Insights on the Corrosion Resistance of Reinforced Recycled Aggregate Concrete
Abstract
:1. Introduction
2. Porosity and Moisture Transport Properties
3. Carbonation
4. Chloride Ingress
5. Electrochemical Measurements on RAC
6. Cracking Due to Corrosion
7. Conclusions
- -
- While the attached mortar leads to an overall increase in the pore connectivity of the concrete, this effect may be compensated by an improvement in the interfacial transition zone due to the dynamic process of particle absorption during mixing. This aspect is suggested by the results of RAC resistivity and the associated formation factor. The resistivity of saturated concrete decreases with the RA content as a function of the increase in total porosity. However, in unsaturated concrete, the relative increase is less significant because RAC and NAC (with the same w/b) hygroscopically achieve a similar pore fluid content. Furthermore, the matrix formation factor generated in RAC is relatively improved compared to concretes with non-porous aggregates when aggregates are incorporated in dry conditions during the mixing. The suggested improvement in the interfacial transition zone and the connectivity of the matrix itself are interesting aspects for further investigation. Bridging this knowledge gap will allow quantification of the extent to which the pore network is affected by the saturation degree of RAs when they are incorporated into the mix.
- -
- The attached mortar in the RA may provide an additional reserve of carbonatable hydration products, increasing the carbon binding capacity of RAC. Carbonation leads to changes in the microstructure of the concrete, and therefore, a carbonation treatment has the potential to reduce the porosity of the RA prior to its use in new concrete.
- -
- Chloride ingress in RAC is faster than in NAC (same w/b) when they are saturated, as a reflection of the total concrete porosity. However, in unsaturated concrete, the situation is less clear. Since chloride transport occurs in the pore phase containing liquid and the impact of RA on the mesoporosity is not very significant, the rate of chloride ingress in unsaturated recycled concrete does not increase significantly, unless it is concrete with a very low water/cement ratio. Moreover, the content of hydration products of the attached mortar provides additional chloride binding capacity and produces a delay in the chloride ingress process. Further research on methods to include chloride binding capacity in service life models seems valuable.
- -
- The progression of corrosion cracking can be connected to the large amount of the interfacial transition zone in RAC. Conversely, the increased porosity of concrete containing RA can mask significant levels of deterioration without significant external symptoms. In this respect, further research needs to be carried out on the loading capacity after corrosion-induced loss of bonding in RAC elements.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bertolini, L.; Elsener, B.; Pedeferri, P.; Polder, R. Corrosion of Steel in Concrete; WILEY-VCH: Weinheim, Germany, 2004; 380p. [Google Scholar]
- Xiao, J. Recycled Aggregate Concrete Structures; Springer: Berlin, Germany, 2018; 632p. [Google Scholar]
- Hansen, T.C. Recycled aggregates and recycled aggregate concrete second state-of-the-art report developments 1945–1985. Mater. Struct. 1986, 19, 201–246. [Google Scholar] [CrossRef]
- ACI Committee 555. Removal and Reuse of Hardened Concrete—ACI 555-01; ACI: Indianapolis, IN, USA, 2001. [Google Scholar]
- Rasheeduzzafar; Khan, A. Recycled Concrete—A Source for New Aggregate. Cem. Concr. Aggreg. J. 1984, 6, 17–27. [Google Scholar]
- Zega, C.J.; Villagrán-Zaccardi, Y.A.; Di Maio, Á.A. Effect of natural coarse aggregate type on the physical and mechanical properties of recycled coarse aggregates. Mater. Struct. 2010, 43, 195–202. [Google Scholar] [CrossRef]
- Limbachiya, M.C.; Leelawat, T.; Dhir, R.K. Use of recycled concrete aggregate in high-strength concrete. Mater. Struct. 2000, 33, 574–580. [Google Scholar] [CrossRef]
- Zega, C.J.; Di Maio, A.A. Influencia de las características de los agregados reciclados en la elaboración de hormigones. In Proceedings of the 15 Reunión Técnica AATH, Santa Fé, Argentina, 21–24 October 2003; AATH: Buenos Aires, Argentina, 2003. [Google Scholar]
- Topçu, İ.B.; Şengel, S. Properties of concretes produced with waste concrete aggregate. Cem. Concr. Res. 2004, 34, 1307–1312. [Google Scholar] [CrossRef]
- Gómez, J.M.; Agulló, L.; Vázquez, E. Cualidades Físicas y Mecánicas de los Agregados Reciclados de Concreto. Aplicación en Concretos. Concr. Tecn. 2001, 34, 799–806. [Google Scholar]
- Padmini, A.K.; Ramamurthy, K.; Mathews, M.S. Influence of parent concrete on the properties of recycled aggregate concrete. Constr. Build. Mater. 2009, 23, 829–836. [Google Scholar] [CrossRef]
- Di Maio, A.A.; Zega, C.J.; Traversa, L.P. Estimation of Compressive Strength of Recycled Concretes with the Ultrasonic Method. J. ASTM Int. 2005, 2, 1–8. [Google Scholar]
- Zega, C.J.; Di Maio, Á.A. Efecto del agregado grueso reciclado sobre las propiedades del hormigón. Bol. Tec. IMME 2007, 45, 1–11. [Google Scholar]
- Otsuki, N.; Miyazato, S.; Yodsudjai, W. Influence of Recycled Aggregate on Interfacial Transition Zone, Strength, Chloride Penetration and Carbonation of Concrete. J. Mater. Civ. Eng. 2003, 15, 443–451. [Google Scholar] [CrossRef]
- Tuutti, K. Corrosion of Steel in Concrete; Swedish Cement and Concrete Institute: Stockholm, Sweden, 1982; 468p. [Google Scholar]
- Huerta, E.O. Corrosión y Degradación de Materiales; Síntesis: Madrid, Spain, 1997; 432p. [Google Scholar]
- Tanaka, K.; Yada, K.; Maruyama, I.; Sato, R.; Kawai, K. Study on corrosion of reinforcing bar in recycled concrete. In Proceedings of the International RILEM Conference on the Use of Recycled Materials in Building and Structures, Barcelona, Spain, 8–11 November 2004; RILEM: Barcelona, Spain, 2004. [Google Scholar]
- Villagrán-Zaccardi, Y.A.; Taus, V.L.; Zega, C.J.; Di Maio, A.A.; Traversa, L.P. Propiedades de transporte en hormigones convencionales y reciclados y su influencia en la corrosión de armaduras. In Proceedings of the Fib Symposium Structural Concrete and Time, La Plata, Argentina, 28–30 September 2005; LEMIT: La Plata, Argentina, 2005. [Google Scholar]
- Kou, S.; Poon, C.; Agrela, F. Comparisons of natural and recycled aggregate concretes prepared with addition of different mineral admixtures. Cem. Concr. Compos. 2011, 33, 788–795. [Google Scholar] [CrossRef]
- Fernández Luco, L. La durabilidad del hormigón: Su relación con la estructura de poros y los mecanismos de transporte de fluidos. In Durabilidad del Hormigón Estructural; Irassar, E.F., Ed.; AATH: Buenos Aires, Argentina, 2001; pp. 1–45. [Google Scholar]
- Sosa, M.E.; Chirillano, A.; Villagrán-Zaccardi, Y.A.; Zega, C.J. Optimizing manufactured sand content in mortars and its influence on fresh and hardened state. DYNA 2020, 87, 196–203. [Google Scholar] [CrossRef]
- Sosa, M.E.; Carrizo, L.E.; Zega, C.J.; Villagrán, Y.A. Water absorption of fine recycled aggregates: Effective determination by a method based on elect. Conductivity. Mater. Struct. 2018, 51, 127. [Google Scholar] [CrossRef]
- Sosa, M.E.; Villagrán Zaccardi, Y.A.; Zega, C.J. A critical review of the resulting effective water-to-cement ratio of fine recycled aggregate concrete. Constr. Build. Mater. 2021, 313, 125536. [Google Scholar] [CrossRef]
- Sosa, M.E.; Villagrán Zaccardi, Y.A.; Zega, C.J.; Di Maio, Á.A. Influence of Total and Effective Water-Cement Ratio on Compressive Strength of Concretes Made With Fine Recycled Concrete Aggregates. In Proceedings of the IV International Conference Progress of Recycling in the Build Environment, Lisbon, Portugal, 11–12 October 2018; Martins, I., Ulsen, C., Villagrán, Y., Eds.; RILEM: Lisbon, Portugal, 2018. [Google Scholar]
- Zega, C.J.; Di Maio, Á.A. Use of recycled fine aggregate in concretes with durable requirements. Waste Manag. 2011, 31, 2336–2340. [Google Scholar] [CrossRef] [Green Version]
- Zega, C.J.; Dos Santos, G.C.; Villagrán-Zaccardi, Y.A.; Di Maio, A.A. Performance of recycled concretes exposed to sulphate soil for 10 years. Constr. Build. Mater. 2016, 102, 714–721. [Google Scholar] [CrossRef]
- Kovler, K.; Jensen, O.M. General Concept and Terminology. Internal Curing of Concrete—RILEM TC 196-ICC; State-of-the-Art Report; RILEM: Paris, France, 2007; pp. 5–13. [Google Scholar]
- Kim, H.; Bentz, D. Internal curing with crushed returned concrete aggregates for high performance concrete. In Proceedings of the NRMCA Concrete Technology Forum: Focus on Sustainable Development, Denver, CO, USA, 20–22 May 2008; NRMCA: Denver, CO, USA, 2008; pp. 1–12. [Google Scholar]
- Zega, C.J.; Dos Santos, G.S.C.; Pittori, A.; Di Maio, A.A. Efecto del contenido de humedad del agregado grueso reciclado sobre la resistencia a compresión. In Proceedings of the VI Congreso Internacional de la AATH, Concordia, Argentina, 22–24 October 2014; AATH: La Plata, Argentina, 2014. [Google Scholar]
- Werle, A.P.; Kulakowski, M.P.; de Souza Kazmierczak, C.; Sentena, J.A.A. Carbonation in Concrete with Recycled Concrete Aggregates. In Proceedings of the XII International Confrerence on Durability of Building Materials and Components, Porto, Portugal, 12–15 April 2011; UPorto: Porto, Portugal, 2011. [Google Scholar]
- Silva, R.V.; Neves, R.; De Brito, J.; Dhir, R.K. Carbonation behaviour of recycled aggregate concrete. Cem. Concr. Compos. 2015, 62, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Leemann, A.; Loser, R. Carbonation resistance of recycled aggregate concrete. Constr. Build. Mater. 2019, 204, 335–341. [Google Scholar] [CrossRef]
- Faleschini, F.; Zanini, M.A.; Hofer, L. Reliability-Based Analysis of Recycled Aggregate Concrete under Carbonation. Adv. Civ. Eng. 2018, 2018, 11. [Google Scholar] [CrossRef]
- Xiao, J.; Lei, B.; Zhang, C. Effects of Recycled Coarse Aggregates on the Carbonation Evolution of Concrete. Key Eng. Mater. 2010, 417–418, 697–700. [Google Scholar] [CrossRef]
- Arredondo Rea, S.P.; Corral Higuera, R.; Gómez Soberón, J.M.V.; Castorena González, J.H.; Orozco Carmona, V.; Almaral Sánchez, J.L. Carbonation rate and reinforcing steel corrosion of concretes with recycled concrete aggregates and supplementary cementing materials. Int. J. Electrochem Sci. 2012, 7, 1602–1610. [Google Scholar]
- Zega, C.J.; Etcheverry, J.M.; Villagrán-Zaccardi, Y.A. Natural carbonation of multiplely recycled aggregate concrete. In Proceedings of the International Workshop CO2 Storage in Concrete, Paris, France, 24–26 June 2019; Djerbi, A., Omikrine-Metalssi, O., Fen-Chong, T., Eds.; IFFSTAR: Paris, France, 2019. [Google Scholar]
- Xiao, J.Z.; Lei, B. Carbonation model and structural durability design for recycled concrete. J. Archit. Civ. Eng. 2008, 25, 66–72. [Google Scholar]
- Silva, R.V.; Silva, A.; Neves, R.; de Brito, J. Statistical modeling of carbonation in concrete incorporating recycled aggregates. J. Mat. Civ. Eng. 2016, 28, 040150821. [Google Scholar] [CrossRef]
- Zhang, K.; Xiao, J. Prediction model of carbonation depth for recycled aggregate concrete. Cem. Concr. Comp. 2018, 88, 86–99. [Google Scholar] [CrossRef]
- Liu, K.; Alam, M.S.; Zhu, J.; Zheng, J.; Chi, L. Prediction of carbonation depth for recycled aggregate concrete using ANN hybridized with swarm intelligence algorithms. Constr. Build. Mater. 2021, 301, 124382. [Google Scholar] [CrossRef]
- Zou, Z.; Yang, G. A model of carbonation depth of recycled coarse aggregate concrete under axial compressive stress. Eur. J. Environ. Civ. Eng. 2021, 2021, 1886178. [Google Scholar] [CrossRef]
- Carević, V.; Ignjatović, I.; Dragaš, J. Model for practical carbonation Depth prediction for high volumen fly ash concrete and recycled aggregate concrete. Constr. Build. Mater. 2019, 213, 194–208. [Google Scholar] [CrossRef]
- Nunez, I.; Nehdi, M.L. Machine learning prediction of carbonation depth in recycled aggregate concrete incorporating SCMs. Constr. Build. Mater. 2021, 287, 123027. [Google Scholar] [CrossRef]
- Collepardi, M.; Marcialis, A.; Turriziani, R. Penetration of chloride ions into cement pastes and concretes. J. Am. Ceram. Soc. 1972, 55, 534–535. [Google Scholar] [CrossRef]
- Monosi, S.; Moriconi, G.; Alveá, I.; and Collepardi, M. Effect of water-cement ratio and curing time on chloride penetration into concrete. Mater. Eng. 1989, 1, 483–489. [Google Scholar]
- Tang, L.; Nilsson, L.-O. Chloride binding capacity and binding isotherms of OPC pastes and mortars. Cem. Concr. Res. 1993, 23, 247–253. [Google Scholar]
- Delagrave, A.; Marchand, J.; Ollivier, J.-P.; Julien, S.; Hazrati, K. Chloride binding capacity of various hydrated cement paste systems. Adv. Cem. Based Mater. 1997, 6, 28–35. [Google Scholar] [CrossRef]
- Nilsson, L.-O. Interaction between microclimate and concrete—A prerequisite for deterioration. Constr. Build. Mater. 1996, 10, 301–308. [Google Scholar] [CrossRef]
- Martín-Pérez, B. Service Life Modelling of R. C. Highway Structures Exposed to Chlorides. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 1999. [Google Scholar]
- Glass, G.K.; Reddy, B.; Buenfeld, N.R. The participation of bound chloride in passive film breakdown on steel in concrete. Corr. Sci. 2000, 42, 2013–2021. [Google Scholar] [CrossRef]
- Villagrán-Zaccardi, Y.A.; Zega, C.J.; Di Maio, Á.A. Chloride Penetration and Binding in Recycled Concrete. J. Mater. Civ. Eng. 2008, 20, 449–455. [Google Scholar] [CrossRef]
- Meira, G.R.; Andrade, C.; Padaratz, I.J.; Alonso, C.; Borba, J.C., Jr. Chloride penetration into concrete structures in the marine atmosphere zone—Relationship between deposition of chlorides on the wet candle and chlorides accumulated into concrete. Cem. Concr. Comp. 2007, 29, 667–676. [Google Scholar] [CrossRef]
- Villagran, Y.; Matiasich, C. Capacidad de fijación y adsorción de cloruros en cementos. Cienc. Tecnol. Hormig. 2004, 11, 59–72. [Google Scholar]
- Tang, L.; Lindvall, A. Validation of models for prediction of chloride ingress in concrete exposed in de-icing salt road environment. Int. J. Struct. Eng. 2013, 4, 86–99. [Google Scholar] [CrossRef] [Green Version]
- Salem, R.M.; Burdette, E.G.; Jackson, N.M. Resistance to freezing and thawing of recycled aggregate concrete. ACI Mater. J. 2003, 100, 216–221. [Google Scholar]
- Bogas, J.A.; de Brito, J.; Ramos, D. Freeze-thaw resistance of concrete produced with fine recycled concrete aggregates. J. Clean. Prod. 2016, 115, 294–306. [Google Scholar] [CrossRef]
- Villagrán-Zaccardi, Y.A.; Zega, C.J.; Di Maio, A.A. Chloride ingress and binding in air-entrained recycled aggregate concrete. In Proceedings of the 6th Amazon & Pacific Green Materials Congress and Sustainable Construction Materials Lat-RILEM Confrerence, Cali, Colombia, 27–29 April 2016; Delvasto, S., Mejía de Gutiérrez, R., Hincapié, R., Savastano, H., Jr., de Vasconcelos, R.P., Eds.; UniValle: Cali, Colombia, 2016. [Google Scholar]
- Zega, C.J.; Villagran-Zaccardi, Y.A.; Di Maio, A.A. Chloride diffusion in recycled concretes made with different types of natural coarse aggregates. In Proceedings of the International Conference on Sustainable Structural Concrete, La Plata, Argentina, 15–18 September 2015; LEMIT: La Plata, Argentina, 2015. [Google Scholar]
- Villagrán Zaccardi, Y.A.; Zega, C.J.; Di Maio, A.A. Hormigón con agregado reciclado proveniente de ambiente marino: Ingreso de cloruro y corrosión de armaduras. Rev. Hormig. 2009, 47, 35–43. [Google Scholar]
- UNE 83988-1:2008; Concrete Durability. Test Methods. Determination of the Electrical Resistivity. Part 1: Direct Test (Reference Method). UNE: Madrid, Spain, 2008; 9p.
- prEN 12390-19; Testing of Hardened Concrete—Part 19: Determination of Resistivity. DIN: Berlin, Germany, 2021; 43p.
- COST 509, Corrosion and Protection of Metals in Contact with Concrete—Final Report; Publication Office European Commission: Brussels, Belgium, 1997; 148p.
- Azarsa, P.; Gupta, R. Electrical Resistivity of Concrete for Durability Evaluation: A Review. Adv. Mater. Sci. Eng. 2017, 2017, 8453095. [Google Scholar] [CrossRef] [Green Version]
- Arredondo-Rea, S.P.; Corral-Higuera, R.; Gómez-Soberón, J.M.; Gámez-García, D.C.; Bernal-Camacho, J.M.; Rosas-Casarez, C.A.; Ungsson-Nieblas, M.J. Durability Parameters of Reinforced Recycled Aggregate Concrete: Case Study. Appl. Sci. 2019, 9, 617. [Google Scholar] [CrossRef] [Green Version]
- Andreu, G.; Etxeberría, M. Experimental analysis of properties of high performance recycled aggregate concrete. Constr. Build. Mater. 2014, 52, 227–235. [Google Scholar] [CrossRef]
- Medina, C.; Sánchez de Rojas, M.I.; Thomas, C.; Polanco, J.A.; Frías, M. Durability of recycled concrete made with recycled ceramic sanitary ware aggregate. Inter-indicator relationships. Constr. Build. Mater. 2016, 105, 480–486. [Google Scholar] [CrossRef]
- Kurda, R.; de Brito, J.; Silvestre, J.D. Water absorption and electrical resistivity of concrete with recycled concrete aggregates and fly ash. Cem. Concr. Compos. 2018, 95, 169–182. [Google Scholar] [CrossRef]
- Omary, S.; Ghorbel, E.; Wardeh, G.; Nguyen, M.D. Mix Design and Recycled Aggregates Effects on the Concrete’s Properties. Int. J. Civ. Eng. 2018, 16, 973–992. [Google Scholar] [CrossRef]
- Singh, N.; Singh, S.P. Evaluating the performance of self compacting concretes made with recycled coarse and fine aggregates using non destructive testing techniques. Constr. Build. Mater. 2018, 181, 73–84. [Google Scholar] [CrossRef]
- Amorin Junior, N.S.; Silva, G.A.O.; Dias, C.M.R.; Riveiro, D.V. Concrete containing recycled aggregates: Estimated lifetime using chloride migration test. Constr. Build. Mater. 2019, 222, 108–118. [Google Scholar] [CrossRef]
- Cantero, B.; Sáez del Bosque, I.F.; Sánchez de Rojas, M.I.; Medina, C. Water Transport Mechanisms In Concretes Bearing Mixed Recycled Aggregates. Cem. Concr. Compos. 2020, 107, 103486. [Google Scholar] [CrossRef]
- Kirthika, S.K.; Singh, S.K. Durability studies on recycled fine aggregate concrete. Constr. Build. Mater. 2020, 250, 11850. [Google Scholar] [CrossRef]
- Sasanipour, H.; Aslani, F. Durability properties evaluation of self-compacting concrete prepared with waste fine and coarse recycled concrete aggregates. Constr. Build. Mater. 2020, 236, 117540. [Google Scholar] [CrossRef]
- Ameen, B.M.; Al-Numan, B. Corrosion rate of reinforced concrete incorporating recycled concrete aggregates. IOP Conf. Ser. Earth. Environ. Sci. 2021, 871, 012004. [Google Scholar] [CrossRef]
- Tu, T.Y.; Chen, Y.Y.; Hwang, C.L. Properties of HPC with recycled aggregates. Cem. Concr. Res. 2006, 36, 943–950. [Google Scholar] [CrossRef]
- Whittington, H.W.; McCarter, J.; Forde, M.C. The conduction of electricity through concrete. Mag. Concr. Res. 1981, 114, 48–60. [Google Scholar] [CrossRef]
- Jalilifar, H.; Sajedi, F.; Toosi, V.R. Evaluating the durability of recycled concrete made of coarse recycled aggregate concrete containing silica-fume and natural zeolite. Rev Constr./J. Constr. 2020, 19, 457–473. [Google Scholar] [CrossRef]
- Rais, M.S.; Khan, R.A. Strength and durability characteristics of binary blended recycled coarse aggregate concrete containing microsilica and metakaolin. Innov. Infrastruct. Solut. 2020, 5, 114. [Google Scholar] [CrossRef]
- Surya, M.; Kanta Rao, V.V.L.; Lakshmy, P. Mechanical, durability, and time-dependent properties of recycled aggregate concrete with fly ash. ACI Mater. J. 2015, 112, 653–661. [Google Scholar] [CrossRef]
- Villagran Zaccardi, Y.A.; Di Maio, A.A. Electrical resistivity measurement of unsaturated concrete samples. Mag. Concr. Res. 2014, 66, 484–491. [Google Scholar] [CrossRef] [Green Version]
- Landa-Sánchez, A.; Bosch, J.; Baltazar-Zamora, M.A.; Croche, R.; Landa-Ruiz, L.; Santiago-Hurtado, G.; Moreno-Landeros, V.M.; Olguín-Coca, J.; López-Léon, L.; Bastidas, J.M.; et al. Corrosion Behavior of Steel-Reinforced Green Concrete Containing Recycled Coarse Aggregate Additions in Sulfate Media. Materials 2020, 13, 4345. [Google Scholar] [CrossRef]
- Sagoe-Crentsil, K.K.; Glasser, F.P.; Irvine, J.T.S. Electrochemical characteristics of reinforced concrete corrosion as determined by impedance spectroscopy. Br. Corros. J. 1992, 27, 113–118. [Google Scholar] [CrossRef]
- Shi, M.; Chen, Z.; Sun, J. Determination of chloride diffusivity in concrete by AC impedance spectroscopy. Cem. Concr. Res. 1999, 29, 1111–1115. [Google Scholar] [CrossRef]
- Song, G. Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete. Cem. Concr. Res. 2000, 30, 1723–1730. [Google Scholar] [CrossRef]
- Poupard, O.; Aït-Mokhtar, A.; Dumargue, P. Corrosion by chlorides in reinforced concrete: Determination of chloride concentration threshold by impedance spectroscopy. Cem. Concr. Res. 2004, 34, 991–1000. [Google Scholar] [CrossRef]
- Ribeiro, D.V.; Abrantes, J.C.C. Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach. Constr. Build. Mater. 2016, 111, 98–104. [Google Scholar] [CrossRef]
- Corral-Higuera, R.; Arredondo-Rea, S.P.; Neri-Flores, M.; Gomez-Soberón, J.M.; Almaral-Sánchez, J.L.; Castorena-González, J.H.; Martínez-Villafañe, A.; Almeraya-Calderon, F. Chloride Ion Penetrability and Corrosion Behavior of Steel in Concrete with Sustainability Characteristics. Int. J. Electrochem. Sci. 2011, 6, 958–970. [Google Scholar]
- Arredondo-Rea, S.P.; Corral-Higuera, R.; Neri-Flores, M.A.; Gómez-Soberón, J.M.; Almeraya Calderón, F.; Castorena-González, J.H.; Almaral-Sánchez, J.L. Electrochemical Corrosion and Electrical Resistivity of Reinforced Recycled Aggregate Concrete. Int. J. Electrochem. Sci. 2011, 6, 475–483. [Google Scholar]
- Al-Yaqout, A.; El-Hawary, M.; Nouh, K.; Khan, P. Corrosion resistance of recycled aggregate concrete incorporating slag. ACI Mater. J. 2020, 117, 111–122. [Google Scholar]
- Zhao, Y.; Dong, J.; Wu, Y.; Wang, H.; Li, X.; Xu, Q. Steel corrosion and corrosion-induced cracking in recycled aggregate concrete. Corr. Sci. 2014, 85, 241–250. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, J.; Hu, B.; Jin, W. Crack Shape and Rust Distribution in Corrosion-Induced Cracking Concrete. Corr. Sci. 2011, 55, 385–393. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Ding, H.; Jin, W. Non-Uniform Distribution of a Corrosion Layer at a Steel/Concrete Interface Described by a Gaussian Model. Corr. Sci. 2016, 112, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Paewchompoo, N.; Yodsudjai, W.; Suwanvitaya, P.; Iwanami, M.; Boonyingsathit, N.; Thaue, W.; Kiattanabumrung, S. Corrosion-induced cracking time in recycled aggregate concrete (RAC). Eng. Appl. Sci. Res. 2020, 47, 145–152. [Google Scholar]
- Penga, L.; Zhao, Y.; Zhang, H. Flexural behavior and durability properties of recycled aggregate concrete (RAC) beams subjected to long-term loading and chloride attacks. Constr. Build. Mater. 2021, 277, 122277. [Google Scholar] [CrossRef]
- Srubar, W.V., III. Stochastic service-life modeling of chloride-induced corrosion in recycled-aggregate concrete. Cem. Concr. Compos. 2015, 55, 103–111. [Google Scholar] [CrossRef]
- Alhawat, M.; Ashour, A. Bond strength between corroded steel reinforcement and recycled aggregate concrete. Struct 2019, 19, 369–385. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xu, X.; Su, S.; Zeng, W. To Improve the Resistance of Recycled Aggregate Concrete (RAC) to the Internal Steel Corrosion by the Pre-Treatment of Aggregate. Constr. Build. Mater. 2021, 306, 124911. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Y. Cracking of Reinforced Recycled Aggregate Concrete Beams Subjected to Loads and Steel Corrosion. Constr. Build. Mater. 2019, 210, 364–379. [Google Scholar] [CrossRef]
- Ortega, N.F.; Moro, J.M.; Meneses, R.S.; Aveldaño, R.R. Comportamiento Dinámico de Vigas de Hormigón Reciclado con sus Armaduras Corroídas. In Proceedings of the VI Congreso Internacional sobre Patología y Recuperación de Estructuras, Córdoba, Argentina, 2–4 June 2010; UTN: Córdoba, Argentina, 2010. [Google Scholar]
- Zhao, Y.; Dong, J.; Ding, H.; Jin, W. Shape of Corrosion-Induced Cracks in Recycled Aggregate Concrete. Corr. Sci. 2015, 98, 310–317. [Google Scholar] [CrossRef]
- Moro, J.M.; Meneses, R.S.; Ortega, N.F.; Aveldaño, R.R. Corrosión de armaduras en elementos de hormigón reciclado con tratamientos de lechada de cemento. In Proceedings of the VII Congreso Internacional de la AATH, Salta, Argentina, 28–30 September 2016; AATH: Buenos Aires, Argentina, 2016. [Google Scholar]
- Bai, G.; Zhu, C.; Liu, C.; Liu, B. An Evaluation of the Recycled Aggregate Characteristics and the Recycled Aggregate Concrete Mechanical Properties. Constr. Build. Mater. 2020, 240, 117978. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villagrán-Zaccardi, Y.A.; Pico-Cortés, C.M.; Etcheverry, J.M.; Santillán, L.R.; Sosa, M.E. Insights on the Corrosion Resistance of Reinforced Recycled Aggregate Concrete. Corros. Mater. Degrad. 2022, 3, 192-209. https://doi.org/10.3390/cmd3020011
Villagrán-Zaccardi YA, Pico-Cortés CM, Etcheverry JM, Santillán LR, Sosa ME. Insights on the Corrosion Resistance of Reinforced Recycled Aggregate Concrete. Corrosion and Materials Degradation. 2022; 3(2):192-209. https://doi.org/10.3390/cmd3020011
Chicago/Turabian StyleVillagrán-Zaccardi, Yury A., Carlos M. Pico-Cortés, Juan M. Etcheverry, Lautaro R. Santillán, and María E. Sosa. 2022. "Insights on the Corrosion Resistance of Reinforced Recycled Aggregate Concrete" Corrosion and Materials Degradation 3, no. 2: 192-209. https://doi.org/10.3390/cmd3020011
APA StyleVillagrán-Zaccardi, Y. A., Pico-Cortés, C. M., Etcheverry, J. M., Santillán, L. R., & Sosa, M. E. (2022). Insights on the Corrosion Resistance of Reinforced Recycled Aggregate Concrete. Corrosion and Materials Degradation, 3(2), 192-209. https://doi.org/10.3390/cmd3020011