Material Screening with Mass Spectrometry
Abstract
:1. Introduction
1.1. ICP-MS Analytical Technique
1.2. Materials and Instrumentation
2. Results and Discussion
2.1. Contribute of ICP-MS to Search for α Decay of 174Hf Using Scintillator Crystal
2.1.1. Study of the Secular Equilibrium: ICP-MS and γ-ray Spectrometry Data Joining
2.1.2. Total α Activity Measurement of CHC Crystal
2.2. ICP-MS: The Right Tool for Monitoring the Recycling Process of Enriched Germanium Scraps
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dafinei, I.; Nagorny, S.; Pirro, S.; Cardani, L.; Clemenza, M.; Ferroni, F.; Laubenstein, M.; Nisi, S.; Pattavina, L.; Schaeffner, K.; et al. Production of 82Se enriched Zinc Selenide (ZnSe) crystals for the study of neutrinoless double beta decay. J. Cryst. Growth 2017, 475, 158–170. [Google Scholar] [CrossRef] [Green Version]
- Particle Data Group. Review of particle physics. Chin. Phys. C 2014, 38, 090001. [Google Scholar] [CrossRef]
- Bernabei, R.; Belli, P.; Incicchitti, A.; Dai, C.J. Adopted low background techniques and analysis of radioactive trace impurities. Int. J. Mod. Phys. A 2016, 31, 1642003. [Google Scholar] [CrossRef]
- Bernabei, R.; Belli, P.; Montecchia, F.; Di Nicolantonio, W.; Ignesti, G.; Incicchitti, A.; Prosperi, D.; Dai, C.J.; Ding, L.K.; Kuang, H.H.; et al. Performances of the ~100 kg NaI(Tl) set-up of the DAMA experiment at Gran Sasso. Il Nuovo Cim. 1999, 112, 545–576. [Google Scholar] [CrossRef]
- Bernabei, R.; Belli, P.; Bussolotti, A.; Cappella, F.; Cerulli, R.; Dai, C.; D’Angelo, A.; He, H.; Incicchitti, A.; Kuang, H.; et al. The DAMA/LIBRA apparatus. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2008, 592, 297–315. [Google Scholar] [CrossRef]
- Barabash, A.; Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.; Di Marco, A.; Incicchitti, A.; Kasperovych, D.; et al. Low background scintillators to investigate rare processes. J. Instrum. 2020, 15, C07037. [Google Scholar] [CrossRef]
- Caracciolo, V.; Nagorny, S.; Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Incicchitti, A.; Laubenstein, M.; Merlo, V.; Nisi, S.; et al. Search for α decay of naturally occurring Hf-nuclides using a scintillator. Nucl. Phys. A 2020, 1002, 121941. [Google Scholar] [CrossRef]
- Azzolini, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; Carniti, P.; et al. Final Result of CUPID-0 Phase-I in the Search for the 82Se Neutrinoless Double-β Decay. Phys. Rev. Lett. 2019, 123, 032501. [Google Scholar] [CrossRef] [Green Version]
- Bernabei, R.; Incicchitti, A. Low background techniques in NaI(Tl) setups. Int. J. Mod. Phys. A 2017, 32, 1743007. [Google Scholar] [CrossRef]
- Bernabei, R.; Belli, P.; Bussolotti, A.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Dai, C.; D’Angelo, A.; Di Marco, A.; Ferrari, N.; et al. The DAMA project: Achievements, implications and perspectives. Prog. Part. Nucl. Phys. 2020, 114, 103810. [Google Scholar] [CrossRef]
- Zhu, Y.; Yue, S.H.; Ge, Z.W.; Zhu, Y.W.; Yin, X.J.; Dafinci, I.; D’Impcrio, G.; Diemoz, M.; Pettinacci, V.; Nisi, S.; et al. Production of ultra-low radioactivity NaI(Tl) crystals for Dark Matter detectors. arXiv 2018, arXiv:1909.11692. [Google Scholar]
- Belviso, B.D. Crystal Purity. In Encyclopedia of Membranes; Springer Nature: London, UK, 2015; pp. 1–2. [Google Scholar]
- Cardenas, C.; Burger, A.; DiVacri, M.; Goodwin, B.; Groza, M.; Laubenstein, M.; Nagorny, S.; Nisi, S.; Rowe, E. Internal contamination of the crystal scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2017, 872, 23–27. [Google Scholar] [CrossRef]
- Povinec, P.P.; Benedik, L.; Breier, R.; Ješkovský, M.; Kaizer, J.; Kameník, J.; Kochetov, O.; Kučera, J.; Loaiza, P.; Nisi, S.; et al. Ultra-sensitive radioanalytical technologies for underground physics experiments. J. Radioanal. Nucl. Chem. 2018, 318, 677–684. [Google Scholar] [CrossRef]
- Laubenstein, M. Screening of materials with high purity germanium detectors at the Laboratori Nazionali del Gran Sasso. Int. J. Mod. Phys. A 2017, 32, 17430023. [Google Scholar] [CrossRef]
- Hellborg, R.; Skog, G. Accelerator mass spectrometry. Mass Spectrom. Rev. 2008, 27, 398–427. [Google Scholar] [CrossRef] [Green Version]
- Becker, J.S. Mass spectrometry of long-lived radionuclides. Spectrochim. Acta Part B At. Spectrosc. 2003, 58, 1757–1784. [Google Scholar] [CrossRef]
- Becker, J.S. Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS for isotope analysis of long-lived radionuclides. Int. J. Mass Spectrom. 2005, 242, 183–195. [Google Scholar] [CrossRef]
- Nisi, S.; Copia, L.; Dafinei, I.; Di Vacri, M.L. ICP-MS measurement of natural radioactivity at LNGS. Int. J. Mod. Phys. A 2017, 32, 17430035. [Google Scholar] [CrossRef]
- Hattendorf, B.; Gusmini, B.; Dorta, L.; Houk, R.S.; Günther, D. Abundance and Impact of Doubly Charged Polyatomic Argon Interferences in ICPMS Spectra. Anal. Chem. 2016, 88, 7281–7288. [Google Scholar] [CrossRef] [PubMed]
- Laferriere, B.; Maiti, T.; Arnquist, I.; Hoppe, E. A novel assay method for the trace determination of Th and U in copper and lead using inductively coupled plasma mass spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2015, 775, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, Y.; Yasuda, K.; Magara, M. Sequential separation of ultra-trace U, Th, Pb, and lanthanides using a simple automatic system. Analyst 2015, 140, 4482–4488. [Google Scholar] [CrossRef] [Green Version]
- Kaizer, J.; Nisi, S.; Povinec, P.P. Radiopurity measurements of aluminum, copper and selenium materials for underground experiments and mass spectrometry development. J. Radioanal. Nucl. Chem. 2019, 322, 1447–1454. [Google Scholar] [CrossRef]
- Macfarlane, R.D.; Kohman, T.P. Natural Alpha Radioactivity in Medium-Heavy Elements. Phys. Rev. 1961, 121, 1758–1769. [Google Scholar] [CrossRef]
- Poenaru, D.; Ivascu, M. Estimation of the alpha decay half-lives. J. Phys. 1983, 44, 791–796. [Google Scholar] [CrossRef]
- Buck, B.; Merchant, A.C.; Perez, S.M. Ground state proton emission from heavy nuclei. Phys. Rev. C 1992, 45, 1688–1692. [Google Scholar] [CrossRef]
- Denisov, V.Y.; Khudenko, A. Decay half-lives, -capture, and -nucleus potential. At. Data Nucl. Data Tables 2009, 95, 815–835. [Google Scholar] [CrossRef]
- Abrosimov, N.; Czupalla, M.; Dropka, N.; Fischer, J.; Gybin, A.; Irmscher, K.; Janicskó-Csáthy, J.; Juda, U.; Kayser, S.; Miller, W.; et al. Technology development of high purity germanium crystals for radiation detectors. J. Cryst. Growth 2020, 532, 125396. [Google Scholar] [CrossRef]
- Agostini, M.; Knöpfle, K.T.; Allardt, M.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.R.; De Barros, N.F.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; et al. Results on ββ decay with emission of two neutrinos or Majorons in 76Ge from GERDA Phase I. Eur. Phys. J. C 2015, 75, 416. [Google Scholar] [CrossRef] [Green Version]
- Agostini, M.; GERDA Collaboration; Bakalyarov, A.M.; Andreotti, E.; Balata, M.; Barabanov, I.; Baudis, L.; Barros, N.; Bauer, C.; Bellotti, E.; et al. Characterization of 30 76Ge enriched Broad Energy Ge detectors for GERDA Phase II. Eur. Phys. J. C 2019, 79, 1–24. [Google Scholar] [CrossRef]
- Agostini, M.; The Gerda Collaboration; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; et al. Modeling of GERDA Phase II data. J. High Energy Phys. 2020, 2020, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Myslik, J. LEGEND: The Large Enriched Germanium Experiment for Neutrinoless Double-Beta Decay. arXiv 2018, arXiv:1810.00849v1. [Google Scholar]
- Abgrall, N.; Arnquist, I.J.; Iii, F.T.A.; Barabash, A.S.; Bertrand, F.E.; Bradley, A.W.; Brudanin, V.; Busch, M.; Buuck, M.; Caja, J.; et al. The processing of enriched germanium for the Majorana Demonstrator and R&D for a next generation double-beta decay experiment. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2018, 877, 314–322. [Google Scholar] [CrossRef]
- Wang, G.; Sun, Y.; Yang, G.; Xiang, W.; Guan, Y.; Mei, D.; Keller, C.; Chan, Y.-D. Development of large size high-purity germanium crystal growth. J. Cryst. Growth 2012, 352, 27–30. [Google Scholar] [CrossRef]
- Yang, G.; Guan, Y.T.; Jian, F.Y.; Wagner, M.D.; Mei, H.; Wang, G.J.; Howard, S.M.; Mei, D.M.; Nelson, A.J.; Marshal, J.; et al. Zone Refinement of Germanium Crystals. J. Phys. Conf. Ser. 2015, 606, 012014. [Google Scholar] [CrossRef] [Green Version]
Element 1 | CsCl | CHC Crystal | ||
---|---|---|---|---|
(10−9 g·g−1) | (10−9 g·g−1) | (10−9 g·g−1) | (10−9 g·g−1) | |
Al (MR) | 1000 | 30,000 | 3000 | 2000 |
K (H) | 2400 | 1400 | <500 | <2000 |
Mn (MR) | 100 | 43 | 12 | <20 |
Fe (MR) | 600 | 3300 | 1200 | <500 |
Sn | <10 | 50 | 10 | <10 |
La | 8.7 | 2600 | 550 | 130 |
Lu | <10 | <500 | <500 | <300 |
Ta | <3 | <8000 | <8000 | <4000 |
Ir | <2 | <4000 | <4000 | <2000 |
Pt | <40 | <100,000 | <100,000 | <40,000 |
Bi | <3 | <2000 | <2000 | <1000 |
Th | <0.5 | <1 | <1 | <0.5 |
U | <0.5 | 3200 | 270 | <0.5 |
Element | Isotope | Abundance | Interferences | Mass Resolution 1 |
---|---|---|---|---|
(amu) | (%) | |||
Al | 27 | 100 | 11B16O, 12C15N | 1450 |
K | 39 | 93.26 | 38Ar1H | 5540 |
Mn | 55 | 100 | 37Cl16O1H, 40Ar15N | 2250 |
Fe | 56 | 91.75 | 40Ar16O | 2500 |
Lu | 175 | 97.41 | 174Hf1H, 174Hf Tail | |
Ta | 181 | 99.99 | 180Hf1H, 180Hf Tail | |
Ir | 191 | 37.3 | 174Hf16O1H | 10,850 |
193 | 62.7 | 177Hf16O | 8140 | |
Pt | 190 | 0.014 | 174Hf16O | 7600 |
194 | 32.97 | 178Hf16O | 8048 | |
195 | 33.83 | 179Hf16O | 8090 | |
196 | 25.24 | 180Hf16O | 8375 | |
198 | 7.16 | |||
Bi | 209 | 100 | 174Hf35Cl | 2920 |
Chain Nuclide | CsCl | CHC Crystal 2 | |||
---|---|---|---|---|---|
(Bq/kg) | (Bq/kg) | (Bq/kg) | (mBq/kg) | ||
235U | 235U | <0.53 | (1.4 ± 0.8) | <2.7 | <26 |
238U | 234Th | <22 | <58 | (130 ± 30) | <8.6 |
234mPa | <19 | (50 ± 20) | <140 | <3.7 | |
226Ra | <0.54 | <0.86 | <4.5 | <12 | |
238U 1 | <0.006 | 40 ± 10 | 3 ± 1 | <6 |
Nuclide | Half-Life Time | Concentration | Expected Signal |
---|---|---|---|
(Year) | (10−9 g·g−1) | (counts) | |
144Nd | 2.29 × 1015 | <2.4 | <0.007 |
147Sm | 1.060 × 1011 | 0.6 (1) | 36 (6) |
148Sm | 7 × 1015 | 0.4 (1) | 3.6 (1) × 10−4 |
152Gd | 1.08 × 1014 | <0.02 | <1 × 10−3 |
186Os | 2.0 × 1015 | <0.25 | <6 × 10−4 |
190Pt | 6.5 × 1011 | <0.02 | <0.1 |
209Bi | 2 × 1019 | <2 | <4 × 10−7 |
Sample | Description |
---|---|
Ge kerf | Starting material |
c | Sample after chlorination |
d | Sample after distillation |
GeO2 purified | Final product after purification |
Element 1 | Ge Kerf | |||
---|---|---|---|---|
(10−9 g·g−1) | (10−9 g·g−1) | (10−9 g·g−1) | (10−9 g·g−1) | |
Li | 20 | 5 | <5 | <5 |
Be | <20 | <5 | <5 | <5 |
B | 90 | 85 | <10 | <10 |
Na | 840,000 | <1000 | <1000 | <500 |
Mg | 18,000 | 700 | 230 | 190 |
Al (H) | <6000 | <2000 | <2000 | <2000 |
K (H) | <16,000 | <5000 | <5000 | <5000 |
Sc | <200 | <200 | <20 | <10 |
V | 250 | 180 | 100 | <5 |
Cr | <200 | <200 | <100 | <50 |
Mn | <50 | 45 | <20 | <10 |
Fe (MR) | <10,000 | <5000 | <5000 | <5000 |
Co | <10 | <10 | <5 | <5 |
Ni | 2400 | 110 | <100 | <100 |
Cu | 14,000 | 100 | <100 | <100 |
Zn | 890 | <50 | <50 | <50 |
Ga | 6200 | 21,000 | <10 | <10 |
As (H) | <1000 | <1000 | <1000 | <1000 |
Rb | 55 | <5 | <5 | <5 |
88Sr | 170 | <10 | <10 | <10 |
Mo | <50 | <50 | <10 | <10 |
Ag | <50 | <50 | <20 | <5 |
Cd | <300 | <300 | 130 | <20 |
Cs | 90 | 70 | 20 | 15 |
Ba | 1600 | <20 | <20 | <20 |
La | 10 | <5 | <5 | <5 |
Ce | 30 | <20 | <20 | <20 |
Pr | <5 | <5 | <5 | <5 |
Sm | <10 | < 5 | < 5 | <5 |
Eu | <5 | <5 | <5 | <5 |
Tb | <5 | <5 | <5 | <5 |
Dy | <5 | <5 | <5 | <5 |
Ho | <2 | <2 | <2 | <2 |
Er | <2 | <2 | <2 | <2 |
Tm | <10 | <5 | <5 | <5 |
Yb | <10 | <5 | <5 | <5 |
Lu | <10 | <5 | <5 | <5 |
Hf | <10 | <5 | <5 | <5 |
W | <200 | <50 | <50 | <50 |
Os | <10 | <10 | <10 | <10 |
Pt | <100 | <100 | <50 | <50 |
Au | <50 | <50 | <5 | <5 |
Hg | <20 | <20 | <20 | <20 |
Tl | <50 | <50 | 15 | <5 |
Pb | 720 | 300 | 25 | 12 |
Bi | 100 | 25 | <5 | <5 |
Th | <5 | <2 | <2 | <2 |
U | <5 | <2 | <2 | <2 |
Element | Isotope (Amu) | Abundance | Interferences | Mass Resolution 1 |
---|---|---|---|---|
(amu) | (%) | |||
Al | 27 | 100 | 11B16O, 12C15N | 1450 |
K | 39 | 93.26 | 38Ar1H | 5540 |
Cr | 52 | 83.79 | 12C40Ar | 2375 |
Fe | 56 | 91.75 | 40Ar16O | 2500 |
As | 75 | 100 | 40Ar35Cl, 76Ge tail | 7770 |
Mo | 95 | 15.84 | 76Ge19F | 6800 |
Cd | 111 | 12.80 | 76Ge35Cl | 7960 |
Sample | 70Ge/Ge | 72Ge/Ge | 73Ge/Ge | 74Ge/Ge | 76Ge/Ge |
---|---|---|---|---|---|
(%) | (%) | (%) | (%) | (%) | |
Ge kerf | 0.0004 ± 0.0001 | 0.0011 ± 0.0003 | 0.010 ± 0.01 | 7.2 ± 0.5 | 93.2 ± 0.8 |
purified | 0.0006 ± 0.0002 | 0.0010 ± 0.0003 | 0.011 ± 0.03 | 7.1 ± 0.4 | 93.1 ± 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchegiani, F.; Ferella, F.; Nisi, S. Material Screening with Mass Spectrometry. Physics 2021, 3, 71-84. https://doi.org/10.3390/physics3010007
Marchegiani F, Ferella F, Nisi S. Material Screening with Mass Spectrometry. Physics. 2021; 3(1):71-84. https://doi.org/10.3390/physics3010007
Chicago/Turabian StyleMarchegiani, Francesca, Francesco Ferella, and Stefano Nisi. 2021. "Material Screening with Mass Spectrometry" Physics 3, no. 1: 71-84. https://doi.org/10.3390/physics3010007
APA StyleMarchegiani, F., Ferella, F., & Nisi, S. (2021). Material Screening with Mass Spectrometry. Physics, 3(1), 71-84. https://doi.org/10.3390/physics3010007