Doddamani, M.; Suresh, J. Green synthesis of Fe/Ni/Cr oxide nanoparticles using Costus pictus plant extract: Microstructure and biological properties. Surf. Rev. Lett. 2024, 31, 2450065. [Google Scholar] [CrossRef]
- Ounis, T.-D.; Rahmouni, K.; Aouar, L.; Zaabat, M. Optical properties and antibacterial activity of Ni, Mg and Fe-doped ZnO. Surf. Rev. Lett. 2024, 2450104. [Google Scholar] [CrossRef]
- Kavya Prakash, K.M.; Prakash, V.; Gokul Gopinath, P. Influence of Precursor Molarity and Leaf Extract Concentration on Physical Properties of Zinc Oxide (ZnO) Nanoparticles Synthesized Using Moringa Oleifera Leaf Extract. Surf. Rev. Lett. 2024, 2450124. [Google Scholar] [CrossRef]
- Abdulgafour, H.I.; Zainulabdeen, F.S.; Karam, G.S.; Magid, H.C.; Najim, A.A.; Hassan, F.M. Synthesis and characterization of Al-doped ZnO thin films as anti-reflection coatings for solar cell applications. Surf. Rev. Lett. 2024, 31, 1–7. [Google Scholar] [CrossRef]
- Wiesmann, N.; Mendler, S.; Buhr, C.R.; Ritz, U.; Kämmerer, P.W.; Brieger, J. Zinc oxide nanoparticles exhibit favorable properties to promote tissue integration of biomaterials. Biomedicines 2021, 9, 1462. [Google Scholar] [CrossRef] [PubMed]
- Sugihartono, I.; Tan, S.T.; Arkundato, A.; Fahdiran, R.; Isnaeni, I.; Handoko, E.; Budi, S.; Budi, A.S. The Effect of Al-Cu Co-Dopants on Morphology, Structure, and Optical Properties of ZnO Nanostructures. Mater. Res. 2023, 26, e20220499. [Google Scholar] [CrossRef]
- Khan, S.; Zahoor, M.; Khan, R.S.; Ikram, M.; Islam, N.U. The impact of silver nanoparticles on the growth of plants: The agriculture applications. Heliyon 2023, 9, e16928. [Google Scholar] [CrossRef]
- Song, Y.; Yang, F.; Mu, B.; Kang, Y.; Hui, A.; Wang, A. Phyto-mediated synthesis of Ag nanoparticles/attapulgite nanocomposites using olive leaf extract: Characterization, antibacterial activities and cytotoxicity. Inorg. Chem. Commun. 2023, 151, 110543. [Google Scholar] [CrossRef]
- Hu, J.; Chen, F.; Mao, J.; Ni, L.; Lu, J. Direction regulation of interface carrier transfer and enhanced photocatalytic oxygen activation over Z-scheme Bi4V2O11/Ag/AgCl for water purification. J. Colloid Interface Sci. 2023, 641, 695–706. [Google Scholar] [CrossRef]
- Jaswal, T.; Gupta, J. A review on the toxicity of silver nanoparticles on human health. Mater. Today Proc. 2023, 81, 859–863. [Google Scholar] [CrossRef]
- Neciosup-Puican, A.A.; Pérez-Tulich, L.; Trujillo, W.; Parada-Quinayá, C. Green Synthesis of Silver Nanoparticles from Anthocyanin Extracts of Peruvian Purple Potato INIA 328—Kulli papa. Nanomaterials 2024, 14, 1147. [Google Scholar] [CrossRef]
- Francisco, P.; Neves Amaral, M.; Neves, A.; Ferreira-Gonçalves, T.; Viana, A.S.; Catarino, J.; Faísca, P.; Simões, S.; Perdigão, J.; Charmier, A.J. Pluronic® F127 Hydrogel Containing Silver Nanoparticles in Skin Burn Regeneration: An Experimental Approach from Fundamental to Translational Research. Gels 2023, 9, 200. [Google Scholar] [CrossRef] [PubMed]
- Holubnycha, V.; Husak, Y.; Korniienko, V.; Bolshanina, S.; Tveresovska, O.; Myronov, P.; Holubnycha, M.; Butsyk, A.; Borén, T.; Banasiuk, R. Antimicrobial activity of two different types of silver nanoparticles against wide range of pathogenic bacteria. Nanomaterials 2024, 14, 137. [Google Scholar] [CrossRef]
- Naysmith, A.; Mian, N.S.; Rana, S. Development of conductive textile fabric using Plackett–Burman optimized green synthesized silver nanoparticles and in situ polymerized polypyrrole. Green Chem. Lett. Rev. 2023, 16, 2158690. [Google Scholar] [CrossRef]
- Ghazwani, M.; Hani, U.; Alqarni, M.H.; Alam, A. Development and Characterization of Methyl-Anthranilate-Loaded Silver Nanoparticles: A Phytocosmetic Sunscreen Gel for UV Protection. Pharmaceutics 2023, 15, 1434. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.R.; Singh, S.K.; Singh, M. Green synthesis of silver nanoparticles: Methods, biological applications, delivery and toxicity. Mater. Adv. 2023, 4, 1831–1849. [Google Scholar] [CrossRef]
- Al-Serwi, R.H.; Eladl, M.A.; El-Sherbiny, M.; Saleh, M.A.; Othman, G.; Alshahrani, S.M.; Alnefaie, R.; Jan, A.M.; Alnasser, S.M.; Albalawi, A.E. Targeted drug administration onto cancer cells using hyaluronic acid–quercetin-conjugated silver nanoparticles. Molecules 2023, 28, 4146. [Google Scholar] [CrossRef]
- Adam, A.; Mertz, D. Iron oxide@ mesoporous silica core-shell nanoparticles as multimodal platforms for magnetic resonance imaging, magnetic hyperthermia, near-infrared light photothermia, and drug delivery. Nanomaterials 2023, 13, 1342. [Google Scholar] [CrossRef] [PubMed]
- Kar, N.; McCoy, M.; Wolfe, J.; Bueno, S.L.A.; Shafei, I.H.; Skrabalak, S.E. Retrosynthetic design of core–shell nanoparticles for thermal conversion to monodisperse high-entropy alloy nanoparticles. Nat. Synth. 2024, 3, 175–184. [Google Scholar] [CrossRef]
- Rani, P.; Varma, R.S.; Singh, K.; Acevedo, R.; Singh, J. Catalytic and antimicrobial potential of green synthesized Au and Au@ Ag core-shell nanoparticles. Chemosphere 2023, 317, 137841. [Google Scholar] [CrossRef]
- Hu, J.; Liu, X.; Zhang, J.; Gu, X.; Zhang, Y. Plasmon-activated NO2 sensor based on Au@ MoS2 core-shell nanoparticles with heightened sensitivity and full recoverability. Sens. Actuators B Chem. 2023, 382, 133505. [Google Scholar] [CrossRef]
- Subbotina, J.; Rouse, I.; Lobaskin, V. In silico prediction of protein binding affinities onto core–shell PEGylated noble metal nanoparticles for rational design of drug nanocarriers. Nanoscale 2023, 15, 13371–13383. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liang, X.; Yu, J.; Xu, K.; Shen, J.-W.; Duan, W.; Zeng, J. Recent development of noble metal-based bimetallic nanoparticles for colorimetric sensing. TrAC Trends Anal. Chem. 2023, 15, 117386. [Google Scholar] [CrossRef]
- Abuzeid, H.M.; Julien, C.M.; Zhu, L.; Hashem, A.M. Green synthesis of nanoparticles and their energy storage, environmental, and biomedical applications. Crystals 2023, 13, 1576. [Google Scholar] [CrossRef]
- Miao, W.; Hao, R.; Wang, J.; Wang, Z.; Lin, W.; Liu, H.; Feng, Z.; Lyu, Y.; Li, Q.; Jia, D. Architecture Design and Catalytic Activity: Non-Noble Bimetallic CoFe/Fe3O4 Core–Shell Structures for CO2 Hydrogenation. Adv. Sci. 2023, 10, 2205087. [Google Scholar] [CrossRef]
- Xinghao, L.I.U.; Cheng, C.; Zimu, X.U.; Shuheng, H.U.; Jie, S.; Yan, L.A.N.; Paul, K.C. Degradation of tetracycline in water by gas–liquid plasma in conjunction with rGO-TiO2 nanocomposite. Plasma Sci. Technol. 2021, 23, 115503. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.; Xu, M. Ag-decorated ZnO-based nanocomposites for visible light-driven photocatalytic degradation: Basic understanding and outlook. J. Phys. D Appl. Phys. 2022, 55, 483001. [Google Scholar] [CrossRef]
- Usliyanage, J.P.; Perera, G.; Thiripuranathar, G.; Menaa, F. Synthetic strategies of Ag-doped ZnO nanocomposites: A comprehensive review. Biomass Convers. Biorefinery 2023, 1–21. [Google Scholar] [CrossRef]
- Thai, V.-P.; Furuno, H.; Saito, N.; Takahashi, K.; Sasaki, T.; Kikuchi, T. The essential role of redox potential/equilibrium constant in the ability of non-equilibrium plasma for nano-synthesis in liquids. J. Appl. Phys. 2020, 128, 043305. [Google Scholar] [CrossRef]
- Ingsel, T.; Gupta, R.K. Plasma at the nanoscale: An introduction. In Plasma at the Nanoscale; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–20. [Google Scholar]
- Abou El-Nour, K.M.M.; Eftaiha, A.; Al-Warthan, A.; Ammar, R.A.A. Synthesis and applications of silver nanoparticles. Arab. J. Chem. 2010, 3, 135–140. [Google Scholar] [CrossRef]
- Skiba, M.; Pivovarov, A.; Vorobyova, V.; Derkach, T.; Kurmakova, I. Plasma-chemical formation of silver nanoparticles: The silver ions concentration effect on the particle size and their antimicrobial properties. J. Chem. Technol. Metall. 2019, 54, 311–318. [Google Scholar]
- Verma, S.; Rao, B.T.; Srivastava, A.P.; Srivastava, D.; Kaul, R.; Singh, B. A facile synthesis of broad plasmon wavelength tunable silver nanoparticles in citrate aqueous solutions by laser ablation and light irradiation. Colloids Surf. A Physicochem. Eng. Asp. 2017, 527, 23–33. [Google Scholar] [CrossRef]
- Zheng, X.; Hu, J.; Li, J.; Shi, Y. Achieving Ultrahigh Hardness in Electrodeposited Nanograined Ni-Based Binary Alloys. Nanomaterials 2019, 9, 546. [Google Scholar] [CrossRef] [PubMed]
- Francis, S.; Joseph, S.; Koshy, E.P.; Mathew, B. Microwave assisted green synthesis of silver nanoparticles using leaf extract of elephantopus scaber and its environmental and biological applications. Artif. Cells Nanomed. Biotechnol. 2018, 46, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Habib, T.; Caiut, J.M.A.; Caillier, B. Synthesis of silver nanoparticles by atmospheric pressure plasma jet. Nanotechnology 2022, 33, 325603. [Google Scholar] [CrossRef]
- Lin, L.; Li, S.; Hessel, V.; Starostin, S.A.; Lavrijsen, R.; Zhang, W. Synthesis of Ni nanoparticles with controllable magnetic properties by atmospheric pressure microplasma assisted process. AIChE J. 2018, 64, 1540–1549. [Google Scholar] [CrossRef]
- Mariotti, D.; Bose, A.C.; Ostrikov, K. Atmospheric-microplasma-assisted nanofabrication: Metal and metal–oxide nanostructures and nanoarchitectures. IEEE Trans. Plasma Sci. 2009, 37, 1027–1033. [Google Scholar] [CrossRef]
- Shimizu, Y.; Kawaguchi, K.; Sasaki, T.; Koshizaki, N. Generation of room-temperature atmospheric H2/Ar microplasma jet driven with pulse-modulated ultrahigh frequency and its application to gold nanoparticle preparation. Appl. Phys. Lett. 2009, 94, 191504. [Google Scholar] [CrossRef]
- Weerasinghe, J.; Li, W.; Zhou, R.; Zhou, R.; Gissibl, A.; Sonar, P.; Speight, R.; Vasilev, K.; Ostrikov, K.J.N. Bactericidal silver nanoparticles by atmospheric pressure solution plasma processing. Nanomaterials 2020, 10, 874. [Google Scholar] [CrossRef] [PubMed]
- Bjelajac, A.; Phillipe, A.-M.; Guillot, J.; Fleming, Y.; Chemin, J.-B.; Choquet, P.; Bulou, S. Gold nanoparticles synthesis and immobilization by atmospheric pressure DBD plasma torch method. Nanoscale Adv. 2023, 5, 2573–2582. [Google Scholar] [CrossRef]
- Du, C.; Xiao, M. Cu2O nanoparticles synthesis by microplasma. Sci. Rep. 2014, 4, 7339. [Google Scholar] [CrossRef]
- Lin, L.; Starostin, S.A.; Li, S.; Hessel, V. Synthesis of metallic nanoparticles by microplasma. Phys. Sci. Rev. 2018, 3, 20170121. [Google Scholar]
- Uytdenhouwen, Y.; Van Alphen, S.; Michielsen, I.; Meynen, V.; Cool, P.; Bogaerts, A. A packed-bed DBD micro plasma reactor for CO2 dissociation: Does size matter? Chem. Eng. J. 2018, 348, 557–568. [Google Scholar] [CrossRef]
- Hong, F.C.-N.; Yan, C.-J. Synthesis and characterization of silicon oxide nanoparticles using an atmospheric DC plasma torch. Adv. Powder Technol. 2018, 29, 220–229. [Google Scholar] [CrossRef]
- Thong, Y.L.; Chin, O.H.; Ong, B.H.; Huang, N.M. Synthesis of silver nanoparticles prepared in aqueous solutions using helium dc microplasma jet. Jpn. J. Appl. Phys. 2015, 55, 01AE19. [Google Scholar] [CrossRef]
- Bisht, A.; Roshan Deen, G.; Ilyas, U. Synthesis of Nanoparticles Using Atmospheric Microplasma Discharge. IAEA 2013. Available online: https://www.osti.gov/etdeweb/biblio/22127895 (accessed on 5 July 2024).
- Kondeti, V.; Gangal, U.; Yatom, S.; Bruggeman, P. Ag+ reduction and silver nanoparticle synthesis at the plasma–liquid interface by an RF driven atmospheric pressure plasma jet: Mechanisms and the effect of surfactant. J Vac. Sci. Technol. A 2017, 35, 061302. [Google Scholar] [CrossRef]
- Shepida, M.; Kuntyi, O.; Sukhatskiy, Y.; Mazur, A.; Sozanskyi, M. Microplasma synthesis of antibacterial active silver nanoparticles in sodium polyacrylate solutions. Bioinorg. Chem. Appl. 2021, 2021, 4465363. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhong, X.; Lu, Y.; Li, Y.; Rider, A.; Furman, S.; Ostrikov, K. Plasmonic Ag nanoparticles via environment-benign atmospheric microplasma electrochemistry. Nanotechnology 2013, 24, 095604. [Google Scholar] [CrossRef] [PubMed]
- Shuaib, U.; Hussain, T.; Ahmad, R.; Zakaullah, M.; Mubarik, F.E.; Muntaha, S.T.; Ashraf, S. Plasma-liquid synthesis of silver nanoparticles and their antibacterial and antifungal applications. Mater. Res. Express 2020, 7, 035015. [Google Scholar] [CrossRef]
- Lin, L.; Li, X.; Zhou, J.; Zou, J.; Lai, J.; Chen, Z.; Shen, J.; Xu, H. Plasma-aided green and controllable synthesis of silver nanoparticles and their compounding with gemini surfactant. J. Taiwan Inst. Chem. Eng. 2021, 122, 311–319. [Google Scholar] [CrossRef]
- Vashistha, V.K.; Bala, R.; Das, D.K.; Mittal, A.; Pullabhotla, R.V. Transition Metal Nanoparticles As Promising Antimicrobial Agents. Surf. Rev. Lett. 2024, 31, 84. [Google Scholar] [CrossRef]
- Saleem, M.T.; Bashir, S.; Bashir, M. Microplasma assisted synthesis of silver nanoparticles capped with PVA, PVP and Sucrose. Nano Express 2021, 2, 020026. [Google Scholar] [CrossRef]
- Skiba, M.; Vorobyova, V.; Pivovarov, A.; Trus, I. Preparation of silver nanoparticles using atmospheric discharge plasma for catalytic reduction of p-nitrophenol: The influence of pressure in the reactor. Pigment. Resin Technol. 2020, 49, 449–456. [Google Scholar] [CrossRef]
- Iqbal, T.; Mukhtar, M.; Khan, M.; Khan, R.; Zaman, R.; Mahmood, H.; Zaka-ul-Islam, M. Atmospheric pressure microplasma assisted growth of silver nanosheets and their inhibitory action against bacteria of clinical interest. Mater. Res. Express 2016, 3, 125019. [Google Scholar] [CrossRef]
- Iqbal, T.; Aziz, A.; Khan, M.; Andleeb, S.; Mahmood, H.; Khan, A.A.; Khan, R.; Shafique, M. Surfactant assisted synthesis of ZnO nanostructures using atmospheric pressure microplasma electrochemical process with antibacterial applications. Mater. Sci. Eng. B 2018, 228, 153–159. [Google Scholar] [CrossRef]
- Schwan, A.; Chwatal, S.; Hendler, C.; Kopp, D.; Lackner, J.; Kaindl, R.; Tscherner, M.; Zirkl, M.; Angerer, P.; Friessnegger, B. Morphology-controlled atmospheric pressure plasma synthesis of zinc oxide nanoparticles for piezoelectric sensors. Appl. Nanosci. 2023, 13, 6421–6432. [Google Scholar] [CrossRef]
- Jain, G.; Macias-Montero, M.; Velusamy, T.; Maguire, P.; Mariotti, D. Porous zinc oxide nanocrystalline film deposition by atmospheric pressure plasma: Fabrication and energy band estimation. J. Plasma Process. Polym. 2017, 14, 1700052. [Google Scholar] [CrossRef]
- Abdullah, E.A.; Anber, A.A.; Edan, F.F.; Fraih, A.J. Synthesis of ZnO Nanoparticles by Using an Atmospheric-Pressure Plasma Jet. Open Access Libr. J. 2018, 5, 1–7. [Google Scholar] [CrossRef]
- Al-Rawi, B.K.; Mazhir, S.N. Evaluation of Antimicrobial Agents of Ag-ZnO Core-Shell Prepared by Micro-Jet Plasma Technique. Int. J. Nanosci. 2023, 22, 2350016–2350044. [Google Scholar] [CrossRef]
- Khalid, A.; Murbat, H.H.; Shanan, Z. Synthesis and characterization of gold–silver au/ag-core-shell nanoparticles by cold atmospheric pressure plasma. Biochem. Cell. Arch. 2019, 19, 3409–3414. [Google Scholar]
- Skiba, M.; Khrokalo, L.; Linyuchev, A.; Vorobyova, V. State of the Art on Plasma-liquid Route Synthesis monometallic Au, bimetallic Au/Ag core–shell and alloy nanoparticles: Toxicological, canalytical, antimicrobial activity for environmental control. J. Mol. Struct. 2024, 139293. [Google Scholar] [CrossRef]
- Sun, D.; Turner, J.; Jiang, N.; Zhu, S.; Zhang, L.; Falzon, B.G.; McCoy, C.P.; Maguire, P.; Mariotti, D.; Sun, D. Atmospheric pressure microplasma for antibacterial silver nanoparticle/chitosan nanocomposites with tailored properties. Compos. Sci. Technol. 2020, 186, 107911. [Google Scholar] [CrossRef]
- Aadim, K.A.; Abbas, I.K. Synthesis and Investigation of the Structural Characteristics of Zinc Oxide Nanoparticles Produced by an Atmospheric Plasma Jet. Iraqi J. Sci. 2023, 64, 1743–1752. [Google Scholar] [CrossRef]
- Bose, A.C.; Shimizu, Y.; Mariotti, D.; Sasaki, T.; Terashima, K.; Koshizaki, N. Flow rate effect on the structure and morphology of molybdenum oxide nanoparticles deposited by atmospheric-pressure microplasma processing. Nanotechnology 2006, 17, 5976. [Google Scholar] [CrossRef]
Technique | Advantages | Disadvantages | Ref. |
---|---|---|---|
Plasma jet system | Efficient, high-purity products, flexible | Costly and complex power supply, broad size distribution, large particle size | [62] |
Dielectric barrier discharge system | Longer lifetime, better stability, simple geometric configuration | Lower energy efficiency, deposition of surplus carbon | [63] |
Plasma torch method | Continuous process, no expensive vacuum system | The wide distribution of particle size, low surface area | [64] |
Plasma liquid system | Simple, efficient, highly confined high radical density, ultra-fine particle size, flexible precursors, narrow size distribution | Unclear mechanism, post-treatment required | [62] |
No. | Plasma Configuration | Nanomaterials | Applications | Capillary Diameter | Precursor | Gas Flow Rate | Voltage & Current | Ref. |
---|---|---|---|---|---|---|---|---|
01 | Atmospheric Pressure Microplasma jet | Silver | Optoelectronics, sensing, biomedical applications | Internal diameter 0.26 mm | AgNO3 + sucrose | 26 sccm | 2 mA | [65] |
02 | Atmospheric Pressure Microplasma | Silver | Nanosensors | Internal diameter 0.7 mm | AgNO3 + sucrose | 25 sccm | 0–15 kV | [66] |
03 | R.F. atmospheric pressure Microplasma jet | Silver | Photovoltaic | Internal diameter 5.25 mm | AgNO3 | 1.5 slm | [67] | |
04 | Microplasma Synthesis | Silver | Antibacterial activity | Internal diameter 0.1 mm | AgNO3 + NaPA | 250 V | [68] | |
05 | Atmospheric Microplasma electrochemistry | Silver | Plasmonic applications as sensing | Internal diameter 0.175 mm | AgNO3 + fructose | 25 sccm | 3 mA and 2 kV | [69] |
06 | Plasma liquid synthesis | Silver | Antibacterial and antifungal activities | Internal diameter 0.34 mm | AgNO3 + fructose | 100 sccm | 15 mA and 600 V | [70] |
07 | Plasma-aided green and controllable synthesis | Silver | Antibacterial activity | Internal diameter 0.5 mm | AgNO3 + Acetone | 30 sccm | [71] | |
08 | Atmospheric pressure Plasma jet | Silver | Bioactivity, catalysis | Internal diameter 3.7 mm | AgNO3 + trisodium citrate | 3 L/min | 8 A | [55] |
09 | Microplasma assisted synthesis | Silver | Cancer therapy | Internal diameter < 1 mm | AgNO3 + PVA, PVP & sucrose | 600 sccm | 3–5 kV | [73] |
10 | Atmospheric discharge plasma | Silver | Catalytic properties | Internal diameter 2.4 mm | AgNO3 + AlgNa | 500–1000 V | [74] | |
11 | Atmospheric pressure Microplasma | Silver | Antibacterial activity | Internal diameter 0.2 mm | AgNO3 + fructose | 150 sccm | 1000 V | [75] |
12 | Atmospheric pressure Microplasma electrochemical process | Zinc oxide | Antibacterial applications | Internal diameter 0.2 mm | Zn (NO3)2 + surfactant | 150 sccm | 1000 V | [76] |
13 | Atmospheric pressure plasma jet technique | Zinc oxide | Piezoelectric sensors | Zinc powder | 10 L/min | 200–400 A | [77] | |
14 | Atmospheric pressure plasma (R.F. Power) | Zinc oxide | Light-emitting diodes | Internal diameter 0.7 mm | Zinc wire | 150 sccm | [78] | |
15 | Atmospheric pressure plasma jet | Zinc oxide | Solar cells, Gas sensors | Internal diameter 0.6 mm | Zinc anode + NaOH + HNO3 + sucrose | 60 mL/min | 3 kV 5–10 mA | [79] |
16 | Atmospheric pressure Microplasma Jet | Ag-ZnO core shells | Antimicrobial activity | AgNO3 + Zn (NO3)2 | 13 kV | [80] | ||
17 | Atmospheric pressure Microplasma | Au-Ag core shells | Optical and biological properties | Internal diameter 1 mm | AgNO3 + HAuCl4. 3H2O | 2 l/min | 10 kV | [81] |
18 | Liquid-phase anode-type plasma discharge | Au-Ag core–shell | Antibacterial and antifungal properties | 2.4 mm diameter | HAuCl4⋅3H2O+ AgNO3 + sodium citrate | - | 0.5–1 kV | [82] |
Material | Control Parameters | Effect of Parameters | Ref. |
---|---|---|---|
Silver | Solution concentration |
| [75] |
| [83] | ||
| [69] | ||
ZnO | Processing time |
| [79] |
| [84] | ||
Silver |
| [66] | |
Silver | Stabilizing agent concentration |
| [70] |
Silver | Stabilizing agent concentration |
| [65] |
Molybdenum oxide | Gas flow rate |
| [85] |
Silver–gold core–shell | Silver nitrate solution 0.25, 0.72, and 1.2-mM |
| [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalid, A.; Naeem, M.; Atrooz, O.; Mozafari, M.R.; Anari, F.; Taghavi, E.; Rashid, U.; Aziz, B. State of the Art Synthesis of Ag-ZnO-Based Nanomaterials by Atmospheric Pressure Microplasma Techniques. Surfaces 2024, 7, 680-697. https://doi.org/10.3390/surfaces7030044
Khalid A, Naeem M, Atrooz O, Mozafari MR, Anari F, Taghavi E, Rashid U, Aziz B. State of the Art Synthesis of Ag-ZnO-Based Nanomaterials by Atmospheric Pressure Microplasma Techniques. Surfaces. 2024; 7(3):680-697. https://doi.org/10.3390/surfaces7030044
Chicago/Turabian StyleKhalid, Ayesha, Muhammad Naeem, Omar Atrooz, M. R. Mozafari, Fatemeh Anari, Elham Taghavi, Umair Rashid, and Bushra Aziz. 2024. "State of the Art Synthesis of Ag-ZnO-Based Nanomaterials by Atmospheric Pressure Microplasma Techniques" Surfaces 7, no. 3: 680-697. https://doi.org/10.3390/surfaces7030044
APA StyleKhalid, A., Naeem, M., Atrooz, O., Mozafari, M. R., Anari, F., Taghavi, E., Rashid, U., & Aziz, B. (2024). State of the Art Synthesis of Ag-ZnO-Based Nanomaterials by Atmospheric Pressure Microplasma Techniques. Surfaces, 7(3), 680-697. https://doi.org/10.3390/surfaces7030044