Modeling of Hydrogen Atom Adsorption and Diffusion in Ti3Sb Intermetallic Crystal with A15 Cubic Structure
Abstract
:1. Introduction
2. Methodology and Calculation Models
2.1. Methodology
- Simplicity of modeling. Atomic hydrogen is easier to model at the DFT level because its electronic structure is simpler. The H2 molecule has two hydrogen atoms with additional electronic interactions that are more difficult to describe, especially in the context of adsorption.
- Reaction kinetics. In real conditions, hydrogen adsorption on a surface often occurs in atomic form, since H2 molecules dissociate on the surface, turning into atomic hydrogen. This is especially true for processes such as diffusion, catalytic reactions, or hydrogenation reactions, where atomic hydrogen participates in the reaction.
- Energetic considerations. Adsorption of atomic hydrogen is often more stable than that of molecular hydrogen, since hydrogen molecules generally tend to dissociate when adsorbed onto active sites of catalysts or other surfaces.
- Simplification of calculations. In DFT calculations, it is usually assumed that the adsorbed atom or molecule has already gone through all intermediate stages (e.g., dissociation), and only the atomic form of hydrogen actively interacts with the surface, which simplifies the modeling.
2.2. DFT SGGA PBE Method
3. Results and Discussion
3.1. Structural Features of Ti3Sb–H
3.2. DFT SGGA-PBE Calculation of the Ti3Sb–H Structure
3.3. Adsorption Energy of H on Metal
- With increasing Hads energy (), the rate of hydrogen emission in M–H systems increases. This mechanism is typical for metals with low Hads energy (Ag, Au, Zn, Cd, In, Hg, Pb, Tl). A similar mechanism of H adsorption also takes place in some binary refractory compounds (e.g., borides, carbides, nitrides, silicides). In such compounds, the contribution of the covalent chemical bond is significant.
- With an increase in the density of the layer of adsorbed H atoms, increases and the process of surface recombination begins. With a further increase in the adsorption energy, the recombination rate remains constant in the case of a defect-free metal surface. The rate of Hads gradually slows down if adsorption takes place mainly on the defects of the crystal lattice and the boundaries of crystal grains. For metals such as Pt, Pd, Ru, Rh, Os, Fe, Co and Ni, the adsorbed hydrogen atoms are still far from the metal surface; therefore, they cannot tear an electron from the metal, and chemical desorption does not occur.
- At high energy , a relatively dense layer of Hads is formed on the metal surface. Hydrogen release from the surface can occur by different mechanisms, for example, electrochemical desorption. The electrochemical desorption mechanism is typical for metals with high adsorption energy, for example, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, and Re. Similar data on Hads for binary and complex alloy intermetallics have not yet been generalized.
3.4. DFT Calculation of the H Adsorption Energy
3.5. Electronic Properties of H Adatoms on the Ti3Sb (110) Surface
3.5.1. DOS
3.5.2. PDOS in 2 × 1 × 1 Supercells Ti3Sb–H
3.5.3. DOS in Ti3Sb1−xHx and Ti3−xSbHx
3.6. Magnetic Moment in Ti3Sb–H
3.7. Diffusion of H Atoms on the Ti3Sb (110) Surface
3.8. Calculation of the Diffusion Coefficient
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Skripov, A.V.; Podlesnyak, A.A.; Fischer, P. Neutron diffraction study of the structure of the A15-type deuteride Ti3SbD2.6. J. Alloys Compd. 1994, 210, 27–29. [Google Scholar] [CrossRef]
- Chen, P.; Xiong, Z.T.; Luo, J.Z.; Lin, J.Y.; Tan, K.L. Interaction of hydrogen with metal nitrides and imides. Nature 2002, 420, 302–304. [Google Scholar] [CrossRef]
- Zuttel, A.; Wenger, P.; Rentsch, S.; Sudan, P.; Mauron, P.; Emmenegger, C. LiBH4 a new hydrogen storage material. J. Power Sources 2003, 118, 1–7. [Google Scholar] [CrossRef]
- Ichikawa, T.; Fujii, H.; Isobe, S.; Nabeta, K. Rechargeable hydrogen storage in nanostructured mixtures of hydrogenated carbon and lithium hydride. Appl. Phys. Lett. 2005, 86, 241914–241921. [Google Scholar] [CrossRef]
- Yvon, K.; Fischer, P. Crystal and magnetic structures of ternary metal hydrides: A comprehensive review. In Hydrogen in Intermetallic Compounds I; Schlapbach, L., Ed.; Springer: Berlin, Germany, 1988; pp. 87–138. [Google Scholar]
- Buschow, K.H.J. Hydrogen absorption in intermetallic compounds. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K.A., Jr., Eyring, L., Eds.; North Holland: Amsterdam, The Netherlands, 1984; Volume 6, pp. 1–111. [Google Scholar]
- Principi, G.; Agresti, F.; Maddalena, A.; Lo Russo, S. The problem of solid state hydrogen storage. Energy 2009, 34, 2087–2091. [Google Scholar] [CrossRef]
- Xu, R.; Cheng, T.; Li, C.; Yang, X.; Rong, J. Properties of Ti-Based Hydrogen Storage Alloy. J. Energy Power Eng. 2024, 12, 99–114. Available online: https://www.scirp.org/journal/jpee (accessed on 1 January 2020). [CrossRef]
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef]
- Züttel, A. Materials for hydrogen storage. Mater. Today 2003, 6, 24–33. [Google Scholar] [CrossRef]
- Bowman, R.C.; Fultz, B. Metallic hydrides: Hydrogen storage and other gas-phase applications. MRS Bull. 2002, 27, 688–698. [Google Scholar] [CrossRef]
- Huot, J.; Tremblay, M.-L.; Schulz, R. Synthesis of nanocrystalline hydrogen storage materials. J. Alloys Compd. 2003, 356, 357–603. [Google Scholar] [CrossRef]
- Steurer, W.; Dshemuchadse, J. Intermetallics: Structures, Properties, and Statistics; Oxford University Press: Oxford, UK, 2016; 592p, ISBN-13: 9780198714552. [Google Scholar]
- Asadov, M.M.; Mammadova, S.O.; Guseinova, S.S.; Mustafaeva, S.N.; Lukichev, V.F. Ab initio calculation of the band structure and properties of modifications of the Ti3Sb compound doped with lithium. Phys. Solid State. 2022, 64, 1650–1665. [Google Scholar] [CrossRef]
- Wu, H.; Skripov, A.V.; Udovic, T.J.; Rush, J.J.; Derakhshan, S.; Kleinke, H. Hydrogen in Ti3Sb and Ti2Sb: Neutron vibrational spectroscopy and neutron diffraction studies. J. Alloys Compd. 2010, 496, 1–6. [Google Scholar] [CrossRef]
- Asadov, M.M.; Mammadova, S.O.; Guseinova, S.S.; Mustafaeva, S.N.; Lukichev, V.F. Simulation of the adsorption and diffusion of lithium atoms on defective graphene for a Li-ion battery. Rus. Microelectron. 2023, 52, 167–185. [Google Scholar] [CrossRef]
- Miller, G.J.; Dissanayaka Mudiyanselage, R.S.; Xie, W. Theoretical investigations of hydrogen absorption in the A15 intermetallics Ti3Sb and Ti3IrZ. Fur Naturforschung Sect. B-A J. Chem. Sci. 2021, 76, 819–826. [Google Scholar] [CrossRef]
- Chapai, R.; Smylie, M.P.; Hebbeker, H.; Chung, D.Y.; Kwok, W.-K.; Mitchell, J.F.; Welp, U. Superconducting properties and gap structure of the topological superconductor candidate Ti3Sb. Phys. Rev. B 2023, 107, 104504. [Google Scholar] [CrossRef]
- Mandal, M.; Sajilesh, K.P.; Chowdhury, R.R.; Singh, D.; Biswas, P.K.; Hillier, A.D.; Singh, R.P. Superconducting ground state of the topological superconducting candidates Ti3X (X = Ir, Sb). Phy. Rev. B 2021, 103, 054501. [Google Scholar] [CrossRef]
- Kim, M.; Wang, C.-Z.; Ho, K.-M. Topological states in A15 superconductors. Phys. Rev. B 2019, 99, 224506. [Google Scholar] [CrossRef]
- Sasaki, K.; Li, H.W.; Hayashi, A.; Yamabe, J.; Ogura, T.; Lyth, S.M. Hydrogen Energy Engineering. In Solid Hydrogen Storage Materials: Interstitial Hydrides; Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2016; Chapter 14; pp. 191–205. [Google Scholar] [CrossRef]
- Zhang, C. Hydrogen storage: Improving reversibility. Nat. Energy 2017, 2, 17064–17074. [Google Scholar] [CrossRef]
- Srinivasan, S.S.; Demirocak, D.E. Metal Hydrides Used for Hydrogen Storage In Nanostructured Materials for Next-Generation Energy Storage and Conversion; Chen, Y.P., Bashir, S., Liu, J.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 225–255. [Google Scholar] [CrossRef]
- Belyakova, V.A.; Polukhin; Rigmant, L.K. Effect of Hydrogen on the Interatomic Interactions of Elements in Metal Alloys and the Physicochemical Properties of the Related Articles. Russ. Metall. (Metally) 2020, 20, 859–869. [Google Scholar] [CrossRef]
- Balmeo, M.M.; Dizon, J.S.C.; Empizo, M.J.F.; Solibet, E.J.C.D.; Agulto, V.C.; Salvador, A.A.; Sarukura, N.; Nakanishi, H.; Kasai, H.; Padama, A.A.B. Density functional theory-based investigation of hydrogen adsorption on zinc oxide (1010) surface: Revisited. Surf. Sci. 2021, 703, 121726. [Google Scholar] [CrossRef]
- Marian, J.; Wirth, B.D.; Odette, G.R.; Perlado, J.M. Cu diffusion in α-Fe: Determination of solute diffusivities using atomic-scale simulations. Comput. Mater. Sci. 2004, 31, 347–367. [Google Scholar] [CrossRef]
- Yang, K.J.; Liu, Y.-L.; Liu, N.; Shao, P.; Zhang, X.; Ma, Y. Hydrogen Transport in Tungsten for Nuclear Energy Application: Temperature Dependence and Compensation Effect. Fusion Sci. Technol. 2020, 76, 616–631. [Google Scholar] [CrossRef]
- Mehrer, H. Diffusion in Solids. In Springer Science & Business Media; Springer: Berlin/Heidelberg, Germany, 2007; 654p, ISBN 978-3-540-71486-6. [Google Scholar]
- Connétable, D.; David, M. Diffusion of interstitial species (H and O atoms) in fcc systems (Al, Cu, Co, Ni and Pd): Contribution of first and second order transition states. J. Alloys Compd. 2018, 772, 280–287. [Google Scholar] [CrossRef]
- David, M.; Prillieux, A.; Monceau, D.; Connétable, D. First-principles study of the insertion and diffusion of interstitial atoms (H, C, N and O) in nickel. J. Alloys Compd. 2020, 822, 153555. [Google Scholar] [CrossRef]
- Wei, Y.X.; Gao, N.; Wang, D.; Chen, C.; Guo, L.P. Effect of hydrogen atom concentration on hydrogen migration and bubble evolution in bcc iron. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interactions Mater. Atoms 2019, 461, 83–87. [Google Scholar] [CrossRef]
- Li, L.; Shi, J.; Peng, L.; Jiang, W.; Qian, G. Formation and migration of helium pair in bcc Fe from first principle calculations. Comput. Mater. Sci. 2019, 170, 109192–109198. [Google Scholar] [CrossRef]
- Riot, A.; Virot, F.; Connétable, D. Solubility and diffusivity of hydrogen and its isotopes in the BeO system. J. Am. Ceram. Soc. 2023, 106, 5005–5021. [Google Scholar] [CrossRef]
- Kasai, H.; Padama, A.A.B.; Chantaramolee, B.; Arevalo, R.L. Behavior of Hydrogen and Hydrogen-Containing Molecules on Metal Surfaces. In Hydrogen and Hydrogen-Containing Molecules on Metal Surfaces; Springer Series in Surface Sciences; Springer: Singapore, 2020; Volume 71, pp. 31–72. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for the brilluoin zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Perdew, J.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1997, 78, 1396–1403. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1766. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 2008, 100, 136406–136410. [Google Scholar] [CrossRef]
- Pfrommer, B.G.; Cote, M.; Louie, S.G.; Cohen, M.L. Relaxation of crystals with the quasi-newton method. J. Comput. Phys. 1997, 131, 233–240. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Chandra, G. Normal state resistivity and Tc studies of superconducting Ti1−xSbx system. Phys. Lett. 1984, 100, 441–444. [Google Scholar] [CrossRef]
- Papadimitriou, I.; Utton, C.; Scott, A.; Tsakiropoulos, P. Ab Initio study of binary and ternary Nb3(X,Y) A15 ıntermetallic phases (X,Y = Al, Ge, Si, Sn). Metall. Mater. A 2015, 46, 566–576. [Google Scholar] [CrossRef]
- Asadov, S.M. Molecular dynamics modeling of a ternary semiconductor compound in a liquid state. CSK Sci. J. Phys. Chem. 2023, 1, 1–8. Available online: https://cskscientificpress.com (accessed on 1 January 2023).
- Nordlander, P.; Holloway, S.; Norskov, J.K. Hydrogen adsorption on metal surfaces. Surf. Sci. 1984, 136, 59–81. [Google Scholar] [CrossRef]
- Pisarev, A.A. Hydrogen adsorption on the surface of metals. In Gaseous Hydrogen Embrittlement of Materials in Energy Technologies; Gangloff, R.P., Somerday, B.P., Eds.; Woodhead Publishing Series in Metals and Surface Engineering; Elsevier: Amsterdam, The Netherlands, 2012; Volume 1, pp. 3–26. [Google Scholar] [CrossRef]
- Ferrin, P.; Kandoi, S.; Nilekar, A.U.; Mavrikakis, M. Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study. Surf. Sci. 2012, 606, 679–689. [Google Scholar] [CrossRef]
- Padama, A.A.B.; Nakanishi, H.; Kasai, H. Quantum states of hydrogen atom on Pd(110) surface. Appl. Surf. Sci. 2015, 359, 687–691. [Google Scholar] [CrossRef]
- Alvarez-Falcon, L.; Vines, F.; Notario-Estevez, A.; Illas, F. On the hydrogen adsorption and dissociation on Cu surfaces and nanorows. Surf. Sci. 2015, 646, 221–229. [Google Scholar] [CrossRef]
- Kolasinski, K.W. Surface Science: Foundations of Catalysis and Nanoscience, 3rd ed.; Surface and Adsorbate Structure; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; pp. 9–49. [Google Scholar] [CrossRef]
- Fernández, C.; Bion, N.; Gaigneaux, E.M.; Duprez, D.; Ruiz, P. Kinetics of hydrogen adsorption and mobility on Ru nanoparticles supported on alumina: Effects on the catalytic mechanism of ammonia synthesis. J. Catal. 2016, 344, 16–28. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Zhang, J.; Liang, X.; Duan, H. Density functional theory study of the adsorption of hydrogen atoms on Cu2X (X=3d) clusters. Chem. Phys. Lett. 2016, 651, 137–143. [Google Scholar] [CrossRef]
- Fellah, M.F. A DFT study of hydrogen adsorption on Be, Mg and Ca frameworks in erionite zeolite. Appl. Surf. Sci. 2017, 394, 9–15. [Google Scholar] [CrossRef]
- Yu, H.L.; Tang, T.; Zheng, S.T.; Shi, Y.; Qiu, R.Z.; Luo, W.H.; Meng, D.Q. A theoretical study of hydrogen atoms adsorption and diffusion on PuO2 (110) surface. J. Alloys Compd. 2016, 666, 287–291. [Google Scholar] [CrossRef]
- Maeyama, Y.; Kadota, K.; Kitayama, A.; Tozuka, Y.; Yoshida, M.; Shimosaka, A.; Shirakawa, Y. Theoretical study of the temperature dependent hydrogen storage capacity of Pd and Ti nanoparticles. Int. J. Hydrogen Energy 2017, 42, 11501–11509. [Google Scholar] [CrossRef]
- Zhang, L.; Qiao, L.; Bligaard, T.; Su, Y. A first-principle study of H adsorption and absorption under the influence of coverage. Appl. Surf. Sci. 2018, 457, 280–286. [Google Scholar] [CrossRef]
- Lousada, C.M.; Kotasthane, A.M. Hydrogen adsorption on fcc metal surfaces towards the rational design of electrode materials. Sci. Rep. 2024, 14, 20972. [Google Scholar] [CrossRef]
- Shelyapina, M.G.; Vyvodtceva, A.V.; Klyukin, K.A.; Bavrina, O.O.; Chernyshev, Y.S.; Privalov, A.F.; Fruchart, D. Hydrogen diffusion in metal-hydrogen systems via NMR and DFT. Int. J. Hydrogen Energy 2015, 40, 17038–17050. [Google Scholar] [CrossRef]
- Alvaro, A.; Thue, J.I.; Kheradmand, N.; Lovvik, O.M.; Olden, V. Hydrogen embrittlement in nickel, visited by first principles modeling, cohesive zone simulation and nanomechanical testing. Int. J. Hydrogen Energy 2015, 40, 16892–16900. [Google Scholar] [CrossRef]
- Merlino, A.R.; Luna, C.R.; Juan, A.; Pronsato, M.E. A DFT study of hydrogen storage in Zr(Cr0.5Ni0.5)2 Laves phase. Int. J. Hydrogen Energy 2015, 41, 2700–2710. [Google Scholar] [CrossRef]
- Domain, C. Ab initio modelling of defect properties with substitutional and interstitials elements in steels and Zr alloys. J. Nucl. Mater. 2006, 351, 1–19. [Google Scholar] [CrossRef]
- Becquart, C.S.; Domain, C. Ab initio calculations about intrinsic point defects and He in W. Nucl. Instrum. Methods Phys. Res. B 2007, 255, 23–26. [Google Scholar] [CrossRef]
- Nazarov, R.; Hickel, T.; Neugebauer, J. Ab initio study of H-vacancy interactions in fcc metals: Implications for the formation of superabundant vacancies. Phys. Rev. B 2014, 89, 144108. [Google Scholar] [CrossRef]
- Johnson, D.F.; Carter, E.A. First-principles assessment of hydrogen absorption into FeAl and Fe3Si: Towards prevention of steel embrittlement. Acta Mater. 2010, 58, 638–648. [Google Scholar] [CrossRef]
- Hao, M.; Fu, Y.; Hu, Q.; Lu, X.; Zhang, H.; Ba, Y.; Xie, Y.; Liu, K.; Li, D. Investigation of the hydrogen adsorption properties on titanium metal under vacuum conditions. J. Ind. Eng. Chem. 2024, 145, 491–505. [Google Scholar] [CrossRef]
- Kulkov, S.S.; Eremeev, S.V.; Kulkova, S.E. Hydrogen Adsorption on Low-Index Surfaces of B2 Titanium Alloys. Phys. Solid State 2009, 51, 1281–1289. [Google Scholar] [CrossRef]
- Salvadori, E.; Chiesa, M.; Buonerba, A.; Grassi, A. Structure and dynamics of catalytically competent but labile paramagnetic metal-hydrides: The Ti(III)-H in homogeneous olefin polymerization. Chem. Sci. 2020, 11, 12436–12445. [Google Scholar] [CrossRef]
- Henkelman, G.; Uberuaga, B.P.; Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904. [Google Scholar] [CrossRef]
- Dolan, M.D. Non-Pd BCC alloy membranes for industrial hydrogen separation. Membr. Sci. 2010, 362, 12–28. [Google Scholar] [CrossRef]
- Vieland, L.J.; Wicklund, A.W.; White, J.G. Structure and properties of Nb3SnHx. Phys. Rev. B 1975, 11, 3311–3316. [Google Scholar] [CrossRef]
- Cornell, K.; Wipf, H.; Stuhr, U.; Skripov, A.V. A neutron diffraction study of the interstitial sites of deuterium in the A-15 compound Ti3Ir. Solid State Commun. 1997, 101, 569–573. [Google Scholar] [CrossRef]
- Antonov, V.E.; Antonova, T.E.; Belash, I.T.; Zharilov, O.V.; Latynin, A.I.; Palnichenko, A.V.; Rashchupkinm, V.I. Superconductivity of Solid Solutions of Hydrogen in Nb3Me (Me = Au, Pt, Ir, Os) Compounds with A15 Structure. Solid State Phys. 1989, 31, 12–20. Available online: https://www.mathnet.ru/eng/ftt5667 (accessed on 1 January 2023).
- Rama Rao, K.V.S.; Sturm, H.; Elschner, B.; Weiss, A. Hydrogen Absorption in Cubic Ti3Sb. Ber. Bunsenges. Phys. Chem. 1982, 86, 1135–1139. [Google Scholar] [CrossRef]
- Schlereth, M.; Wipf, H. The solubility of hydrogen in the A15 compounds V3Ga and Ti3Ir. J. Condens. Matter Phys. 1990, 2, 6929–6938. [Google Scholar] [CrossRef]
- Van Kessel, A.T.; Myron, H.W.; Mueller, F.M. On the electronic structure of A15 materials. J. Less-Common. Met. 1978, 62, 49–58. [Google Scholar] [CrossRef]
- Van Kessel, A.T.; Myron, H.W.; Mueller, F.M. Electronic Structure of Nb3Sn. Phys. Rev. Lett. 1978, 41, 181–184. [Google Scholar] [CrossRef]
- Sellmyer, D.J.; Liebowitz, D.; Arko, A.J.; Fisk, Z. Shubnikov-de Haas and high-field magnetoresistance effects in the A15 compound Nb3Sb. J. Low Temp. Phys. 1980, 40, 629–637. [Google Scholar] [CrossRef]
- Hishinuma, Y.; Taniguchi, H.; Kikuchi, A. Development of bronze processed Nb3Sn wires using various Cu–Sn–In ternary alloy matrices. Fusion Eng. Des. 2019, 146, 831–834. [Google Scholar] [CrossRef]
Ti3Sb (110) | Surface H | ||
---|---|---|---|
Site | (eV) | dH−Ti (Å) | dH−surf (Å) |
TS | −0.55 | 1.77 | 1.72 |
BS | -0.77 | 1.84 | 1.33 |
HS | −0.92 | 1.85 | 0.57 |
Adatom H on HS Site | Ti3Sb (110) | (eV) | dH−Ti(Sb) (Å) | dH−surf (Å) |
---|---|---|---|---|
Ti–Ti bond supercell | 2 × 1 × 1 | −0.55 | 1.882 (H–Ti) | 0.357 |
Ti–Sb bond supercell | 2 × 1 × 1 | −0.47 | 1.844 (H–Sb) | 0.273 |
Ti–Ti bond supercell | 5 × 1 × 1 | −0.93 | 1.951 (H–Ti) | 0.351 |
Ti–Sb bond supercell | 5 × 1 × 1 | −0.97 | 1.975 (H–Sb) | 0.272 |
System | (eV) |
---|---|
H–Ti3Sb (110) this work | −0.55 |
H–Fe3Si (110) [63] | −0.87 |
H–TiO2 [64] | −0.61 |
H–Ti/TiFe (001) [65] | −0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asadov, S.M.; Mustafaeva, S.N.; Mammadova, S.O. Modeling of Hydrogen Atom Adsorption and Diffusion in Ti3Sb Intermetallic Crystal with A15 Cubic Structure. Surfaces 2025, 8, 17. https://doi.org/10.3390/surfaces8010017
Asadov SM, Mustafaeva SN, Mammadova SO. Modeling of Hydrogen Atom Adsorption and Diffusion in Ti3Sb Intermetallic Crystal with A15 Cubic Structure. Surfaces. 2025; 8(1):17. https://doi.org/10.3390/surfaces8010017
Chicago/Turabian StyleAsadov, Salim M., Solmaz N. Mustafaeva, and Saida O. Mammadova. 2025. "Modeling of Hydrogen Atom Adsorption and Diffusion in Ti3Sb Intermetallic Crystal with A15 Cubic Structure" Surfaces 8, no. 1: 17. https://doi.org/10.3390/surfaces8010017
APA StyleAsadov, S. M., Mustafaeva, S. N., & Mammadova, S. O. (2025). Modeling of Hydrogen Atom Adsorption and Diffusion in Ti3Sb Intermetallic Crystal with A15 Cubic Structure. Surfaces, 8(1), 17. https://doi.org/10.3390/surfaces8010017