Potential of Homomorphic Encryption for Cloud Computing Use Cases in Manufacturing
(This article belongs to the Section Cryptography and Cryptology)
Abstract
:1. Introduction
2. Fundamentals
2.1. Cloud Computing
- In-storage data: data that are currently stored in the cloud,
- In-transit data: data that are currently sent from the cloud to the user’s storage,
- In-use data: data that are currently being used, e.g., for analyses.
2.2. Encryption
2.2.1. General Encryption Process
2.2.2. Homomorphic Encryption
3. Encryption for Cloud Computing in Manufacturing
3.1. Limitations of Classic Encryption for Cloud Computing
3.2. Potentials and Challenges of Homomorphic Encryption for Cloud Computing
3.2.1. Potentials of Homomorphic Encryption
3.2.2. Current Challenges of Homomorphic Encryption
3.3. Experimental Comparison of Classic and Homomorphic Encryption
3.3.1. Experimental Setup
- Addition (e.g., daily consumption of cooling lubricant on one machine),
- Multiplication (e.g., electricity costs of the manufacturing line in a certain interval),
- Average (e.g., average temperature in a cold store over a certain time interval).
3.3.2. Experimental Results
3.4. Conclusions
4. Use Cases for Homomorphic Encryption for Cloud Computing in Manufacturing
4.1. Identification of Use Cases
- Cloud benefits: the reasons for using cloud computing as described in Section 2.1.
- Cloud type: the type of cloud as described in Section 2.1.
- Homomorphic encryption (HE) category: the applied homomorphic encryption category as described in Section 2.2.2.
- Company size: the company size and associated characteristics.
- Security: the use case must have high data security requirements, especially in the usage phase. Otherwise, classic encryption methods could be used.
- Time: the time restrictions of the use case must not be too low, which means that latencies in the minute range must be acceptable.
- Cost: the cost for homomorphic encryption compared to classic encryption are yet higher, despite savings due to lower data transfer. Thus, the implementation of homomorphic encryption should increase the revenue to cope with the increased cost.
4.2. Predictive Maintencance for SME
4.3. Contract Manufacturing for Chipsets
4.4. Summary of Use Case Analysis
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herzwurm, G.; Henzel, R. Cloud-Computing–gekommen um zu bleiben. In Handbuch Digitale Wirtschaft; Springer: Berlin/Heidelberg, Germany, 2020; pp. 877–909. [Google Scholar]
- Hentschel, R.; Leyh, C. Cloud Computing: Status quo, aktuelle Entwicklungen und Herausforderungen. In Cloud Computing; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–20. [Google Scholar]
- Langmann, R.; Stiller, M. Industrial Cloud—Status und Ausblick. In Industrie 4.0; Springer: Berlin/Heidelberg, Germany, 2017; pp. 29–47. [Google Scholar]
- Repschläger, J.; Pannicke, D.; Zarnekow, R. Cloud Computing: Definitionen, Geschäftsmodelle und Entwicklungspotenziale. HMD Praxis Wirtsch. 2010, 47, 6–15. [Google Scholar] [CrossRef]
- Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.; Rabkin, A.; Stoica, I. A View of Cloud Computing. Commun. ACM 2010, 53, 50–58. [Google Scholar] [CrossRef]
- Möhring, M.; Keller, B.; Schmidt, R. Cloud-Computing. In CRM in der Public Cloud; Springer: Berlin/Heidelberg, Germany, 2018; pp. 11–19. [Google Scholar]
- Fallenbeck, N.; Eckert, C. IT-Sicherheit und Cloud Computing. In Handbuch Industrie 4.0 Bd. 4; Springer: Berlin/Heidelberg, Germany, 2017; pp. 137–171. [Google Scholar]
- Rao, B.T. A study on data storage security issues in cloud computing. Procedia Comput. Sci. 2016, 92, 128–135. [Google Scholar]
- Market Research Future. Cloud Manufacturing Market (ID: MRFR/ICT/4546-CR); New York, NY, USA. 2021. Available online: https://www.marketresearchfuture.com/reports/cloud-manufacturing-market-6004 (accessed on 17 December 2022).
- Gartner. Gartner Forecasts Worldwide Public Cloud Revenue to Grow 17% in 2020. 2019. Available online: https://www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2020 (accessed on 17 December 2022).
- Cloud Security Alliance. Top Threats to Cloud Computing—Pandemic Eleven. 2022. Available online: https://cloudsecurityalliance.org/artifacts/top-threats-to-cloud-computing-pandemic-eleven/ (accessed on 17 December 2022).
- Cloud Security Alliance. Top Threats to Cloud Computing—The Egregious 11. 2020. Available online: https://cloudsecurityalliance.org/artifacts/top-threats-to-cloud-computing-egregious-eleven (accessed on 17 December 2022).
- Marinescu, D.C. Cloud Computing: Theory and Practice; Morgan Kaufmann: Cambridge, MA, USA, 2022. [Google Scholar]
- Archer, D.; Chen, L.; Cheon, J.H.; Gilad-Bachrach, R.; Hallman, R.A.; Huang, Z.; Jiang, X.; Kumaresan, R.; Malin, B.A.; Sofia, H. Applications of homomorphic encryption. In Crypto Standardization Workshop, Microsoft Research; Microsoft: Redmond, WA, USA, 2017. [Google Scholar]
- Iezzi, M. Practical privacy-preserving data science with homomorphic encryption: An overview. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 3979–3988. [Google Scholar]
- Curran, K.; Carlin, S.; Adams, M. Cloud computing security. J. Netw. Eng. 2011, 37, 4069–4072. [Google Scholar]
- Das, D. Secure Cloud Computing Algorithm Using Homomorphic Encryption and Multi-Party Computation. In Proceedings of the 2018 International Conference on Information Networking (ICOIN), Chiang Mai, Thailand, 10–12 January 2018; pp. 391–396. [Google Scholar]
- Mohan, M.; Devi, M.K.; Prakash, V.J. Homomorphic Encryption—State of the Art. In Proceedings of the 2017 International Conference on Intelligent Computing and Control (I2C2), Coimbatore, India, 23–24 June 2017; pp. 1–6. [Google Scholar]
- Armknecht, F.; Boyd, C.; Carr, C.; Gjøsteen, K.; Jäschke, A.; Reuter, C.A.; Strand, M. A Guide to Fully Homomorphic Encryption. Cryptol. ePrint Arch. 2015. Available online: https://eprint.iacr.org/2015/1192.pdf (accessed on 17 December 2022).
- Mell, P.; Grance, T. The NIST Definition of Cloud Computing (Special Publication 800-14); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011. [Google Scholar]
- Münzl, G.; Przywara, B.; Reti, M.; Schäfer, J.; Sondermann, K.; Weber, M.; Wilker, A.; Barot, P.; Becker, B.; Bühr, O. Cloud Computing—Evolution in der Technik, Revolution im Business; Berlin, Germany. 2009. Available online: https://www.bitkom.org/sites/default/files/file/import/090921-BITKOM-Leitfaden-CloudComputing-Web.pdf (accessed on 17 December 2022).
- Spitz, S.; Pramateftakis, M.; Swoboda, J. Kryptographie und IT-Sicherheit; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Ertel, W.; Löhmann, E. Angewandte Kryptographie; Carl Hanser Verlag GmbH Co KG: Munich, Germany, 2019. [Google Scholar]
- Pohlmann, N. Kryptografie. In Cyber-Sicherheit; Springer Fachmedien Wiesbaden GmbH: Wiesbaden, Germany, 2022. [Google Scholar]
- Schwenk, J. Sicherheit und Kryptographie im Internet: Theorie und Praxis; Springer: Berlin/Heidelberg, Germany, 2020; Volume 5. [Google Scholar]
- Wendzel, S. IT-Sicherheit für TCP/IP-und IoT-Netzwerke; Springer: Berlin/Heidelberg, Germany, 2021; Volume 2. [Google Scholar]
- Küsters, R.; Wilke, T. Moderne Kryptographie; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Ogburn, M.; Turner, C.; Dahal, P. Homomorphic Encryption. Procedia Comput. Sci. 2013, 20, 502–509. [Google Scholar] [CrossRef]
- Schulze, M. Homomorphe Verschlüsselung und Europas Cloud: Ein Baustein für Europas Digitale Souveränität; Stiftung Wissenschaft und Politik, Deutsches Institut für Internationale Politik und Sicherheit: Berlin, Germany, 2021. [Google Scholar]
- Modler, F.; Kreh, M. Tutorium Analysis 1 und Lineare Algebra 1; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Gentry, C. Computing arbitrary functions of encrypted data. Commun. ACM 2010, 53, 97–105. [Google Scholar] [CrossRef]
- Acar, A.; Aksu, H.; Uluagac, A.S.; Conti, M. A survey on homomorphic encryption schemes: Theory and implementation. ACM Comput. Surv. (Csur) 2018, 51, 1–35. [Google Scholar] [CrossRef]
- Müller-Quade, J.; Huber, M.; Nilges, T. Daten verschlüsselt speichern und verarbeiten in der Cloud. Datenschutz Datensicherheit-DuD 2015, 39, 531–535. [Google Scholar] [CrossRef]
- Gentry, C. A Fully Homomorphic Encryption Scheme; Stanford University: Stanford, CA, USA, 2009. [Google Scholar]
- Bouti, A. Homomorphe Verschlüsselung und Cloud-Computing; Fernuniversität Hagen: Hagen, Germany, 2020. [Google Scholar]
- Alkharji, M.; Liu, H.; Washington, C. Homomorphic Encryption Algorithms and Schemes for Secure Computations in the Cloud. In Proceedings of the 2016 International Conference on Secure Computing and Technology, Virginia International University, Fairfax, VA, USA, 4–5 November 2016; p. 19. [Google Scholar]
- Yi, X.; Paulet, R.; Bertino, E. Homomorphic Encryption and Applications; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Sutisna, N.; Jonatan, G.; Syafalni, I.; Mulyawan, R.; Adiono, T. Polynomial Multiplication Systolic Array for Homomorphic Encryption in Secure Network Communications. In Proceedings of the 2020 IEEE International Conference on Communication, Networks and Satellite (Comnetsat), Batam, Indonesia, 17–18 December 2020; pp. 390–394. [Google Scholar]
- Paul, J.; Annamalai, M.S.M.S.; Ming, W.; Badawi, A.A.; Veeravalli, B.; Aung, K.M.M. Privacy-Preserving Collective Learning with Homomorphic Encryption. IEEE Access 2021, 9, 132084–132096. [Google Scholar] [CrossRef]
- Kiesel, R. Techno-Economic Evaluation of 5G Technology for Latency-Critical Applications in Production; Apprimus Verlag: Aachen, Germany, 2022; Volume 1. [Google Scholar]
- Kaufmann, T. Strategiewerkzeuge aus der Praxis; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Wöstmann, R.; Strauß, P.; Deuse, J. Predictive Maintenance in der Produktion. Anwend. Einführungsvoraussetzungen Erschließung Ungenutzter Potentiale Werkstattstech. Online 2017, 107, 524–529. [Google Scholar]
- Zhai, S.; Reinhart, G. Predictive Maintenance als Wegbereiter für die instandhaltungsgerechte Produktionssteuerung. Z. Wirtsch. Fabr. 2018, 113, 298–301. [Google Scholar] [CrossRef]
- Lee, J.; Kao, H.-A.; Yang, S. Service innovation and smart analytics for industry 4.0 and big data environment. Procedia Cirp 2014, 16, 3–8. [Google Scholar] [CrossRef]
- Kang, H.E.D.; Kim, D.; Kim, S.; Kim, D.D.; Cheon, J.H.; Anthony, B.W. Homomorphic Encryption as a Secure PHM Outsourcing Solution for Small and Medium Manufacturing Enterprise. J. Manuf. Syst. 2021, 61, 856–865. [Google Scholar]
- Knechtel, J.; Patnaik, S.; Sinanoglu, O. Protect Your Chip Design Intellectual Property: An Overview. In Proceedings of the International Conference on Omni-Layer Intelligent Systems, Crete, Greece, 5–7 May 2019; pp. 211–216. [Google Scholar]
- Hung, H.-C.; Chiu, Y.-C.; Wu, M.-C. Analysis of competition between IDM and fabless–foundry business models in the semiconductor industry. IEEE Trans. Semicond. Manuf. 2017, 30, 254–260. [Google Scholar] [CrossRef]
- Ellwein, C.; Riedel, O.; Meyer, O.; Schel, D. Rent‘n’produce: A secure cloud manufacturing platform for small and medium enterprises. In Proceedings of the 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), Stuttgart, Germany, 17–20 June 2018; pp. 1–6. [Google Scholar]
- IBM. Innovative Factory Processes with Cloud and AI. Available online: https://www.ibm.com/industries/industrial/resources/business-transformation-interactive/scenes/smart-factory/select/details/production-optimization/ (accessed on 16 October 2022).
- Sathya, S.S.; Vepakomma, P.; Raskar, R.; Ramachandra, R.; Bhattacharya, S. A review of homomorphic encryption libraries for secure computation. arXiv 2018, arXiv:1812.02428. [Google Scholar]
HE Category | Partially HE | Somewhat HE | Fully HE |
---|---|---|---|
Possible operations | Addition OR multiplication | Addition AND multiplication | Addition AND multiplication |
Operations amount | Unlimited | Limited | Unlimited |
Calculation effort | + | ++ | +++ |
Security | +++ | +++ | +++ |
Calculation Operation | Addition | Multiplication | Average |
---|---|---|---|
Manufacturing analysis scenario | Calculation of daily consumption of cooling lubricant on one machine | Calculation of electricity costs of the manufacturing line in a certain interval | Calculation of average temperature in a cold store over a certain time interval |
Compared classic encryption technology | Python Fernet Library/Fernet | ||
HE category (library/algorithms) | PHE (Python/Paillier) | SWHE/FHE (Pyfhe/BFV/CKKS) | SWHE/FHE (Pyfhe/CKKS) |
Hardware/operating system | AMD Ryzen 7 3700X 8 Kern 3600 MHz/Linux Debian 64 bit |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiesel, R.; Lakatsch, M.; Mann, A.; Lossie, K.; Sohnius, F.; Schmitt, R.H. Potential of Homomorphic Encryption for Cloud Computing Use Cases in Manufacturing. J. Cybersecur. Priv. 2023, 3, 44-60. https://doi.org/10.3390/jcp3010004
Kiesel R, Lakatsch M, Mann A, Lossie K, Sohnius F, Schmitt RH. Potential of Homomorphic Encryption for Cloud Computing Use Cases in Manufacturing. Journal of Cybersecurity and Privacy. 2023; 3(1):44-60. https://doi.org/10.3390/jcp3010004
Chicago/Turabian StyleKiesel, Raphael, Marvin Lakatsch, Alexander Mann, Karl Lossie, Felix Sohnius, and Robert H. Schmitt. 2023. "Potential of Homomorphic Encryption for Cloud Computing Use Cases in Manufacturing" Journal of Cybersecurity and Privacy 3, no. 1: 44-60. https://doi.org/10.3390/jcp3010004
APA StyleKiesel, R., Lakatsch, M., Mann, A., Lossie, K., Sohnius, F., & Schmitt, R. H. (2023). Potential of Homomorphic Encryption for Cloud Computing Use Cases in Manufacturing. Journal of Cybersecurity and Privacy, 3(1), 44-60. https://doi.org/10.3390/jcp3010004