Cyclic Polarization of Corrugated Austenitic Stainless Steel Rebars in Acid Rain: Effect of Fly Ash, pH and Steel Type
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrochemical Testing
2.3. Microstructural Examination
3. Results-Discussion
3.1. Electrochemical Performance
3.1.1. General Observations
3.1.2. The Effect of Fly Ash
3.1.3. Effect of pH
3.1.4. Effect of Stainless Steel Type
3.2. Microstructural Study of the Corroded Reinforcements: The Effect of Fly Ash
3.3. The Effect of Fly Ash on the Corrosion Resistance of Concrete
4. Conclusions
- Both steels show high resistance to localized corrosion at both pH values, regardless of the fly ash (FA) content. Passivity takes place in two stages (clearly distinct at pH ≈ 12.5, whilst hardly distinct at pH ≈ 8). The passive film formation in the first stage breaks down due to the transpassive dissolution of Cr2O3. The secondary passivity, owing to chromate-based film formation, breaks down due to O2 evolution.
- With regards to the effect of fly ash, the partial replacement of Ca(OH)2 with FA up to 20 wt.% has a positive effect on the polarization behavior of the stainless steel rebars in terms of thermodynamic tendency for corrosion, corrosion kinetics, and the stability of passive film. Replacement of Ca(OH)2 with 20 wt.% FA leads to the highest localized corrosion resistance amongst the 0–25 wt.% FA content; however, replacement with 25 wt.% FA leads to the lowest localized corrosion resistance amongst the 10–25 wt.% FA content.
- With regards to the effect of pH, the high pH Value results in a lower corrosion potential and a lower corrosion current density for both steels and all FA contents compared to the low pH value. Furthermore, the high pH value induces higher passive currents compared to the low pH Value in the case of 316L, but lower passive currents in the case of 304L, for all FA additions.
- With regards to the type of stainless steel, at pH ≈ 12.5, 304L shows better performance than 316L in terms of lower corrosion current density and lower passive current densities, attributed to the absence of Mo. Conversely, at pH ≈ 8, 304L shows worse performance than 316L in terms of higher corrosion current density and higher passive current densities.
- The beneficial effect of the FA on the electrochemical behavior of stainless steel is justified by the participation of FA in the Ca-rich film deposited on the steel surface. The benefits from such participation may stem from the mineralogical composition of the FA employed in this work, particularly: (i) the high content of reactive phases in FA with hydraulic and pozzolanic properties; and (ii) the engagement of a large part of Al2O3 in inert K-Al silicate minerals, thus limiting the availability of alumina to react in a sulfate environment to form ettringite. Moreover, the boosting abilities of FA with respect to: (a) the supersulfating state of the concrete and (b) the pozzolanic reactions in the concrete, are confirmed by (a) the detection of new A--H phases and the reduction of Afm phases in FA-containing concrete cubes, and (b) the detection of new C-F-A-S-H phases, respectively.
- Nonetheless, the trend of corrosion resistance increasing with increasing FA addition reverses at 25 wt.% FA. The reason is the formation of agglomerates at high FA contents with a low tendency for pozzolanic/cementitious reactions, that induce the generation of differential aeration cells on the steel below them (although of highly localized occurrence).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Apostolopoulos, C.A.; Papadakis, V.G. Consequences of steel corrosion on the ductility properties of reinforcement bar. Constr. Build. Mater. 2008, 22, 2316–2324. [Google Scholar] [CrossRef]
- Monticelli, C.; Natali, M.E.; Balbo, A.; Chiavari, C.; Zanotto, F.; Manzi, F.; Bignozzi, M.C. Corrosion behavior of steel in alkali-activated fly ash mortars in the light of their microstructural, mechanical and chemical characterization. Cem. Concr. Res. 2016, 80, 60–68. [Google Scholar] [CrossRef]
- Ai, Z.; Sun, W.; Jiang, J.; Song, D.; Ma, H.; Zhang, J.; Wang, D. Passivation characteristics of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions: Combination effects of pH and chloride. Materials 2016, 9, 749. [Google Scholar] [CrossRef] [Green Version]
- Batis, G.; Rakanta, E. Corrosion of steel reinforcement due to atmospheric pollution. Cem. Concr. Compos. 2005, 27, 269–275. [Google Scholar] [CrossRef]
- Demis, S.; Pilakoutas, K.; Apostolopoulos, C.A. Effect of corrosion on bond strength of steel and non-metallic reinforcement. Mater. Corros. 2010, 61, 328–331. [Google Scholar] [CrossRef]
- Sæther, I. Bond deterioration of corroded steel bars in concrete. Struct. Infrastruct. Eng. 2011, 7, 415–429. [Google Scholar] [CrossRef]
- Yalciner, H.; Marar, K. Experimental study on the bond strength of different geometries of corroded and uncorroded reinforcement bars. J. Mater. Civ. Eng. 2017, 29, 05017002. [Google Scholar] [CrossRef]
- Apostolopoulos, C.A.; Demis, S.; Papadakis, V.G. Chloride-induced corrosion of steel reinforcement–Mechanical performance and pit depth analysis. Constr. Build. Mater. 2013, 38, 139–146. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, D.; Song, Z. Effect of acid rain erosion on steel fiber reinforced concrete. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2017, 32, 121–128. [Google Scholar] [CrossRef]
- Zivica, V.; Bajzab, A. Acidic attack of cement based materials-A review: Part 1. Principle of acidic attack. Constr. Build. Mater. 2001, 15, 331–340. [Google Scholar] [CrossRef]
- Webster, R.P.; Kukacka, L.E. Effects of Acid Deposition on Portland Cement Concrete. In Materials Degradation Caused by Acid Rain; Baboian, R., Ed.; American Chemical Society Publications: Washington, DC, USA, 1986; Volume 318, pp. 239–249. [Google Scholar] [CrossRef]
- Suksawang, N.; Zhang, S. Performance of High Performance Concrete (HPC) in Low pH and Sulfate Environments; Final Report, Contract No. BDK80 977-16; Department Civil & Environmental Engineering, Florida International University: Miami, FL, USA, 2013; p. 169. [Google Scholar]
- Barbhuiya, S.; Kumala, D. Behaviour of a sustainable concrete in acidic environment. Sustainability 2017, 9, 1556. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.-C.; Wang, K.; Xie, L. Deterioration mechanism of cementitious materials under acid rain attack. Eng. Fail. Anal. 2013, 27, 272–285. [Google Scholar] [CrossRef]
- Kepler, J.L.; Darwin, D.; Locke, C.E., Jr. Evaluation of Corrosion Protection Methods for Reinforced Concrete Highway Structures; Structural Engineering and Engineering Materials SM Rep. No. 58; University of Kansas Center for Research, INC.: Lawrence, KS, USA, 2000; p. 221. [Google Scholar]
- Head, M.; Ashby-Bey, E.; Edmonds, K.; Efe, S.; Grose, S.; Mason, I.; Clarence, C.M., Jr. Stainless Steel Prestressing Strands and Bars for Use in Prestressed Concrete Girders and Slabs; Rep. No. MD-13-SP309B4G; Maryland State Highway Administration: Baltimore, MD, USA, 2015; p. 41.
- Wang, X.; Nguyen, M.; Stewart, M.G.; Syme, M.; Leitch, A. Analysis of Climate Change Impacts on the Deterioration of Concrete Infrastructure. Part 1: Mechanisms, Practices, Modelling and Simulations-A Review; CSIRO: Canberra, Australia, 2010; p. 84. ISBN 97804310365 8.
- Montemor, M.F.; Simões, A.M.P.; Ferreira, M.G.S.; Cunha Belo, M.D. The role of Mo in the chemical composition and semiconductive behaviour of oxide films formed on stainless steels. Corros. Sci. 1999, 41, 17–34. [Google Scholar] [CrossRef]
- Freire, L.; Carmezim, M.J.; Ferreira, M.G.S.; Montemor, M.F. The passive behaviour of AISI 316 in alkaline media and the effect of pH: A combined electrochemical and analytical study. Electrochim. Acta 2010, 55, 6174–6181. [Google Scholar] [CrossRef]
- Luo, H.; Su, H.; Dong, C.; Li, X. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution. Appl. Surf. Sci. 2017, 400, 38–48. [Google Scholar] [CrossRef]
- Freire, L.; Carmezim, M.J.; Ferreira, M.G.S.; Montemor, M.F. The electrochemical behaviour of stainless steel AISI 304 in alkaline solutions with different pH in the presence of chlorides. Electrochim. Acta 2011, 56, 5280–5289. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Z.-Q.; Zhang, L.; Hu, J.Y.; Zhang, Z.R.; Lu, M.X. Effect of pH on the electrochemical behaviour and passive film composition of 316L stainless steel. Acta Metall. Sin. 2019, 32, 585–598. [Google Scholar] [CrossRef] [Green Version]
- Bassuoni, M.T.; Nehdi, M.L. Resistance of self-consolidating concrete to sulfuric acid attack with consecutive pH reduction. Cem. Concr. Res. 2007, 37, 1070–1084. [Google Scholar] [CrossRef]
- Shi, C.; Stegemann, J.A. Acid corrosion resistance of different cementing materials. Cem. Concr. Res. 2000, 30, 803–808. [Google Scholar] [CrossRef]
- Murthi, P.; Sivakumar, V. Studies on acid resistance of ternary blended concrete. Asian J. Civ. Eng. 2008, 9, 473–486. [Google Scholar]
- Van Nguyen, C.; Lambert, P.; Tran, Q.H. Effect of Vietnamese fly ash on selected physical properties, durability and probability of corrosion of steel in concrete. Materials 2019, 12, 593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, Q.; Zhou, C.; Shu, X.; He, Q.; Huang, B. Chemical, mechanical, and durability properties of concrete with local mineral admixtures under sulfate environment in Northwest China. Materials 2014, 7, 3772–3785. [Google Scholar] [CrossRef] [PubMed]
- Saraswathy, V.; Song, H.-W. Corrosion performance of fly ash blended cement concrete: A state-of-art review. Corros. Rev. 2006, 24, 87–122. [Google Scholar] [CrossRef]
- Liu, K.; Deng, M.; Mo, L. Effect of fly ash on resistance to sulfate attack of cement-based materials. Key Eng. Mater. 2013, 539, 124–129. [Google Scholar] [CrossRef]
- Siddique, R. Coal Fly Ash. In Waste Materials and By-Products in Concrete; Siddique, R., Ed.; Springer: Berlin, Germany, 2008; pp. 177–234. [Google Scholar] [CrossRef]
- Tsouli, S.; Lekatou, A.G.; Kleftakis, S.; Matikas, T.E.; Dalla, P.T. Corrosion behavior of 304L stainless steel concrete reinforcement in acid rain using fly ash as corrosion inhibitor. Procedia Struct. Integr. 2018, 10, 41–48. [Google Scholar] [CrossRef]
- Tsouli, S.; Lekatou, A.G.; Nikolaidis, C.; Kleftakis, S. Corrosion and tensile behavior of 316L stainless steel concrete reinforcement in harsh environments containing a corrosion inhibitor. Procedia Struct. Integr. 2019, 17, 268–275. [Google Scholar] [CrossRef]
- Lekatou, A.G.; Tsouli, S.; Nikolaidis, C.; Kleftakis, S.; Tragazikis, I.K.; Matikas, T.E. Effect of fly ash on the corrosion performance and structural integrity of stainless steel concrete rebars in acid rain and saline environments. Frat. Integr. Strutt. 2019, 50, 423–437. [Google Scholar] [CrossRef] [Green Version]
- Tsouli, S.; Lekatou, A.G.; Kleftakis, S. The Effect of Fly Ash on the Corrosion Performance of AISI 316L Stainless Steel Reinforced Concrete for Application to Restoration Works of Ancient Monuments. In Conservation of Monuments in the Mediterranean Basin. Natural and Anthropogenic Hazards and Sustainable Preservation; Koui, M., Zezza, F., Kouis, D., Eds.; Springer: Cham, Switzerland, 2018; pp. 171–178. [Google Scholar] [CrossRef]
- Fu, Y.; Ding, J.; Beaudoin, J.J. Expansion of Portland cement mortar due to internal sulfate attack. Cem. Concr. Res. 1997, 27, 1299–1306. [Google Scholar] [CrossRef]
- Ghafoori, N.; Najimi, M.; Diawara, H.; Islam, M.S. Effects of class F fly ash on sulfate resistance of Type V Portland cement concretes under continuous and interrupted sulfate exposures. Constr. Build. Mater. 2015, 78, 85–91. [Google Scholar] [CrossRef]
- Kostakis, G. Characterization of the fly ashes from the lignite burning power plants of northern Greece based on their quantitative mineralogical composition. J. Hazard. Mater. 2009, 166, 972–977. [Google Scholar] [CrossRef]
- Filippidis, A.; Georgakopoulos, A. Mineralogical and chemical investigation of fly ash from the Main and Northern lignite fields in Ptolemais, Greece. Fuel 1992, 71, 373–376. [Google Scholar] [CrossRef]
- Fernandez-Turiel, J.-L.; Georgakopoulos, A.; Gimeno, D.; Papastergios, G.; Kolovos, N. Ash deposition in a pulverized coal-fired power plant after high-calcium lignite combustion. Energy Fuels 2004, 18, 1512–1518. [Google Scholar] [CrossRef] [Green Version]
- Chousidis, N.; Ioannou, I.; Rakanta, E.; Koutsodontis, C.; Batis, G. Effect of fly ash chemical composition on the reinforcement corrosion, thermal diffusion and strength of blended cement concretes. Constr. Build. Mater. 2016, 126, 86–97. [Google Scholar] [CrossRef]
- Tikalsky, P.J.; Carrasquillo, R.L. The Effect of Fly Ash on the Sulfate Resistance of Concrete; Report No FHWA/TX-90+481-5; Center for Transportation Research, The University of Texas at Austin: Austin, TX, USA, 1989; p. 318. [Google Scholar]
- Mehta, P.K. Effect of fly ash composition on sulfate resistance of cement. J. Am. Concr. Inst. 1986, 83, 994–1000. [Google Scholar] [CrossRef]
- Tiburzi, Ν.Β.; Garcia, J.; Drimalas, T.; Folliard, K.J. Sulfate resistance of Portland-limestone cement systems containing greater than 15% limestone. Cem. Concr. Compos. 2019, 100, 60–73. [Google Scholar] [CrossRef]
- Berodier, E.; Scrivener, K. Understanding the filler effect on the nucleation and growth of C-S-H. J. Am. Ceram. Soc. 2014, 97, 3764–3773. [Google Scholar] [CrossRef]
- Mesquita, T.J.; Chauveau, E.; Mantel, M.; Kinsman, N.; Nogueira, R.P. Influence of Mo alloying on pitting corrosion of stainless steels used as concrete reinforcement. Rem. Rev. Esc. Minas 2013, 66, 173–178. [Google Scholar] [CrossRef]
- Lekatou, A.; Sioulas, D.; Karantzalis, A.E.; Grimanelis, D. A comparative study on the microstructure and surface property evaluation of coatings produced from nanostructured and conventional WC-Co powders HVOF-sprayed on Al 7075. Surf. Coat. Technol. 2015, 276, 539–556. [Google Scholar] [CrossRef]
- Lekatou, A.; Sfikas, A.K.; Petsa, C.; Karantzalis, A.E. Al-Co alloys prepared by vacuum arc melting: Correlating microstructure evolution and aqueous corrosion behaviour with Co content. Metals 2016, 6, 46. [Google Scholar] [CrossRef] [Green Version]
- Sfikas, A.K.; Lekatou, A.G. Electrochemical behavior of Al-Al9Co2 alloys in sulfuric acid. Corros. Mater. Degrad. 2020, 1, 249–272. [Google Scholar] [CrossRef]
- Silverman, D.C. Tutorial on Cyclic Potentiodynamic Polarization Technique. In Proceedings of the Corrosion 98 Research Topical Symposium, San Diego, CA, USA, 22–27 March 1998; NACE Research Committee, Ed.; NACE International: San Diego, CA, USA, 1998. [Google Scholar]
- Roberge, P.R. Handbook of Corrosion Engineering; McGraw-Hill: New York, NY, USA, 2000; pp. 486–576. [Google Scholar]
- Ragab, K.A.; Abdel-Karim, R.; Farag, S.; El-Raghy, S.M.; Ahmed, H.A. Influence of SiC, SiO2 and graphite on corrosive wear of bronze composites subjected to acid rain. Tribol. Int. 2010, 43, 594–601. [Google Scholar] [CrossRef]
- Nnadi, E.O.; Asce, M.; Lizarazo-Marriaga, J. Acid corrosion of plain and reinforced concrete sewage systems. J. Mater. Civ. Eng. 2013, 25, 1353–1356. [Google Scholar] [CrossRef]
- Pérez-Quiroz, J.T.; Terán, J.; Herrera, M.J.; Martínez, M.; Genescá, J. Assessment of stainless steel reinforcement for concrete structures rehabilitation. J. Constr. Steel Res. 2008, 64, 1317–1324. [Google Scholar] [CrossRef]
- Fan, Y.-F.; Luan, H.-Y. Pore structure in concrete exposed to acid deposit. Constr. Build. Mater. 2013, 49, 407–416. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd ed.; NACE International: Houston, TX, USA, 1974; pp. 256–279, 307–321, 330–342. [Google Scholar]
- Fattah-Alhosseini, A.; Saatchi, A.; Golozar, M.A.; Raeissi, K. The transpassive dissolution mechanism of 316L stainless steel. Electrochim. Acta 2009, 54, 3645–3650. [Google Scholar] [CrossRef]
- Scully, J.C. The Fundamentals of Corrosion, 3rd ed.; Pergamon Press: Oxford, UK, 1990; p. 209. [Google Scholar]
- Bardwell, J.A.; Sproule, G.I.; MacDougall, B.; Graham, M.J.; Davenport, A.J.; Isaacs, H.S. In situ XANES detection of Cr(VI) in the passive film on Fe-26Cr. J. Electrochem. Soc. 1992, 139, 371–373. [Google Scholar] [CrossRef] [Green Version]
- Långberg, M.; Örnek, C.; Evertsson, J.; Harlow, G.S.; Linpé, W.; Rullik, L.; Carlà, F.; Felici, R.; Bettini, E.; Kivisäkk, U.; et al. Redefining passivity breakdown of super duplex stainless steel by electrochemical operando synchrotron near surface X-ray analyses. npj Mater. Degrad. 2019, 3, 22. [Google Scholar] [CrossRef]
- Li, T.; Zhang, H.; He, Y.; Wang, X. Comparison of corrosion behavior of Mg-1.5Zn-0.6Zr and AZ91D alloys in a NaCl solution. Mater. Corros. 2015, 66, 7–15. [Google Scholar] [CrossRef]
- Esmailzadeh, S.; Aliofkhazraei, M.; Sarlak, H. Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: A review. Protect. Met. Phys. Chem. Surf. 2018, 54, 976–989. [Google Scholar] [CrossRef]
- Li, L.; Sagüés, A.A. Chloride corrosion threshold of reinforcing steel in alkaline solutions-Cyclic polarization behavior. Corrosion 2002, 58, 305–316. [Google Scholar] [CrossRef]
- Abreu, C.M.; Cristóbal, M.J.; Losada, R.; Nóvoa, X.R.; Pena, G.; Pérez, M.C. Comparative study of passive films of different stainless steels developed on alkaline medium. Electrochim. Acta 2004, 49, 3049–3056. [Google Scholar] [CrossRef]
- Alonso, C.; Andrade, C.; Izquierdo, M.; Nóvoa, X.R.; Pérez, M.C. Effect of protective oxide scales in the macrogalvanic behaviour of concrete reinforcements. Corros. Sci. 1998, 40, 1379–1389. [Google Scholar] [CrossRef]
- Bautista, A.; Blanco, G.; Velasco, F.; Gutiérrez, A.; Soriano, L.; Palomares, F.J.; Takenouti, H. Changes in the passive layer of corrugated austenitic stainless steel of low nickel content due to exposure to simulated pore solutions. Corros. Sci. 2009, 51, 785–792. [Google Scholar] [CrossRef]
- Stansbury, E.E.; Buchanan, R.A. Fundamentals of Electrochemical Corrosion; ASM International: Materials Park, OH, USA, 2000; p. 309. [Google Scholar]
- Garcés, P.; Andrade, M.C.; Saez, A.; Alonso, M.C. Corrosion of reinforcing steel in neutral and acid solutions simulating the electrolytic environments in the micropores of concrete in the propagation period. Corros. Sci. 2005, 47, 289–306. [Google Scholar] [CrossRef]
- Wang, K.; Li, Y.S. In situ identification of surface species on molybdenum in different media. Electrochim. Acta 1998, 43, 2459–2467. [Google Scholar] [CrossRef]
- Refaey, S.A.M.; Taha, F.; Abd El-Malak, A.M. Corrosion and inhibition of stainless steel pitting corrosion in alkaline medium and the effect of Cl− and Br− anions. Appl. Surf. Sci. 2005, 242, 114–120. [Google Scholar] [CrossRef]
- Luo, H.; Dong, C.F.; Li, X.G.; Xiao, K. The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride. Electrochim. Acta 2012, 64, 211–220. [Google Scholar] [CrossRef]
- Olsson, C.-O.A.; Landolt, D. Passive films on stainless steels-chemistry, structure and growth. Electrochim. Acta 2003, 48, 1093–1104. [Google Scholar] [CrossRef]
- Schmutz, P.; Landolt, D. In-situ microgravimetric studies of passive alloys: Potential sweep and potential step experiments with Fe–25Cr and Fe–17Cr–33Mo in acid and alkaline solution. Corros. Sci. 1999, 41, 2143–2163. [Google Scholar] [CrossRef]
- Davalos Monteiro, R.; van de Wetering, J.; Krawczyk, B.; Engelberg, D.L. Corrosion behaviour of type 316L stainless steel in hot caustic aqueous environments. Met. Mater. Int. 2020, 26, 630–640. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, A.; Singh, P.M. Electrochemical behaviour of duplex stainless steels in caustic environment. Corros. Sci. 2011, 53, 71–81. [Google Scholar] [CrossRef]
- Sun, Y.-T.; Tan, X.; Lei, L.-L.; Li, J.; Jiang, Y.M. Revisiting the effect of molybdenum on pitting resistance of stainless steels. Tungsten 2021, 3, 329–337. [Google Scholar] [CrossRef]
- Hashimoto, K.; Naka, M.; Asami, K.; Masumoto, T. An X-ray photo-electron spectroscopy study of the passivity of amorphous Fe-Mo alloys. Corros. Sci. 1979, 19, 165–170. [Google Scholar] [CrossRef]
- Marsh, B.K.; Day, R.L. Pozzolanic and cementitious reactions of fly ash in blended cement pastes. Cem. Concr. Res. 1988, 18, 301–310. [Google Scholar] [CrossRef]
- Tsouli, S.; Lekatou, A.G.; Kleftakis, S.; Gkoutzos, P.; Tragazikis, I.K.; Matikas, T.E. Combined corrosion inhibitors and mechanical properties of concrete embedded steel (AISI 316L) during accelerated saline corrosion test. Mater. Proc. 2021, 5, 72. [Google Scholar] [CrossRef]
- Ibrahim, M.A.M.; Abd El Rehim, S.S.; Hamza, M.M. Corrosion behavior of some austenitic stainless steels in chloride environments. Mater. Chem. Phys. 2009, 115, 80–85. [Google Scholar] [CrossRef]
- Hurley, M.F.; Scully, J.R. Threshold chloride concentrations of selected corrosion-resistant rebar materials compared to carbon steel. Corrosion 2006, 62, 892–904. [Google Scholar] [CrossRef]
- Kontoleontos, M.; Tsakiridis, P.; Marinos, A.; Katsiotis, N.; Kaloidas, V.; Katsioti, M. Dry-grinded ultrafine cements hydration. physicochemical and microstructural characterization. Mater. Res. 2013, 16, 404–416. [Google Scholar] [CrossRef]
- Hoshino, S.; Yamada, K.; Hirao, H. XRD-Rietveld analysis of the hydration and strength development of slag and limestone blended cement. J. Adv. Concr. Technol. 2006, 4, 357–367. [Google Scholar] [CrossRef] [Green Version]
316L | |||||||||
FA (wt.%) | Ecorr (mV vs. Ag/AgCl) | Ecp (mV vs. Ag/AgCl) | Ecp − Ecorr (mV vs. Ag/AgCl) | Eb2 (mV vs. Ag/AgCl) | Eb2 − Ecp (mV vs. Ag/AgCl) | Ea/c tr (mV vs. Ag/AgCl) | Ea/c tr − Ecorr (mV vs. Ag/AgCl) | icorr (mA/cm2) | ip (mA/cm2) |
0 | −267 ± 6 | −106 ± 14 | 161 | 1040 ± 41 | 1146 | −250 ± 27 | 17 | 0.0019 ± 0.0006 | 0.0033 ± 0.0010 |
10 | −255 ± 28 | −115 ± 33 | 140 | 1088 ± 41 | 1203 | −232 ± 65 | 23 | 0.0013 ± 0.0003 | 0.0032 ± 0.0010 |
15 | −233 ± 17 | −101 ± 26 | 132 | 1099 ± 20 | 1200 | −208 ± 26 | 25 | 0.0011 ± 0.0003 | 0.0025 ± 0.0010 |
20 | −229 ± 12 | −107 ± 29 | 122 | 1100 ± 16 | 1207 | −158 ± 35 | 71 | 0.0007 ± 0.0002 | 0.0014 ± 0.0006 |
25 | −245 ± 31 | −113 ± 22 | 132 | 1050 ± 21 | 1163 | −230 ± 65 | 15 | 0.0013 ± 0.0006 | 0.0044 ± 0.0010 |
304L | |||||||||
FA (wt.%) | Ecorr (mV vs. Ag/AgCl) | Ecp (mV vs. Ag/AgCl) | Ecp − Ecorr (mV vs. Ag/AgCl) | Eb (mV vs. Ag/AgCl) | Eb − Ecp (mV vs. Ag/AgCl) | Ea/c tr (mV vs. Ag/AgCl) | Ea/c tr − Ecorr (mV vs. Ag/AgCl) | icorr (mA/cm2) | ip (mA/cm2) |
0 | −275 ± 33 | −125 ± 20 | 150 | 1025 ± 22 | 1150 | −301 ± 47 | −26 | 0.0024 ± 0.0001 | 0.0076 ± 0.0030 |
15 | −258 ± 41 | −98 ± 10 | 160 | 1057 ± 27 | 1155 | −297 ± 35 | −39 | 0.0023 ± 0.0003 | 0.0074 ± 0.0007 |
20 | −251 ± 23 | −120 ± 39 | 131 | 1081 ± 7 | 1201 | −258 ± 33 | −7 | 0.0016 ± 0.0002 | 0.0070 ± 0.0010 |
25 | −262 ± 13 | −88 ± 24 | 174 | 1070 ± 31 | 1158 | −280 ± 57 | −18 | 0.0027 ± 0.0008 | 0.0220 ± 0.0030 |
316L | |||||||||||
FA (wt.%) | Ecorr (mV vs. Ag/AgCl) | Ecp (mV vs. Ag/AgCl) | Ecp − Ecorr (mV vs. Ag/AgCl) | Eb1 (mV vs. Ag/AgCl) | Eb2 (mV vs. Ag/AgCl) | Eb2 − Ecp (mV vs. Ag/AgCl) | Ea/c tr (mV vs. Ag/AgCl) | Ea/c tr − Ecorr (mV vs. Ag/AgCl) | icorr (mA/cm2) | ip1 (mA/cm2) | ip2 (mA/cm2) |
0 | −391 ± 34 | −248 ± 20 | 143 | 286 ± 30 | 607 ± 20 | 855 | −328 ± 51 | 63 | 0.0009 ± 0.0001 | 0.0040 ± 0.0005 | 0.0130 ± 0.0003 |
10 | −378 ± 60 | −271 ± 85 | 107 | 262 ± 46 | 644 ± 14 | 915 | −331 ± 53 | 47 | 0.0007 ± 0.0001 | 0.0030 ± 0.0010 | 0.0095 ± 0.0015 |
15 | −372 ± 33 | −255 ± 39 | 117 | 267 ± 49 | 653 ± 14 | 908 | −302 ± 39 | 70 | 0.0006 ± 0.0002 | 0.0028 ± 0.0010 | 0.0100 ± 0.0020 |
20 | −355 ± 26 | −265 ± 12 | 90 | 248 ± 21 | 662 ± 20 | 927 | −271 ± 48 | 84 | 0.0004 ± 0.0001 | 0.0022 ± 0.0008 | 0.0062 ± 0.0020 |
25 | −368 ± 18 | −217 ± 45 | 151 | 270 ± 23 | 634 ± 14 | 851 | −318 ± 85 | 50 | 0.0010 ± 0.0004 | 0.0038 ± 0.0012 | 0.0127 ± 0.0040 |
304L | |||||||||||
FA (wt.%) | Ecorr (mV vs. Ag/AgCl) | Ecp (mV vs. Ag/AgCl) | Ecp − Ecorr (mV vs. Ag/AgCl) | Eb1 (mV vs. Ag/AgCl) | Eb2 (mV vs. Ag/AgCl) | Eb2 − Ecp (mV vs. Ag/AgCl) | Ea/c tr (mV vs. Ag/AgCl) | Ea/c tr − Ecorr (mV vs. Ag/AgCl) | icorr (mA/cm2) | ip1 (mA/cm2) | ip2 (mA/cm2) |
0 | −435 ± 11 | −324 ± 12 | 111 | 272 ± 47 | 654 ± 4 | 978 | −374 ± 60 | 61 | 0.0004 ± 0.00008 | 0.0018 ± 0.0005 | 0.0040 ± 0.0010 |
10 | −398 ± 34 | −297 ± 32 | 101 | 264 ± 11 | 660 ± 9 | 957 | −315 ± 64 | 83 | 0.0002 ± 0.00005 | 0.0014 ± 0.0004 | 0.0057 ± 0.0020 |
15 | −366 ± 63 | −236 ± 85 | 130 | 273 ± 28 | 667 ± 21 | 903 | −346 ± 59 | 20 | 0.0001 ± 0.00004 | 0.0009 ± 0.0002 | 0.0036 ± 0.0006 |
20 | −334 ± 36 | −268 ± 61 | 66 | 260 ± 31 | 679 ± 11 | 947 | −238 ± 47 | 96 | 0.0001 ± 0.00003 | 0.0003 ± 0.0001 | 0.0033 ± 0.0008 |
25 | −401 ± 13 | −225 ± 54 | 176 | 271 ± 12 | 654 ± 15 | 879 | −400 ± 101 | 1 | 0.0003 ± 0.00007 | 0.0013 ± 0.0004 | 0.0046 ± 0.0010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lekatou, A.G.; Tsouli, S. Cyclic Polarization of Corrugated Austenitic Stainless Steel Rebars in Acid Rain: Effect of Fly Ash, pH and Steel Type. Corros. Mater. Degrad. 2022, 3, 75-100. https://doi.org/10.3390/cmd3010005
Lekatou AG, Tsouli S. Cyclic Polarization of Corrugated Austenitic Stainless Steel Rebars in Acid Rain: Effect of Fly Ash, pH and Steel Type. Corrosion and Materials Degradation. 2022; 3(1):75-100. https://doi.org/10.3390/cmd3010005
Chicago/Turabian StyleLekatou, Angeliki G., and Sofia Tsouli. 2022. "Cyclic Polarization of Corrugated Austenitic Stainless Steel Rebars in Acid Rain: Effect of Fly Ash, pH and Steel Type" Corrosion and Materials Degradation 3, no. 1: 75-100. https://doi.org/10.3390/cmd3010005
APA StyleLekatou, A. G., & Tsouli, S. (2022). Cyclic Polarization of Corrugated Austenitic Stainless Steel Rebars in Acid Rain: Effect of Fly Ash, pH and Steel Type. Corrosion and Materials Degradation, 3(1), 75-100. https://doi.org/10.3390/cmd3010005