Decomposition of Heavy Diesel SCR Urea Fluid Adsorbed in Cu/HZSM-5 SCR Catalysts Studied by FTIR Spectroscopy at Ambient Conditions
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation
2.2. Analysis
3. Results
3.1. Characterization
3.2. FTIR Analysis after Heat Treatment
3.3. Effect of Heating Time
3.4. Regeneration under Realistic Conditions
4. Discussion
4.1. Temperature Effect on Urea Decomposition
4.2. Regenerability of Cu/HZSM-5
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Suarez-Bertoa, R.; Astorga, C. Impact of cold temperature on Euro 6 passenger car emissions. Environ. Pollut. 2018, 234, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.; Park, J.; Kim, H.; Kang, G.; Lee, J.; Kim, J.; Lee, J. NOx Emissions from Euro 5 and Euro 6 Heavy-Duty Diesel Vehicles under Real Driving Conditions. Energies 2020, 13, 218. [Google Scholar] [CrossRef] [Green Version]
- Sjövall, H.; Blint, R.J.; Olsson, L. Detailed kinetic modeling of NH3 SCR over Cu-ZSM-5. Appl. Catal. B Environ. 2009, 92, 138–153. [Google Scholar] [CrossRef]
- Tempelman, C.; Warning, N.; van Geel, J.; van Bommel, F.; Lamers, K.; Hashish, M.; Schippers, J.; Gundlach, M.; Luijendijk, E. An Infrared and Thermal Decomposition Study on Solid Deposits Originating from Heavy-Duty Diesel SCR Urea Injection Fluids. Reactions 2020, 1, 72–88. [Google Scholar] [CrossRef]
- Gao, F.; Szanyi, J. On the hydrothermal stability of Cu/SSZ-13 SCR catalysts. Appl. Catal. A Gen. 2018, 560, 185–194. [Google Scholar] [CrossRef]
- Luo, J.; Gao, F.; Kamasamudram, K.; Currier, N.; Peden, C.H.F.; Yezerets, A. New insights into Cu/SSZ-13 SCR catalyst acidity. Part I: Nature of acidic sites probed by NH3 titration. J. Catal. 2017, 348, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Wang, Y.; Kollár, M.; Washton, N.M.; Szanyi, J.; Peden, C.H.F. A comparative kinetics study between Cu/SSZ-13 and Fe/SSZ-13 SCR catalysts. Catal. Today 2015, 258, 347–358. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Wan, Z.; Yang, X.; Zhang, X.; Niu, X.; Sun, B. Promotional effect of iron modification on the catalytic properties of Mn-Fe/ZSM-5 catalysts in the Fast SCR reaction. Fuel Process. Technol. 2018, 169, 112–121. [Google Scholar] [CrossRef]
- Zhong, C.; Tan, J.; Zuo, H.; Wu, X.; Wang, S.; Liu, J. Synergy effects analysis on CDPF regeneration performance enhancement and NOx concentration reduction of NH3–SCR over Cu–ZSM–5. Energy 2021, 230, 120814. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, Y.; Li, J.; Groden, K.; McEwen, J.-S.; Walter, E.D.; Chen, Y.; Wang, Y.; Gao, F. Probing Active-Site Relocation in Cu/SSZ-13 SCR Catalysts during Hydrothermal Aging by In Situ EPR Spectroscopy, Kinetics Studies, and DFT Calculations. ACS Catal. 2020, 10, 9410–9419. [Google Scholar] [CrossRef]
- Jiang, H.; Guan, B.; Peng, X.; Zhan, R.; Lin, H.; Huang, Z. Influence of synthesis method on catalytic properties and hydrothermal stability of Cu/SSZ-13 for NH3-SCR reaction. Chem. Eng. J. 2020, 379, 122358. [Google Scholar] [CrossRef]
- Borfecchia, E.; Lomachenko, K.A.; Giordanino, F.; Falsig, H.; Beato, P.; Soldatov, A.V.; Bordiga, S.; Lamberti, C. Revisiting the nature of Cu sites in the activated Cu-SSZ-13 catalyst for SCR reaction. Chem. Sci. 2015, 6, 548–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jentys, A.; Warecka, G.; Derewinski, M.; Lercher, J.A. Adsorption of water on ZSM 5 zeolites. J. Phys. Chem. 1989, 93, 4837–4843. [Google Scholar] [CrossRef]
- van der Bij, H.E.; Weckhuysen, B.M. Local silico-aluminophosphate interfaces within phosphated H-ZSM-5 zeolites. Phys. Chem. Chem. Phys. 2014, 16, 9892–9903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, G.; Yang, R.T. Ultra-active Fe/ZSM-5 catalyst for selective catalytic reduction of nitric oxide with ammonia. Appl. Catal. B Environ. 2005, 60, 13–22. [Google Scholar] [CrossRef]
- Martinez-Felipe, A.; Brebner, F.; Zaton, D.; Concellon, A.; Ahmadi, S.; Piñol, M.; Oriol, L. Molecular Recognition via Hydrogen Bonding in Supramolecular Complexes: A Fourier Transform Infrared Spectroscopy Study. Molecules 2018, 23, 2278. [Google Scholar] [CrossRef] [Green Version]
- Han, B.; Zhao, W.; Qin, X.; Li, Y.; Sun, Y.; Wei, W. Synthesis of dimethyl hexane-1,6-diyldicarbamate from 1,6-hexamethylenediamine and methyl carbamate using lead dioxide as catalyst. Catal. Commun. 2013, 33, 38–41. [Google Scholar] [CrossRef]
- Jiang, G.; Zhang, F.; Wei, Z.; Wang, Z.; Sun, Y.; Zhang, Y.; Lin, C.; Zhang, X.; Hao, Z. Selective catalytic oxidation of ammonia over LaMAl11O19−δ (M = Fe, Cu, Co, and Mn) hexaaluminates catalysts at high temperatures in the Claus process. Catal. Sci. Technol. 2020, 10, 1477–1491. [Google Scholar] [CrossRef]
- Tohidi, S.H. Comparision of Synthesis and Characterization of Copper Species Nanostructures on the Silica Matrix. Int. J. Nanosci. Nanotechnol. 2011, 7, 7–13. [Google Scholar]
- Wang, D.; Zhang, L.; Li, J.; Kamasamudram, K.; Epling, W.S. NH3-SCR over Cu/SAPO-34—Zeolite acidity and Cu structure changes as a function of Cu loading. Catal. Today 2014, 231, 64–74. [Google Scholar] [CrossRef]
- Khojasteh, H.; Salavati-Niasari, M.; Safajou, H.; Safardoust-Hojaghan, H. Facile reduction of graphene using urea in solid phase and surface modification by N-doped graphene quantum dots for adsorption of organic dyes. Diam. Relat. Mater. 2017, 79, 133–144. [Google Scholar] [CrossRef]
- Sensui, K.; Tarui, T.; Miyamae, T.; Sato, C. Evidence of chemical-bond formation at the interface between an epoxy polymer and an isocyanate primer. Chem. Commun. 2019, 55, 14833–14836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nies, C.; Fug, F.; Otto, C.; Possart, W. Adhesion of polyurethanes on native metal surfaces—Stability and the role of urea-like species. Int. J. Adhes. Adhes. 2014, 52, 19–25. [Google Scholar] [CrossRef]
- Reignier, J.; Méchin, F.; Sarbu, A. Chemical gradients in PIR foams as probed by ATR-FTIR analysis and consequences on fire resistance. Polym. Test. 2021, 93, 106972. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Miyazawa, T.; Shimanouchi, T.; Mizushima, S. Normal vibrations of urea and urea-d4. Spectrochim. Acta 1957, 10, 170–178. [Google Scholar] [CrossRef]
- Penland, R.B.; Mizushima, S.; Curran, C.; Quagliano, J.V. Infrared Absorption Spectra of Inorganic Coördination Complexes. X. Studies of Some Metal-Urea Complexes1a,b. J. Am. Chem. Soc. 1957, 79, 1575–1578. [Google Scholar] [CrossRef]
- Piasek, Z.; Urbanski, T. The infra-red absorption spectrum and structure of urea. B Pol. Acad. Sci.-Tech. 1962, X, 113–120. [Google Scholar]
- Pshenitsyna, V.P.; Molotkova, N.N.; Noskova, M.P.; Aksel’rod, B.Y. Display of the amide II absorption band in the spectra of reaction products of urea with formaldehyde. J. Appl. Spectrosc. 1978, 29, 1098–1101. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, B.; Bai, Z.; Yu, L.; Crocker, M.; Shi, C. Hybrid catalysts with enhanced C3H6 resistance for NH3-SCR of NOx. Appl. Catal. B Environ. 2019, 242, 161–170. [Google Scholar] [CrossRef]
- Kantcheva, M. FT-IR spectroscopic investigation of the reactivity of NOx species adsorbed on Cu2+/ZrO2 and CuSO4/ZrO2 catalysts toward decane. Appl. Catal. B Environ. 2003, 42, 89–109. [Google Scholar] [CrossRef] [Green Version]
- Lamberti, C.; Groppo, E.; Spoto, G.; Bordiga, S.; Zecchina, A. Infrared Spectroscopy of Transient Surface Species. In Advances in Catalysis; Gates, B.C., Knözinger, H., Eds.; Academic Press: Cambridge, MA, USA, 2007; Volume 51, pp. 1–74. [Google Scholar]
- Bordiga, S.; Pazé, C.; Berlier, G.; Scarano, D.; Spoto, G.; Zecchina, A.; Lamberti, C. Interaction of N2, CO and NO with Cu-exchanged ETS-10: A compared FTIR study with other Cu-zeolites and with dispersed Cu2O. Catal. Today 2001, 70, 91–105. [Google Scholar] [CrossRef]
- Hadjiivanov, K.I. Identification of Neutral and Charged NxOy Surface Species by IR Spectroscopy. Catal. Rev. 2000, 42, 71–144. [Google Scholar] [CrossRef]
- Tempelman, C.H.L.; Portilla, M.T.; Martínez-Armero, M.E.; Mezari, B.; de Caluwé, N.G.R.; Martínez, C.; Hensen, E.J.M. One-pot synthesis of nano-crystalline MCM-22. Microporous Mesoporous Mater. 2016, 220, 28–38. [Google Scholar] [CrossRef]
- Dollimore, D.; Spooner, P.; Turner, A. The bet method of analysis of gas adsorption data and its relevance to the calculation of surface areas. Surf. Technol. 1976, 4, 121–160. [Google Scholar] [CrossRef]
- Galarneau, A.; Villemot, F.; Rodriguez, J.; Fajula, F.; Coasne, B. Validity of the t-plot Method to Assess Microporosity in Hierarchical Micro/Mesoporous Materials. Langmuir 2014, 30, 13266–13274. [Google Scholar] [CrossRef]
- Yang, Z.; Cao, J.-P.; Liu, T.-L.; Zhu, C.; Feng, X.-B.; Zhao, X.-Y.; Zhao, Y.-P.; Bai, H.-C. Controllable hollow HZSM-5 for high shape-selectivity to light aromatics from catalytic reforming of lignite pyrolysis volatiles. Fuel 2021, 294, 120427. [Google Scholar] [CrossRef]
- Koekkoek, A.J.J.; Tempelman, C.H.L.; Degirmenci, V.; Guo, M.; Feng, Z.; Li, C.; Hensen, E.J.M. Hierarchical zeolites prepared by organosilane templating: A study of the synthesis mechanism and catalytic activity. Catal. Today 2011, 168, 96–111. [Google Scholar] [CrossRef]
- Triantafyllidis, K.S.; Nalbandian, L.; Trikalitis, P.N.; Ladavos, A.K.; Mavromoustakos, T.; Nicolaides, C.P. Structural, compositional and acidic characteristics of nanosized amorphous or partially crystalline ZSM-5 zeolite-based materials. Microporous Mesoporous Mater. 2004, 75, 89–100. [Google Scholar] [CrossRef]
- Tajbakhsh, M.; Alinezhad, H.; Nasrollahzadeh, M.; Kamali, T.A. Preparation, characterization and application of nanosized CuO/HZSM-5 as an efficient and heterogeneous catalyst for the N-formylation of amines at room temperature. J. Colloid Interface Sci. 2016, 471, 37–47. [Google Scholar] [CrossRef]
- Kim, M.S.; Park, E.D. Aqueous-phase partial oxidation of methane with H2O2 over Fe-ZSM-5 catalysts prepared from different iron precursors. Microporous Mesoporous Mater. 2021, 324, 111278. [Google Scholar] [CrossRef]
- Ren, G.; Hu, D.; Cheng, E.W.C.; Vargas-Reus, M.A.; Reip, P.; Allaker, R.P. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents 2009, 33, 587–590. [Google Scholar] [CrossRef] [PubMed]
- Drouet, C.; Alphonse, P.; Rousset, A. IR spectroscopic study of NO and CO adsorptions on nonstoichiometric nickel–copper manganites. Phys. Chem. Chem. Phys. 2001, 3, 3826–3830. [Google Scholar] [CrossRef]
- Zhu, N.; Lian, Z.; Zhang, Y.; Shan, W.; He, H. The promotional effect of H2 reduction treatment on the low-temperature NH3-SCR activity of Cu/SAPO-18. Appl. Surf. Sci. 2019, 483, 536–544. [Google Scholar] [CrossRef]
- Supriyanto; Wijayanti, K.; Kumar, A.; Joshi, S.; Kamasamudram, K.; Currier, N.W.; Yezerets, A.; Olsson, L. Global kinetic modeling of hydrothermal aging of NH3-SCR over Cu-zeolites. Appl. Catal. B Environ. 2015, 163, 382–392. [Google Scholar] [CrossRef]
- Engtrakul, C.; Mukarakate, C.; Starace, A.K.; Magrini, K.A.; Rogers, A.K.; Yung, M.M. Effect of ZSM-5 acidity on aromatic product selectivity during upgrading of pine pyrolysis vapors. Catal. Today 2016, 269, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Taylor, T.J.; Dollimore, D.; Gamlen, G.A. Deaquation and denitration studies on copper nitrate trihydrate. Thermochim. Acta 1986, 103, 333–340. [Google Scholar] [CrossRef]
- L’Vov, B.V.; Novichikhin, A.V. Mechanism of thermal decomposition of hydrated copper nitrate in vacuo. Spectrochim. Acta Part B At. Spectrosc. 1995, 50, 1459–1468. [Google Scholar] [CrossRef]
- Ryu, S.-K.; Lee, W.-K.; Park, S.-J. Thermal Decomposition of Hydrated Copper Nitrate [Cu (NO3)2 3H2O] on Activated Carbon Fibers. Carbon Lett. 2004, 5, 180–185. [Google Scholar]
- Dash, D.C. Analytical Chemistry; PHI Learning Ltd.: Delhi, India, 2017; p. 577. [Google Scholar]
- Ma, T.; Imai, H.; Yamawaki, M.; Terasaka, K.; Li, X. Selective Synthesis of Gasoline-Ranged Hydrocarbons from Syngas over Hybrid Catalyst Consisting of Metal-Loaded ZSM-5 Coupled with Copper-Zinc Oxide. Catalysts 2014, 4, 116–128. [Google Scholar] [CrossRef] [Green Version]
- Aranzabal, A.; González-Marcos, J.A.; Romero-Sáez, M.; González-Velasco, J.R.; Guillemot, M.; Magnoux, P. Stability of protonic zeolites in the catalytic oxidation of chlorinated VOCs (1,2-dichloroethane). Appl. Catal. B Environ. 2009, 88, 533–541. [Google Scholar] [CrossRef]
Species | HZSM-5 | Cu/HZSM-5 | CuOx | Reference |
---|---|---|---|---|
cm−1 | cm−1 | cm−1 | ||
Physisorbed water | 1630 | 1630 | 1630 | [13] |
Framework vibrations | 1873, 1967, 1637 | 1873, 1967, 1637 | [14] | |
NH4+ symmetric bending vibration | 1463 | [15] | ||
C=O Hydrogen bonded urea | 1708 | [16] | ||
Carbonate species | 1765 | 1397 | [17] | |
Monodentate nitrite | 1423 | [18] | ||
Monodentate nitrite | 1450 | [19] | ||
Lewis acid sites | 1620 | [20] | ||
C=N stretch | 1696 | [21] | ||
Uretdion groups | 1780 | [22] | ||
HNCO | 2330 | [23] | ||
C=O stretching frequency | 1720 | [24] | ||
Stretching of C=O and bending of NH2 | 1680 | [25,26] | ||
Tautomeric forms of urea C-N to C=N | 1650 | [27] | ||
C=O correlated to amide | 1650 | [28] | ||
Mono/bi dentate nitrate | 1583 | [29] | ||
Chelated nitro species | 1515, 1545, 1580 | [30] | ||
Asymmetric NO2 | 1480 | [29] | ||
N2O3 | 1684 | [29] | ||
Mono dentate nitrate | 1430–1447 | [29] | ||
vNO-Cu complex | 1708 | [31] | ||
Cu+-ZSM-5-(NO)2 | 1734 | [31] | ||
Cu2O | 1709 | [31] | ||
Cu+-NO | 1763 | [32] | ||
cis-HNO2 | 1670 | [33] |
Sample | Stot (m2/g) | SBET(m2/g) | Smic (m2/g) | Vmic (cm3/g) | Vtot (cm3/g) | |
---|---|---|---|---|---|---|
ZSM-5 | - | 342 ± 9 | 329 ± 8 | 207 ± 5 | 0.11 ± 0.01 | 0.27 ± 0.01 |
Urea | 265 ± 7 | 254 ± 6 | 170 ± 4 | 0.09 ± 0.01 | 0.21 ± 0.01 | |
Cu/HZSM-5 | - | 293 ± 7 | 281 ± 7 | 187 ± 5 | 0.10 ± 0.01 | 0.24 ± 0.01 |
Urea | 276 ± 7 | 265 ± 7 | 174 ± 4 | 0.10 ± 0.01 | 0.22 ± 0.01 | |
CuOx | - | 9 ± 1 | 8 ± 0 | 0 | 0 | 0.06 ± 0.01 |
Urea | 7 ± 1 | 6 ± 0 | 0 | 0 | 0.09 ± 0.01 |
Sample | T (K) | 1430–1530 cm−1 | 1430–1447 cm−1 | 1466 cm−1 | 1480 cm−1 | 1515 cm−1 |
---|---|---|---|---|---|---|
HZSM-5 | - | 0 | 0 | 0 | 0 | 0 |
133 | 29 | 0 | 29 | 0 | 0 | |
150 | 100 | 0 | 100 | 0 | 0 | |
200 | 76 | 0 | 76 | 0 | 0 | |
250 | 68 | 0 | 68 | 0 | 0 | |
300 | 8 | 0 | 8 | 0 | 0 | |
350 | 4 | 0 | 4 | 0 | 0 | |
400 | 0 | 0 | 0 | 0 | 0 | |
Cu/HZSM-5 | - | 0 | 0 | 0 | 0 | 0 |
133 | 99 | 40 | 44 | 12 | 3.9 | |
150 | 100 | 46 | 35 | 19 | 0.5 | |
200 | 79 | 48 | 39 | 8 | 3 | |
250 | 64 | 52 | 36 | 7 | 3 | |
300 | 7 | 21 | 78 | 0 | 0 | |
350 | 0 | 0 | 0 | 0 | 0 | |
400 | 0 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tempelman, C.; el Arkoubi, B.; Spaan, J.; Slevani, R.; Degirmenci, V. Decomposition of Heavy Diesel SCR Urea Fluid Adsorbed in Cu/HZSM-5 SCR Catalysts Studied by FTIR Spectroscopy at Ambient Conditions. Reactions 2022, 3, 576-588. https://doi.org/10.3390/reactions3040038
Tempelman C, el Arkoubi B, Spaan J, Slevani R, Degirmenci V. Decomposition of Heavy Diesel SCR Urea Fluid Adsorbed in Cu/HZSM-5 SCR Catalysts Studied by FTIR Spectroscopy at Ambient Conditions. Reactions. 2022; 3(4):576-588. https://doi.org/10.3390/reactions3040038
Chicago/Turabian StyleTempelman, Christiaan, Brahim el Arkoubi, Jochem Spaan, Ronny Slevani, and Volkan Degirmenci. 2022. "Decomposition of Heavy Diesel SCR Urea Fluid Adsorbed in Cu/HZSM-5 SCR Catalysts Studied by FTIR Spectroscopy at Ambient Conditions" Reactions 3, no. 4: 576-588. https://doi.org/10.3390/reactions3040038
APA StyleTempelman, C., el Arkoubi, B., Spaan, J., Slevani, R., & Degirmenci, V. (2022). Decomposition of Heavy Diesel SCR Urea Fluid Adsorbed in Cu/HZSM-5 SCR Catalysts Studied by FTIR Spectroscopy at Ambient Conditions. Reactions, 3(4), 576-588. https://doi.org/10.3390/reactions3040038