Microstructure and Hydrogen Storage Properties of the Multiphase Ti0.3V0.3Mn0.2Fe0.1Ni0.1 Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Microstructural Study
3.2. Crystal Structure
3.3. First Hydrogenation Properties
3.4. Air Exposure Effect
3.5. Synthesis by Mechanical Alloying
3.6. Effect of Milling on As-Cast Alloy
3.7. First Hydrogenation of the Milled Raw Powder and the Alloy
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anstrom, J. Hydrogen as a fuel in transportation. In Advances in Hydrogen Production, Storage and Distribution; Basile, A., Lulianelli, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 499–524. [Google Scholar]
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. In Materials for Sustainable Energy; Co-Published with Macmillan Publishers Ltd.: London, UK, 2012; pp. 265–270. [Google Scholar] [CrossRef]
- Züttel, A.; Remhof, A.; Borgschulte, A.; Friedrichs, O. Hydrogen: The future energy carrier. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2010, 368, 3329–3342. [Google Scholar] [CrossRef] [PubMed]
- Reilly, J. Metal hydride technology. Z. Für Phys. Chem. 1979, 117, 155–184. [Google Scholar] [CrossRef] [Green Version]
- Cantor, B.; Chang, I.; Knight, P.; Vincent, A. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Gao, M.C.; Yeh, J.-W.; Liaw, P.K.; Zhang, Y. High-Entropy Alloys: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Zhang, W.; Liaw, P.K.; Zhang, Y. Science and technology in high-entropy alloys. Sci. China Mater. 2018, 61, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Kunce, I.; Polanski, M.; Bystrzycki, J. Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using Laser Engineered Net Shaping (LENS). Int. J. Hydrogen Energy 2013, 38, 12180–12189. [Google Scholar] [CrossRef]
- Kunce, I.; Polanski, M.; Bystrzycki, J. Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS). Int. J. Hydrogen Energy 2014, 39, 9904–9910. [Google Scholar] [CrossRef]
- Kunce, I.; Polański, M.; Czujko, T. Microstructures and hydrogen storage properties of LaNiFeVMn alloys. Int. J. Hydrogen Energy 2017, 42, 27154–27164. [Google Scholar] [CrossRef]
- Sahlberg, M.; Karlsson, D.; Zlotea, C.; Jansson, U. Superior hydrogen storage in high entropy alloys. Sci. Rep. 2016, 6, 36770. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, D.; Ek, G.; Cedervall, J.; Zlotea, C.; Møller, K.T.; Hansen, T.C.; Bednarcik, J.; Paskevicius, M.; Sørby, M.H.; Jensen, T.R. Structure and hydrogenation properties of a HfNbTiVZr high-entropy alloy. Inorg. Chem. 2018, 57, 2103–2110. [Google Scholar] [CrossRef]
- Kao, Y.-F.; Chen, S.-K.; Sheu, J.-H.; Lin, J.-T.; Lin, W.-E.; Yeh, J.-W.; Lin, S.-J.; Liou, T.-H.; Wang, C.-W. Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys. Int. J. Hydrogen Energy 2010, 35, 9046–9059. [Google Scholar] [CrossRef]
- Zepon, G.; Leiva, D.; Strozi, R.; Bedoch, A.; Figueroa, S.; Ishikawa, T.; Botta, W. Hydrogen-induced phase transition of MgZrTiFe 0.5 Co 0.5 Ni 0.5 high entropy alloy. Int. J. Hydrogen Energy 2018, 43, 1702–1708. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Mater. Trans. 2005, 46, 2817–2829. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhang, Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 2012, 132, 233–238. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Z.; Ma, S.; Liaw, P.; Tang, Z.; Cheng, Y.; Gao, M. Guidelines in predicting phase formation of high-entropy alloys. Mrs Commun. 2014, 4, 57–62. [Google Scholar] [CrossRef]
- Guo, S.; Ng, C.; Lu, J.; Liu, C. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 2011, 109, 103505. [Google Scholar] [CrossRef] [Green Version]
- Elements, Atomic Radii and the Periodic Table. Available online: http://www.crystalmaker.com/support/tutorials/atomic-radii/ (accessed on 12 February 2021).
- Ptable. Available online: https://www.ptable.com/ (accessed on 12 February 2021).
- Bruker, A. Topas V3: General profile and structure analysis software for powder diffraction data–user’s manual. In Coelho Software; TOPAS Academic: Brisbane, Australia, 2005. [Google Scholar]
- Collins, T.J. ImageJ for microscopy. Biotechniques 2007, 43, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Deying, S.; Xueping, G.; Yunshi, Z.; Jie, Y.; Panwen, S. Characteristics of titanium-based C14-type Laves phase alloys and their hydride electrodes. J. Alloys Compd. 1994, 206, 43–46. [Google Scholar] [CrossRef]
- Challet, S.; Latroche, M.; Heurtaux, F. Hydrogenation properties and crystal structure of the single BCC (Ti0. 355V0. 645) 100− xMx alloys with M = Mn, Fe, Co, Ni (x = 7, 14 and 21). J. Alloys Compd. 2007, 439, 294–301. [Google Scholar] [CrossRef]
- Couillaud, S.; Enoki, H.; Amira, S.; Bobet, J.-L.; Akiba, E.; Huot, J. Effect of ball milling and cold rolling on hydrogen storage properties of nanocrystalline TiV1.6Mn0.4 alloy. J. Alloys Compd. 2009, 484, 154–158. [Google Scholar] [CrossRef]
- Aleksanyan, A.; Dolukhanyan, S.; Ter-Galstyan, O.; Mnatsakanyan, N. Hydride cycle formation of ternary alloys in TiVMn system and their interaction with hydrogen. Int. J. Hydrogen Energy 2016, 41, 13521–13530. [Google Scholar] [CrossRef]
- Huang, T.; Wu, Z.; Sun, G.; Xu, N. Microstructure and hydrogen storage characteristics of TiMn2−XVX alloys. Intermetallics 2007, 15, 593–598. [Google Scholar] [CrossRef]
- Nakamura, Y.; Nakamura, J.; Sakaki, K.; Asano, K.; Akiba, E. Hydrogenation properties of Ti–V–Mn alloys with a BCC structure containing high and low oxygen concentrations. J. Alloys Compd. 2011, 509, 1841–1847. [Google Scholar] [CrossRef]
- Bibienne, T.; Tousignant, M.; Bobet, J.-L.; Huot, J. Synthesis and hydrogen sorption properties of TiV (2−x) Mnx BCC alloys. J. Alloys Compd. 2015, 624, 247–250. [Google Scholar] [CrossRef]
- Huot, J.; Enoki, H.; Akiba, E. Synthesis, phase transformation, and hydrogen storage properties of ball-milled TiV0. 9Mn1. 1. J. Alloys Compd. 2008, 453, 203–209. [Google Scholar] [CrossRef]
- Huot, J.; Akiba, E.; Ishido, Y. Crystal structure of multiphase alloys (zr, ti)(mn, v) 2. J. Alloys Compd. 1995, 231, 85–89. [Google Scholar] [CrossRef]
- Huot, J.; Akiba, E.; Iba, H. Crystal structure and phase composition of alloys Zr1 − xTix(Mn1 − yVy)2. J. Alloys Compd. 1995, 228, 181–187. [Google Scholar] [CrossRef]
- Peisl, H. Lattice strains due to hydrogen in metals. In Hydrogen in Metals I; Springer: Berlin/Heidelberg, Germany, 1978; pp. 53–74. [Google Scholar]
- Gosselin, C.; Huot, J. Hydrogenation properties of tife doped with zirconium. Materials 2015, 8, 7864–7872. [Google Scholar] [CrossRef] [Green Version]
- Amira, S.; Santos, S.; Huot, J. Hydrogen sorption properties of Ti–Cr alloys synthesized by ball milling and cold rolling. Intermetallics 2010, 18, 140–144. [Google Scholar] [CrossRef]
- Lv, P.; Guzik, M.N.; Sartori, S.; Huot, J. Effect of ball milling and cryomilling on the microstructure and first hydrogenation properties of tife+ 4 wt.% zr alloy. J. Mater. Res. Technol. 2019, 8, 1828–1834. [Google Scholar] [CrossRef]
- Nakamura, Y.; Akiba, E. Hydriding properties and crystal structure of nacl-type mono-hydrides formed from ti–v–mn bcc solid solutions. J. Alloys Compd. 2002, 345, 175–182. [Google Scholar] [CrossRef]
- Fukai, Y. The Metal-Hydrogen System: Basic Bulk Properties; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 21. [Google Scholar]
Element (at.%) | Ti | V | Mn | Fe | Ni |
---|---|---|---|---|---|
Nominal | 30 | 30 | 20 | 10 | 10 |
Measured | 29.4 (3) | 30.8 (1) | 19.1 (2) | 10.4 (1) | 10.3 (2) |
Element (at.%) | Ti | V | Mn | Fe | Ni |
---|---|---|---|---|---|
Matrix (Point 1) | 32 | 23 | 19 | 11 | 15 |
Grey phase (Point 2) | 16 | 51 | 21 | 9 | 3 |
Dark grey (Point 3) | 51 | 13 | 11 | 11 | 14 |
Phase | Unit Cell Volume Å3 | Lattice Parameter Å | Crystallite Size nm | Micro-Strain % | Abundance % |
---|---|---|---|---|---|
C14 | 164.98 (3) | a = 4.8900 (4) c = 7.9651 (9) | 125 (48) | 0.04 (1) | 79 |
BCC | 26.58 (1) | 2.9841 (5) | 31 (5) | --------- | 17 |
Ti2Fe | 1418 (3) | 11.234 (8) | ------ | --------- | 4 |
Phase | Unit Cell Volume Å3 | Lattice Parameter Å | Crystallite Size nm | Micro-Strain % | Abundance % |
---|---|---|---|---|---|
C14 | 187.85 (9) | a = 5.1091 (1) c = 8.2835 (2) | 11 (3) | 0.62 (3) | 92 |
BCC | 34.5 (2) | 3.257 (6) | 7 (2) | ---------- | 8 |
Phase | Volume Expansion (Å3) | H/M | Estimated Capacity of the Phase (wt.%) |
---|---|---|---|
C14 | 22.9 | 2.0 | 1.2 |
BCC | 7.9 | 1.4 | 2.6 |
Milling Time (hr) | Unit Cell Volume (Å3) | Lattice Parameter (Å) | Crystallite Size (nm) |
---|---|---|---|
5 | 28.0 (2) | 3.035 (6) | 2.30 (5) |
10 | 27.7 (4) | 3.03 (1) | 1.40 (2) |
Milling Time (hr) | Phase | Unit Cell Volume (Å3) | Lattice Parameter (Å) | Crystallite Size (nm) | Abundance (%) |
---|---|---|---|---|---|
0 | C14 | 164.98 (3) | a = 4.8900 (4) c = 7.9651 (9) | 125 (48) | 79 |
BCC | 26.58 (1) | 2.9841 (5) | 31 (5) | 17 | |
Ti2Fe | 1418 (3) | 11.234 (8) | ------ | 4 | |
1 | C14 | 165.9 (6) | 4.897 (7) 7.989 (2) | 13.0 (2) | 36 |
BCC | 27.02 (1) | 3.001 (4) | 4.0 (2) | 64 | |
5 | BCC | 27.60 (4) | 3.02 (1) | 1.88 (6) | 100 |
10 | BCC | 28.60 (4) | 3.06 (1) | 1.12 (3) | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sleiman, S.; Moussa, M.; Huot, J. Microstructure and Hydrogen Storage Properties of the Multiphase Ti0.3V0.3Mn0.2Fe0.1Ni0.1 Alloy. Reactions 2021, 2, 287-300. https://doi.org/10.3390/reactions2030018
Sleiman S, Moussa M, Huot J. Microstructure and Hydrogen Storage Properties of the Multiphase Ti0.3V0.3Mn0.2Fe0.1Ni0.1 Alloy. Reactions. 2021; 2(3):287-300. https://doi.org/10.3390/reactions2030018
Chicago/Turabian StyleSleiman, Salma, Maria Moussa, and Jacques Huot. 2021. "Microstructure and Hydrogen Storage Properties of the Multiphase Ti0.3V0.3Mn0.2Fe0.1Ni0.1 Alloy" Reactions 2, no. 3: 287-300. https://doi.org/10.3390/reactions2030018
APA StyleSleiman, S., Moussa, M., & Huot, J. (2021). Microstructure and Hydrogen Storage Properties of the Multiphase Ti0.3V0.3Mn0.2Fe0.1Ni0.1 Alloy. Reactions, 2(3), 287-300. https://doi.org/10.3390/reactions2030018