Comparative Analysis of Bio- and Chemo-Catalysts for the Synthesis of Flavour Compound Hexanal from Linoleic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Enrichment of Linoleic Acid
2.3. Preparation of LOX-Containing Soybean Flour Suspension
2.4. Hydroperoxidation of Linoleic Acid
2.5. Synthesis of Hexanal and 12-Oxo-9(Z)-dodecenoic Acid with Papaya Hydroperoxide Lyase HPLCP-N
2.6. Cleavage of HPODE Using Lewis Acids
2.7. Chemo-Catalytic Cleavage of HPODE Using Zeolites in an Autoclave
2.8. UV-Photometric Analyses of Enzyme Activities and HPODE Content
2.9. HPLC Analyses of HPODE Regioisomers
2.10. GC Analyses of Linoleic Acid, HPODE and Cleavage Products
2.11. GC-MS Analysis of HPODE Cleavage Products
3. Results and Discussion
3.1. Biocatalytic Synthesis of 13-HPODE
3.2. Hydroperoxide Lyase Splitting of 13-HPODE
3.3. Lewis Acid Catalysed Cleavage of HPODE to Hexanal
3.4. Chemo-Catalytic Cleavage of HPODE Using Zeolites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, S.Y.; Kim, H.U.; Chae, T.U.; Cho, J.S.; Kim, J.W.; Shin, J.H.; Kim, D.I.; Ko, Y.-S.; Jang, W.D.; Jang, Y.-S. A comprehensive metabolic map for production of bio-based chemicals. Nat. Catal. 2019, 2, 18–33. [Google Scholar] [CrossRef]
- Hayes, D.G.; Smith, G.A. Chapter 1—Biobased Surfactants: Overview and Industrial State of the Art. In Biobased Surfactants, 2nd ed.; Hayes, D.G., Solaiman, D.K.Y., Ashby, R.D., Eds.; AOCS Press: Urbana, IL, USA, 2019; pp. 3–38. [Google Scholar] [CrossRef]
- Buchhaupt, M.; Guder, J.C.; Etschmann, M.M.W.; Schrader, J. Synthesis of green note aroma compounds by biotransformation of fatty acids using yeast cells coexpressing lipoxygenase and hydroperoxide lyase. Appl. Microbiol. Biotechnol. 2012, 93, 159–168. [Google Scholar] [CrossRef]
- Vincenti, S.; Mariani, M.; Alberti, J.-C.; Jacopini, S.; Brunini-Bronzini de Caraffa, V.; Berti, L.; Maury, J. Biocatalytic Synthesis of Natural Green Leaf Volatiles Using the Lipoxygenase Metabolic Pathway. Catalysts 2019, 9, 873. [Google Scholar] [CrossRef]
- Gigot, C.; Ongena, M.; Fauconnier, M.L.; Wathelet, J.P.; Jardin, P.d.; Thonart, P. The lipoxygenase metabolic pathway in plants: Potential for industrial production of natural green leaf volatiles. Biotechnol. Agron. Soc. Environ. 2010, 14, 451–460. [Google Scholar]
- Fauconnier, M.L.; Marlier, M. An efficient procedure for the production of fatty acid hydroperoxides from hydrolyzed flax seed oil and soybean lipoxygenase. Biotechnol. Tech. 1996, 10, 839–844. [Google Scholar] [CrossRef]
- Gala Marti, V.; Coenen, A.; Schörken, U. Synthesis of Linoleic Acid 13-Hydroperoxides from Safflower Oil Utilizing Lipoxygenase in a Coupled Enzyme System with In-Situ Oxygen Generation. Catalysts 2021, 11, 1119. [Google Scholar] [CrossRef]
- Gargouri, M.; Legoy, M.D. Bienzymatic reaction for hydroperoxide production in a multiphasic system. Enzym. Microb. Technol. 1997, 21, 79–84. [Google Scholar] [CrossRef]
- Wang, J.; Li, K.; He, Y.; Liu, X.; Wang, P.; Xu, L.; Yan, J.; Yan, Y. Bi-enzyme directed self-assembled system toward biomimetic synthesis of fatty acid hydroperoxides like soybean. Compos. Part B Eng. 2021, 222, 109091. [Google Scholar] [CrossRef]
- Gala Marti, V.; Müller, C.; Spektor, V.; Schörken, U. Immobilization of Lipoxygenase, Catalase, and Lipase for a Reactor Design Targeting Linoleic Acid Hydroperoxidation. Eur. J. Lipid Sci. Technol. 2023, 125, 2200140. [Google Scholar] [CrossRef]
- Stolterfoht, H.; Rinnofner, C.; Winkler, M.; Pichler, H. Recombinant Lipoxygenases and Hydroperoxide Lyases for the Synthesis of Green Leaf Volatiles. J. Agric. Food Chem. 2019, 67, 13367–13392. [Google Scholar] [CrossRef]
- Brühlmann, F.; Bosijokovic, B. Efficient Biochemical Cascade for Accessing Green Leaf Alcohols. Org. Process Res. Dev. 2016, 20, 1974–1978. [Google Scholar] [CrossRef]
- Kaur, I.; Korrapati, N.; Bonello, J.; Mukherjee, A.; Rishi, V.; Bendigiri, C. Biosynthesis of natural aroma compounds using recombinant whole-cell tomato hydroperoxide lyase biocatalyst. J. Biosci. 2022, 47, 37. [Google Scholar] [CrossRef]
- Coenen, A.; Ferrer, M.; Jaeger, K.-E.; Schörken, U. Synthesis of 12-aminododecenoic acid by coupling transaminase to oxylipin pathway enzymes. Appl. Microbiol. Biotechnol. 2023, 107, 2209–2221. [Google Scholar] [CrossRef] [PubMed]
- Coenen, A.; Marti, V.G.; Müller, K.; Sheremetiev, M.; Finamore, L.; Schörken, U. Synthesis of Polymer Precursor 12-Oxododecenoic Acid Utilizing Recombinant Papaya Hydroperoxide Lyase in an Enzyme Cascade. Appl. Biochem. Biotechnol. 2022, 194, 6194–6212. [Google Scholar] [CrossRef] [PubMed]
- Brühlmann, F.; Bosijokovic, B.; Ullmann, C.; Auffray, P.; Fourage, L.; Wahler, D. Directed evolution of a 13-hydroperoxide lyase (CYP74B) for improved process performance. J. Biotechnol. 2013, 163, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Kazimírová, V.; Zezulová, V.; Krasňan, V.; Štefuca, V.; Rebroš, M. Optimization of Hydroperoxide Lyase Production for Recombinant Lipoxygenase Pathway Cascade Application. Catalysts 2021, 11, 1201. [Google Scholar] [CrossRef]
- Yaremenko, I.A.; Vil, V.A.; Demchuk, D.V.; Terent’ev, A.O. Rearrangements of organic peroxides and related processes. Beilstein J. Org. Chem. 2016, 12, 1647–1748. [Google Scholar] [CrossRef]
- Drönner, J.; Hausoul, P.; Palkovits, R.; Eisenacher, M. Solid Acid Catalysts for the Hock Cleavage of Hydroperoxides. Catalysts 2022, 12, 91. [Google Scholar] [CrossRef]
- Gardner, H.W.; Plattner, R.D. Linoleate hydroperoxides are cleaved heterolytically into aldehydes by a Lewis acid in aprotic solvent. Lipids 1984, 19, 294–299. [Google Scholar] [CrossRef]
- Corma, A.; García, H. Lewis Acids: From Conventional Homogeneous to Green Homogeneous and Heterogeneous Catalysis. Chem. Rev. 2003, 103, 4307–4366. [Google Scholar] [CrossRef]
- Nikoofar, K.; Khademi, Z. A review on green Lewis acids: Zirconium(IV) oxydichloride octahydrate (ZrOCl2·8H2O) and zirconium(IV) tetrachloride (ZrCl4) in organic chemistry. Res. Chem. Intermed. 2016, 42, 3929–3977. [Google Scholar] [CrossRef]
- Weitkamp, J. Zeolites and catalysis. Solid State Ion. 2000, 131, 175–188. [Google Scholar] [CrossRef]
- Drönner, J.; Bijerch, K.; Hausoul, P.; Palkovits, R.; Eisenacher, M. High-Temperature-Treated LTX Zeolites as Heterogeneous Catalysts for the Hock Cleavage. Catalysts 2023, 13, 202. [Google Scholar] [CrossRef]
- Baysal, T.; Demirdöven, A. Lipoxygenase in fruits and vegetables: A review. Enzym. Microb. Technol. 2007, 40, 491–496. [Google Scholar] [CrossRef]
- Andreou, A.; Feussner, I. Lipoxygenases—Structure and reaction mechanism. Phytochemistry 2009, 70, 1504–1510. [Google Scholar] [CrossRef]
- Tu, H.-A.T.; Dobson, E.P.; Henderson, L.C.; Barrow, C.J.; Adcock, J.L. Soy flour as an alternative to purified lipoxygenase for the enzymatic synthesis of resolvin analogues. New Biotechnol. 2018, 41, 25–33. [Google Scholar] [CrossRef]
- Berry, H.; Debat, H.; Larreta-Garde, V. Excess substrate inhibition of soybean lipoxygenase-1 is mainly oxygen-dependent. FEBS Lett. 1997, 408, 324–326. [Google Scholar] [CrossRef]
- Touchy, A.S.; Rashed, M.N.; Huang, M.; Toyao, T.; Shimizu, K.-i.; Siddiki, S.M.A.H. Lewis Acid Promoted Sustainable Transformation of Triglycerides to Fatty Acids Using a Water-Tolerant Nb2O5 Catalyst. ACS Sustain. Chem. Eng. 2022, 10, 11791–11799. [Google Scholar] [CrossRef]
- Kahr, G.; Madsen, F.T. Determination of the cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue adsorption. Appl. Clay Sci. 1995, 9, 327–336. [Google Scholar] [CrossRef]
- Sigma-Aldrich. Product Specification of Montmorillonite K10; Sigma-Aldrich: St. Louis, MO, USA, 2023. [Google Scholar]
- Hagen, J. Industrial Catalysis: A Practical Approach; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006. [Google Scholar]
- Rontani, J.F.; Aubert, C. Trimethylsilyl transfer during electron ionization mass spectral fragmentation of some omega-hydroxycarboxylic and omega-dicarboxylic acid trimethylsilyl derivatives and the effect of chain length. Rapid Commun. Mass Spectrom. 2004, 18, 1889–1895. [Google Scholar] [CrossRef]
- Rontani, J.F.; Aubert, C. Hydrogen and trimethylsilyl transfers during EI mass spectral fragmentation of hydroxycarboxylic and oxocarboxylic acid trimethylsilyl derivatives. J. Am. Soc. Mass Spectrom. 2008, 19, 66–75. [Google Scholar] [CrossRef] [PubMed]
Solvent/Temperature | Catalyst (mM) Yield Hexanal (%) | Catalyst (mM) TOF (s−1) | ||||||
---|---|---|---|---|---|---|---|---|
(A) AlCl3 | 0.1 | 1 | 10 | 100 | 0.1 | 1 | 10 | 100 |
MTBE 25 °C MTBE 50 °C | 2.4 ± 0.4 | 3.5 ± 0.3 | 11.4 ± 0.2 | 22.9 ± 0.7 10.5 ± 1.8 | 2.7 × 10−3 | 3.9 × 10−4 | 1.3 × 10−4 | 2.5 × 10−5 1.2 × 10−5 |
THF 25 °C THF 50 °C | 4.6 ± 0.8 | 10.3 ± 1.1 10.5 ± 1.2 | 5.1 × 10−5 | 1.1 × 10−5 1.2 × 10−5 | ||||
Diethyl ether 25 °C | 3.1 ± 0.1 | 3.8 ± 0.5 | 3.4 × 10−5 | 4.2 × 10−6 | ||||
Methanol 25 °C | 7.3 ± 2.0 | 7.3 ± 2.0 | 8.7 ± 0.2 | 8.1 × 10−5 | 9.7 × 10−6 | |||
Chloroform 25 °C | 1.3 ± 0.1 | 1.3 ± 0.1 | 5.9 ± 0.1 | 13.0 ± 2.1 | 1.4 × 10−3 | 1.4 × 10−4 | 6.6 × 10−5 | 1.4 × 10−5 |
Heptane 25 °C | 0.5 ± 0.2 | 0.4 ± 0.2 | 2.8 ± 1.1 | 3.8 ± 1.3 | 5.6 × 10−4 | 4.4 × 10−5 | 3.1 × 10−5 | 4.2 × 10−6 |
(B) ZrCl4 | 0.1 | 1 | 10 | 100 | 0.1 | 1 | 10 | 100 |
MTBE 25 °C MTBE 50 °C | 1.2 ± 0.2 2.4 ± 0.5 | 1.7 ± 0.5 6.7 ± 1.1 | 7.3 ± 0.8 7.0 ± 0.4 | 11.9 ± 0.6 13.8 ± 1.6 | 1.3 × 10−3 2.7 × 10−3 | 1.9 × 10−4 7.4 × 10−4 | 8.1 × 10−5 7.8 × 10−5 | 1.3 × 10−5 1.5 × 10−5 |
THF 25 °C | 2.3 ± 0.7 | 2.1 ± 0.4 | 2.1 ± 0.2 | 3.8 ± 0.1 | 2.6 × 10−3 | 2.3 × 10−4 | 2.3 × 10−5 | 4.2 × 10−6 |
Chloroform 25 °C | 0.8 ± 0.2 | 4.6 ± 0.6 | 2.9 ± 0.6 | 9.0 ± 0.7 | 8.9 × 10−4 | 5.1 × 10−4 | 3.2 × 10−5 | 1.0 × 10−5 |
Heptane 25 °C | 0.3 ± 0.2 | 0.4 ± 0.2 | 5.8 ± 1.7 | 7.5 ± 1.4 | 3.3 × 10−4 | 4.4 × 10−5 | 6.4 × 10−5 | 8.3 × 10−6 |
Catalyst | Fragmentation Pattern | Y (Hexanal) /% |
---|---|---|
Beta Zeolite | HOCK | 18.33 |
Zeolite USY | undefined | traces |
ZSM-5 | undefined | traces |
Zeolite Low Silica Linde Type X (uncalcined) | thermal decomposition | – |
Zeolite Low Silica Linde Type X (calcinated) | thermal decomposition | – |
Montmorillonite K10 | HOCK | 1.67 |
Kaolinite natural | thermal decomposition | – |
Zeolite | Beta | LSX Calcinated | LSX Uncalcinated | USY | ZSM-5 |
---|---|---|---|---|---|
Module | 18.2 | 0.87 | 1.24 | 3.30 | 13.80 |
Pore size [Å] | 2.4 | 0.1 | 0.91 | 2.1 | 2.2 |
BET SA [m2·g−1] | 573.945 | 0.1 | 417 | 586.13 | 325.72 |
Compound | Ret. Time/min | m/z |
---|---|---|
Hexanal (1) | 2.34 | [M-174]+ 2.2; [M-159]+ 99.2; [M-75]+ 100.0; [M-174]+ 2.24 |
Nonanal (2) | 5.22 | [M-201]+ 60.2; [M-103]+ 19.6; [M-75]+ 100.0 [M-73]+ 41.7 |
3-nonenal (3) | 7.55 | [M-199]+ 12.3; [M-129]+ 73.9; [M-75]+ 100.0 [M-73]+ 83.6 |
9-oxononanoic acid (4) | 9.60 | [M-303]+ 40.0; [M-213]+ 34.9; [M-147]+ 58.2; [M-73]+ 100 |
12-oxo-9(Z)-dodecenoic acid (5) | 11.88 | [M-343]+ 7.5; [M-147]+ 44.9; [M-129]+ 62.5; [M-73]+ 100 |
12-oxododecanoic acid (6) | 11.99 | [M-345]+ 34.2; [M-255]+ 41.6; [M-147]+ 38.5; [M-73]+ 100 |
12-oxo-(E)-10-dodecenoic acid (7) | 12.10 | [M-343]+ 2.1; [M-217]+ 16.4; [M-147]+ 24.8; [M-73]+ 100 |
linoleic acid (8) | 13.89 | [M-337]+ 38.2; [M-262]+ 26.78; [M-75]+ 100.0; [M-67]+ 90.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drönner, J.; Marti, V.G.; Bandte, S.; Coenen, A.; Schörken, U.; Eisenacher, M. Comparative Analysis of Bio- and Chemo-Catalysts for the Synthesis of Flavour Compound Hexanal from Linoleic Acid. Reactions 2023, 4, 518-530. https://doi.org/10.3390/reactions4030031
Drönner J, Marti VG, Bandte S, Coenen A, Schörken U, Eisenacher M. Comparative Analysis of Bio- and Chemo-Catalysts for the Synthesis of Flavour Compound Hexanal from Linoleic Acid. Reactions. 2023; 4(3):518-530. https://doi.org/10.3390/reactions4030031
Chicago/Turabian StyleDrönner, Jan, Valentin Gala Marti, Simone Bandte, Anna Coenen, Ulrich Schörken, and Matthias Eisenacher. 2023. "Comparative Analysis of Bio- and Chemo-Catalysts for the Synthesis of Flavour Compound Hexanal from Linoleic Acid" Reactions 4, no. 3: 518-530. https://doi.org/10.3390/reactions4030031
APA StyleDrönner, J., Marti, V. G., Bandte, S., Coenen, A., Schörken, U., & Eisenacher, M. (2023). Comparative Analysis of Bio- and Chemo-Catalysts for the Synthesis of Flavour Compound Hexanal from Linoleic Acid. Reactions, 4(3), 518-530. https://doi.org/10.3390/reactions4030031