Differentiation between Gastric and Colorectal Adenocarcinomas Based on Maspin, MLH1, PMS2 and K-Ras Concentrations Determined Using Stochastic Sensors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Differentiation Based on Maspin Levels
2.1.1. Differentiation Using Only Whole Blood and Urine Maspin Concentrations
- whole blood maspin concentration < 100 pg/mL;
- the ratio of whole blood maspin concentration and urine maspin concentration < 0.3;
- urine maspin concentration > 300 pg/mL.
2.1.2. Differentiation Using All the Three Maspin Levels in Urine, Whole Blood and Saliva
- whole blood maspin concentration < 100 pg/mL;
- the ratio of saliva maspin concentration and urine maspin concentration < 0.3;
- the ratio of saliva maspin concentration and whole blood maspin concentration < 1.3.
2.1.3. Further Uses of Maspin Levels for Clinicopathological Features
- First step—differentiation between gastric and colorectal adenocarcinomas:
- 2.
- Second step—the location of the tumor in the organ where it is located:
- 3.
- Third step—maximum diameter of the tumor:
- 4.
- Fourth step—a first microscopic feature:
- 5.
- Fifth step—a second microscopic feature:
- 6.
- Sixth step—TNM staging:
2.2. Differentiation Based on MLH1, PMS2 and KRAS Levels
- MLH1 and PMS2 concentrations in saliva
- MLH1 and PMS2 concentrations in urine
- MLH1 and PMS2 concentrations in both samples
- MLH1 and PMS2 concentrations in both samples + K-Ras concentration in saliva
- MLH1 and PMS2 concentrations in both samples + K-Ras concentration in urine
- MLH1, PMS2, and K-Ras concentrations in both samples
2.2.1. MLH1 and PMS2 Concentrations in Saliva
2.2.2. MLH1 and PMS2 Concentrations in Urine
2.2.3. MLH1 and PMS2 Concentrations in Both Samples
2.2.4. MLH1 and PMS2 Concentrations in Both Samples with addition of K-Ras Concentrations Criteria
3. Materials and Methods
3.1. Patients Description
3.2. Materials and Reagents
3.3. Apparatus
3.4. Stochastic Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tanaka, A.; Wang, J.Y.; Shia, J.; Zhou, Y.; Ogawa, M.; Hendrickson, R.C.; Klimstra, D.S.; Roehrl, M.H.A. Maspin as a prognostic marker for early stage colorectal cancer with microsatellite instability. Front. Oncol. 2020, 10, 945. [Google Scholar] [CrossRef]
- Zou, Z.; Anisowicz, A.; Hendrix, M.J.; Thor, A.; Neveu, M.; Sheng, S.; Rafidi, K.; Seftor, E.; Sager, R. Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science 1994, 263, 526–529. [Google Scholar] [CrossRef] [PubMed]
- Banias, L.; Jung, I.; Gurzu, S. Subcellular expression of maspin—From normal tissue to tumor cells. World J. Meta-Anal. 2019, 7, 142–155. [Google Scholar] [CrossRef]
- Bodenstine, T.M.; Seftor, R.E.; Khalkhali-Ellis, Z.; Seftor, E.A.; Pemberton, P.A.; Hendrix, M.J. Maspin: Molecular mechanisms and therapeutic implications. Cancer Metastasis Rev. 2012, 31, 529–551. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, P.A.; Wong, D.T.; Barr, P.J.; Pemberton, P.A. Functional implications of the modeled structure of maspin. Protein Eng. 1996, 9, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.Y.; Yeo, H.Y.; Chang, H.J.; Kim, K.H.; Kim, S.Y.; Park, J.W.; Park, S.C.; Choi, H.S.; Kim, D.Y.; Oh, J.H. Serpin B5 is a CEA-interacting biomarker for colorectal cancer. Int. J. Cancer 2014, 134, 1595–1604. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Shi, H.Y.; Zhang, M. Targeted expression of maspin in tumor vasculatures induces endothelial cell apoptosis. Oncogene 2005, 24, 2008–2019. [Google Scholar] [CrossRef]
- Banias, L.; Gurzu, S.; Kovacs, Z.; Bara, T.; Bara, T., Jr.; Jung, I. Nuclear maspin expression: A biomarker for budding assessment in colorectal cancer specimens. Pathol. Res. Pract. 2017, 213, 1227–1230. [Google Scholar] [CrossRef] [PubMed]
- Tamazato Longhi, M.; Cella, N. Tyrosine phosphorylation plays a role in increasing maspin protein levels and its cytoplasmic accumulation. FEBS Open Bio 2012, 2, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Gurzu, S.; Szentirmay, Z.; Popa, D.; Jung, I. Practical value of the new system for Maspin assessment, in colorectal cancer. Neoplasma 2013, 60, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Gurzu, S.I.; Sugimura, H.; Stefan-van Staden, R.I.; Yamada, H.; Natsume, H.; Iwashita, Y.; Szodorai, R.; Szederjesi, J. Maspin subcellular expression of wild-type- and mutant TP53 gastric cancers. World J. Gastrointest. Oncol. 2020, 12, 741–755. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H.; Tsui, K.H.; Chang, K.S.; Hou, C.P.; Feng, T.H.; Juang, H.H. Maspin is a PTEN-Upregulated and p53-Upregulated Tumor Suppressor Gene and Acts as an HDAC1 Inhibitor in Human Bladder Cancer. Cancers 2019, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Murnyak, B.; Hortobagyi, T. Immunohistochemical correlates of TP53 somatic mutations in cancer. Oncotarget 2016, 7, 64910–64920. [Google Scholar] [CrossRef]
- Gurzu, S.; Szentirmay, Z.; Jung, I. Molecular classification of colorectal cancer: A dream that can become a reality. Rom. J. Morphol. Embryol. 2013, 54, 241–245. [Google Scholar] [PubMed]
- Gurzu, S.; Kadar, Z.; Sugimura, H.; Orlowska, J.; Bara, T.; Bara, T., Jr.; Szederjesi, J.; Jung, I. Maspin-related orchestration of aggressiveness of gastric cancer. Appl. Immunohistochem. Mol. Morphol. 2016, 24, 326–336. [Google Scholar] [CrossRef]
- Snoeren, N.; Emmink, B.L.; Koerkamp, M.J.; van Hooff, S.R.; Goos, J.A.; van Houdt, W.J.; de Wit, M.; Prins, A.M.; Piersma, S.R.; Pham, T.V.; et al. Maspin is a marker for early recurrence in primary stage III and IV colorectal cancer. Br. J. Cancer 2013, 109, 1636–1647. [Google Scholar] [CrossRef] [PubMed]
- Markl, B.; Arnholdt, H.M.; Jahnig, H.; Schenkirsch, G.; Herrmann, R.A.; Haude, K.; Spatz, H.; Anthuber, M.; Schlimok, G.; Oruzio, D. Shift from cytoplasmic to nuclear maspin expression correlates with shorter overall survival in node-negative colorectal cancer. Hum. Pathol. 2010, 41, 1024–1033. [Google Scholar] [CrossRef]
- Wang, M.C.; Yang, Y.M.; Li, X.H.; Dong, F.; Li, Y. Maspin expression and its clinicopathological significance in tumorigenesis and progression of gastric cancer. World J. Gastroenterol. 2004, 10, 634–637. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Park, C.S.; Kim, H.S.; Kim, J.Y.; Kim, Y.C.; Lee, S. Maspin and p53 protein expression in gastric adenocarcinoma and its clinical applications. Appl. Immunohistochem. Mol. Morphol. 2008, 16, 13–18. [Google Scholar] [CrossRef]
- Song, S.Y.; Lee, S.K.; Kim, D.H.; Son, H.J.; Kim, H.J.; Lim, Y.J.; Lee, W.Y.; Chun, H.K.; Rhee, J.C. Expression of maspin in colon cancers: Its relationship with p53 expression and microvessel density. Dig. Dis. Sci. 2002, 47, 1831–1835. [Google Scholar] [CrossRef]
- Ni, J.T.; Yi, Y.F.; Shi, H.P. Expressions of maspin, P53 and Skp2 in colorectal tumors and their clinicopathological significance. Chin. J. Cancer Res. 2009, 21, 147–153. [Google Scholar] [CrossRef]
- Zheng, H.; Tsuneyama, K.; Cheng, C.; Takahashi, H.; Cui, Z.; Murai, Y.; Nomoto, K.; Takano, Y. Maspin Expression was Involved in Colorectal Adenoma-Adenocarcinoma Sequence and Liver Metastasis of Tumors. Anticancer Res. 2007, 27, 259–266. [Google Scholar] [PubMed]
- Fawzy, H. Cancer Biomarkers; InTech: Rijeka, Croatia, 2016. [Google Scholar]
- Medicine, N.L. Available online: https://medlineplus.gov/genetics/gene/mlh1/ (accessed on 3 September 2022).
- Medicine, N.L. Available online: https://medlineplus.gov/genetics/gene/pms2/ (accessed on 3 September 2022).
- Medicine, N.L. Available online: https://medlineplus.gov/genetics/gene/kras/ (accessed on 3 September 2022).
- Domagala, P. Kras Mutation Testing in Colorectal Cancer as an Example of the Pathologist’s Role in Personalized Targeted Therapy: A Practical Approach. Polish J. Pathol. 2012, 3, 145–164. [Google Scholar] [CrossRef]
- Abrha, A. Universal Screening of Gas.trointestinal Malignancies for Mismatch Repair Deficiency at Stanford. JNCI Cancer Spectr. 2020, 4, pkaa054. [Google Scholar] [CrossRef]
- Haron, N.H. Microsatellite Instability and Altered Expressions of MLH1 and MSH2 in Gastric Cancer. Asian Pac. J. Cancer Prev. 2019, 20, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T. Predictive value of MLH1 and PD-L1 expression for prognosis and response to preoperative chemotherapy in gastric cancer. Gastric Cancer 2019, 22, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Stefan-van Staden, R.I.; Ilie-Mihai, R.M.; Coros, M.; Pruneanu, S. Molecular recognition and quantification of MLH1, MSH2, MSH6, PMS2, and KRAS in biological samples. ECS Sens. Plus 2022, 1, 031606. [Google Scholar] [CrossRef]
- Gheorghe, D.C.; Stefan-van Staden, R.I.; Pogacean, F.; Pruneanu, S. Simultaneous analysis of MLH1, MSH2, MSH6, PMS2 and KRAS in patients with gastric and colon cancer using stochastic sensors. Chemosensors 2022, 10, 380. [Google Scholar] [CrossRef]
- Stefan-van Staden, R.I.; Bogea, I.M.; Ilie-Mihai, R.M.; Gheorghe, D.C.; Coros, M.; Pruneanu, S.M. Stochastic microsensors based on modified graphene for pattern recognition of maspin in biological samples. Anal. Bioanal. Chem. 2022, 414, 3667–3673. [Google Scholar] [CrossRef]
Least Number of MLH1 and PMS2 Criteria | K-Ras in Saliva Criterion | K-Ras in Urine Criterion | K-Ras in Both Samples Criteria | |||
---|---|---|---|---|---|---|
Gastric | Colorectal | Gastric | Colorectal | Gastric | Colorectal | |
1 | 100.00% | 40.30% | 100.00% | 11.94% | 100.00% | 4.48% |
2 | 95.24% | 31.34% | 95.24% | 11.94% | 95.24% | 4.48% |
3 | 76.19% | 16.24% | 76.19% | 7.46% | 76.19% | 2.99% |
4 | 61.90% | 5.97% | 61.94% | 0.00% | 61.94% | 0.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bratei, A.A.; Stefan-van Staden, R.-I. Differentiation between Gastric and Colorectal Adenocarcinomas Based on Maspin, MLH1, PMS2 and K-Ras Concentrations Determined Using Stochastic Sensors. Gastrointest. Disord. 2023, 5, 487-499. https://doi.org/10.3390/gidisord5040040
Bratei AA, Stefan-van Staden R-I. Differentiation between Gastric and Colorectal Adenocarcinomas Based on Maspin, MLH1, PMS2 and K-Ras Concentrations Determined Using Stochastic Sensors. Gastrointestinal Disorders. 2023; 5(4):487-499. https://doi.org/10.3390/gidisord5040040
Chicago/Turabian StyleBratei, Alexandru Adrian, and Raluca-Ioana Stefan-van Staden. 2023. "Differentiation between Gastric and Colorectal Adenocarcinomas Based on Maspin, MLH1, PMS2 and K-Ras Concentrations Determined Using Stochastic Sensors" Gastrointestinal Disorders 5, no. 4: 487-499. https://doi.org/10.3390/gidisord5040040
APA StyleBratei, A. A., & Stefan-van Staden, R.-I. (2023). Differentiation between Gastric and Colorectal Adenocarcinomas Based on Maspin, MLH1, PMS2 and K-Ras Concentrations Determined Using Stochastic Sensors. Gastrointestinal Disorders, 5(4), 487-499. https://doi.org/10.3390/gidisord5040040