Quantum Hopfield Model
Abstract
:1. Introduction
2. Results
3. Proofs
Author Contributions
Funding
Conflicts of Interest
References
- Feng, J.; Tirozzi, B. Stochastic resonance tuned by correlations in neural models. Phys. Rev. E 2000, 61, 4207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, J.; Brown, D.; Wei, G.; Tirozzi, B. Detectable and undetectable input signals for the integrate-and-fire model. J. Phys. A Math. Gen. 2001, 34, 1637. [Google Scholar] [CrossRef]
- Feng, J.; Tartaglia, G.; Tirozzi, B. A note on minimum-variance theory and beyond. J. Phys. A Math. Gen. 2004, 37, 4685. [Google Scholar] [CrossRef] [Green Version]
- Reutskiy, S.; Rossoni, E.; Tirozzi, B. Conduction in bundles of demyelinated nerve fibers: Computer simulation. Biol. Cybern. 2003, 89, 439–448. [Google Scholar] [CrossRef]
- Menna, M.; Rotundo, G.; Tirozzi, B. Distinguishing between chaotic and stochastic systems in financial time series. Int. J. Mod. Phys. C 2002, 13, 31–39. [Google Scholar] [CrossRef]
- Casaioli, M.; Mantovani, R.; Scorzoni, F.P.; Puca, S.; Speranza, A.; Tirozzi, B. Linear and nonlinear post-processing of numerically forecasted surface temperature. Nonlinear Process. Geophys. 2003, 10, 373–383. [Google Scholar] [CrossRef]
- Tirozzi, B.; Puca, S.; Pittalis, S.; Bruschi, A.; Morucci, S.; Ferraro, E.; Corsini, S. Neural Networks and Sea Time Series: Reconstruction and Extreme-Event Analysis; Birkhäuser: Basel, Switzerland, 2007. [Google Scholar]
- Puca, S.; Tirozzi, B. A Neural Algorithm for the Reconstruction of Space-Time Correlated Series. Semin. Fachbereich Math. Hagen 2003, 74, 81–89. [Google Scholar]
- Belardinelli, P.; Capoleoni, S.; Tirozzi, B.; Coluzza, C. Application of a segmentation algorithm to quantum dots study. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2004, 22, 588–591. [Google Scholar] [CrossRef]
- Feng, J.; Shcherbina, M.; Tirozzi, B. On the critical capacity of the Hopfield model. Commun. Math. Phys. 2001, 216, 139–177. [Google Scholar] [CrossRef] [Green Version]
- Shcherbina, M.; Tirozzi, B. Generalization and learning error for nonlinear perceptron. Math. Comput. Model. 2002, 35, 259–271. [Google Scholar] [CrossRef]
- Shcherbina, M.; Tirozzi, B. On the volume of the intersection of a sphere with random half spaces. Comptes Rendus Math. 2002, 334, 803–806. [Google Scholar] [CrossRef]
- Shcherbina, M.; Tirozzi, B. Rigorous solution of the Gardner problem. Commun. Math. Phys. 2003, 234, 383–422. [Google Scholar] [CrossRef] [Green Version]
- Shcherbina, M.; Tirozzi, B. Central Limit Theorems for the Free Energy of the Modified Gardner Model. Markov Process. Relat. Fields 2005, 11, 133–144. [Google Scholar]
- Shcherbina, M.; Tirozzi, B. A perturbative expansion for the Hopfield model. Helv. Phys. Acta 1995, 68, 470–491. [Google Scholar]
- Agliari, E.; Barra, A.; Tirozzi, B. Free energies of Boltzmann Machines: Self-averaging, annealed and replica symmetric approximations in the thermodynamic limit. J. Stat. Mech. Theory Exp. 2019, 2019, 033301. [Google Scholar] [CrossRef] [Green Version]
- Guerra, F. Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 2003, 233, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Barra, A.; Guerra, F.; Mingione, E. Interpolating the Sherrington–Kirkpatrick replica trick. Philos. Mag. 2012, 92, 78–97. [Google Scholar] [CrossRef]
- Bovier, A.; Gayrard, V. Hopfield models as generalized random mean field models. In Mathematical Aspects of Spin Glasses and Neural Networks; Birkhäuser: Boston, MA, USA, 1998; pp. 3–89. [Google Scholar]
- Bovier, A.; Gayrard, V.; Picco, P. Gibbs states of the Hopfield model with extensively many patterns. J. Stat. Phys. 1995, 79, 395–414. [Google Scholar] [CrossRef]
- Bovier, A. Statistical Mechanics of Disordered Systems: A Mathematical Perspective; Cambridge University Press: Cambridge, UK, 2006; Volume 18. [Google Scholar]
- Talagrand, M. Spin Glasses: A Challenge for Mathematicians: Cavity and Mean Field Models; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003; Volume 46. [Google Scholar]
- Talagrand, M. Rigorous results for the Hopfield model with many patterns. Probab. Theory Relat. Fields 1998, 110, 177–275. [Google Scholar] [CrossRef]
- Talagrand, M. Exponential inequalities and convergence of moments in the replica-symmetric regime of the Hopfield model. Ann. Probab. 2000, 28, 1393–1469. [Google Scholar] [CrossRef]
- Löwe, M.; Vermet, F. The storage capacity of the Hopfield model and moderate deviations. Stat. Probab. Lett. 2005, 75, 237–248. [Google Scholar] [CrossRef] [Green Version]
- Comets, F.; Kurkova, I.; Trashorras, J. Fluctuations of the free energy in the high temperature Hopfield model. Stoch. Process. Their Appl. 2004, 113, 1–35. [Google Scholar] [CrossRef]
- Grover, L.K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 1997, 79, 325. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, Y.S.; Pravia, M.; Fortunato, E.; Lloyd, S.; Cory, D.G. Implementation of the quantum Fourier transform. Phys. Rev. Lett. 2001, 86, 1889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perus, M.; Bischof, H. A neural-network-like quantum information processing system. arXiv 2003, arXiv:quant-ph/0305072. [Google Scholar]
- Shafee, F. Semiclassical neural network. arXiv 2002, arXiv:quant-ph/0202015. [Google Scholar]
- Ventura, D.; Martinez, T. Quantum associative memory. Inf. Sci. 2000, 124, 273–296. [Google Scholar] [CrossRef] [Green Version]
- Neigovzen, R.; Glaser, S.J.; Sollacher, R.; Neves, J. Quantum pattern recognition with liquid-state nuclear magnetic resonance. arXiv 2008, arXiv:0802.1592. [Google Scholar]
- Vandersypen, L.M.; Chuang, I.L.; Suter, D. Liquid-State NMR Quantum Computing. eMagRes 2010. [Google Scholar] [CrossRef]
- Farhi, E.; Goldstone, J.; Gutmann, S.; Sipser, M. Quantum computation by adiabatic evolution. arXiv 2000, arXiv:quant-ph/0001106. [Google Scholar]
- Sorella, S.; Santoro, G.E.; Becca, F. SISSA Lecture Notes on Numerical Methods for Strongly Correlated Electrons; International School for Advanced Studies (SISSA): Trieste, Italy, 2016. [Google Scholar]
- Inoue, J.I. Pattern-recalling processes in quantum Hopfield networks far from saturation. J. Phys. Conf. Ser. 2011, 297, 012012. [Google Scholar] [CrossRef] [Green Version]
- Rebentrost, P.; Bromley, T.R.; Weedbrook, C.; Lloyd, S. Quantum Hopfield neural network. Phys. Rev. A 2018, 98, 042308. [Google Scholar] [CrossRef] [Green Version]
- Shcherbina, M.; Tirozzi, B. The free energy of a class of Hopfield models. J. Stat. Phys. 1993, 72, 113–125. [Google Scholar] [CrossRef]
- Khezri, M.; Grover, J.A.; Basham, J.I.; Disseler, S.M.; Chen, H.; Novikov, S.; Zick, K.M.; Lidar, D.A. Anneal-path correction in flux qubits. arXiv 2020, arXiv:2002.11217. [Google Scholar]
- Do, M.; Wang, Z.; O’Gorman, B.; Venturelli, D.; Rieffel, E.; Frank, J. Planning for Compilation of a Quantum Algorithm for Graph Coloring. arXiv 2020, arXiv:2002.10917. [Google Scholar]
- Dong, Y.; Meng, X.; Whaley, K.B.; Lin, L. Efficient phase factor evaluation in quantum signal processing. arXiv 2020, arXiv:2002.11649. [Google Scholar]
- Magniez, F.; Nayak, A. Quantum Distributed Complexity of Set Disjointness on a Line. arXiv 2020, arXiv:2002.11795. [Google Scholar]
- Zhou, L.; Wang, S.T.; Choi, S.; Pichler, H.; Lukin, M.D. Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices. arXiv 2018, arXiv:1812.01041. [Google Scholar]
- Headley, D.; Müller, T.; Martin, A.; Solano, E.; Sanz, M.; Wilhelm, F.K. Approximating the Quantum Approximate Optimisation Algorithm. arXiv 2020, arXiv:2002.12215. [Google Scholar]
- Suzuki, S.; Inoue, J.I.; Chakrabarti, B.K. Quantum Ising Phases and Transitions in Transverse Ising Models; Springer: Berlin/Heidelberg, Germany, 2012; Volume 862. [Google Scholar]
- Suzuki, M. Relationship between d-dimensional quantal spin systems and (d+ 1)-dimensional ising systems: Equivalence, critical exponents and systematic approximants of the partition function and spin correlations. Prog. Theor. Phys. 1976, 56, 1454–1469. [Google Scholar] [CrossRef]
- Nishimori, H.; Nonomura, Y. Quantum effects in neural networks. J. Phys. Soc. Jpn. 1996, 65, 3780–3796. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Chakrabarti, B.K. On the Question of Ergodicity in Quantum Spin Glass Phase and Its Role in Quantum Annealing. J. Phys. Soc. Jpn. 2019, 88, 061004. [Google Scholar] [CrossRef] [Green Version]
- Pastur, L.; Shcherbina, M.; Tirozzi, B. The replica-symmetric solution without replica trick for the Hopfield model. J. Stat. Phys. 1994, 74, 1161–1183. [Google Scholar] [CrossRef]
- Amit, D.J.; Gutfreund, H.; Sompolinsky, H. Statistical mechanics of neural networks near saturation. Ann. Phys. 1987, 173, 30–67. [Google Scholar] [CrossRef]
- Gallavotti, G. Instabilities and phase transitions in the Ising model. A review. La Rivista del Nuovo Cimento (1971–1977) 1972, 2, 133–169. [Google Scholar] [CrossRef]
- Bogolyubov, N.N. A Method for Studying Model Hamiltonians: A Minimax Principle for Problems in Statistical Physics; Elsevier: Amsterdam, The Netherlands, 2013; Volume 43. [Google Scholar]
- John, F. Partial Differential Equations; Applied Mathematical Sciences; Springer: New York, NY, USA, 1991. [Google Scholar]
- Dharmadhikari, S.; Fabian, V.; Jogdeo, K. Bounds on the moments of martingales. Ann. Math. Stat. 1968, 39, 1719–1723. [Google Scholar] [CrossRef]
- Bityutskov, V. Bunyakovskii inequality. In Encyclopaedia of Mathematics; Hazewinkel, M., Ed.; Kluwer Academic Publishers: Berlin, Germany, 2001. [Google Scholar]
- Bogolyubov, N.N., Jr. On model dynamical systems in statistical mechanics. Physica 1966, 32, 933–944. [Google Scholar] [CrossRef]
- Rudin, W. Real and Complex Analysis; Mathematics Series; McGraw-Hill: New York, NY, USA, 1987. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shcherbina, M.; Tirozzi, B.; Tassi, C. Quantum Hopfield Model. Physics 2020, 2, 184-196. https://doi.org/10.3390/physics2020012
Shcherbina M, Tirozzi B, Tassi C. Quantum Hopfield Model. Physics. 2020; 2(2):184-196. https://doi.org/10.3390/physics2020012
Chicago/Turabian StyleShcherbina, Masha, Brunello Tirozzi, and Camillo Tassi. 2020. "Quantum Hopfield Model" Physics 2, no. 2: 184-196. https://doi.org/10.3390/physics2020012
APA StyleShcherbina, M., Tirozzi, B., & Tassi, C. (2020). Quantum Hopfield Model. Physics, 2(2), 184-196. https://doi.org/10.3390/physics2020012