Enriched Crystal Scintillators for 2β Experiments
Abstract
:1. Introduction
- -
- realization of the “source = detector” approach by detecting events whose origins are within the crystal; in this case the detection efficiency for searched effects could reach 80−90%;
- -
- possibility of isotope enrichment for many of the crystals [42]; some enrichment techniques (like the gas centrifuge method) are not so expensive, while others (for example, the multi-channel counter current electrophoresis (MCCCE) or laser separation) are much complicated and expensive;
- -
- -
- low level of the internal radioactive contamination (typically the crystals for low background measurements have contamination by 226Ra and 228Th on the level of ~(0.001−0.1) mBq/kg;
- -
- possibility of the development of radiopure scintillators;
- -
- the good pulse-shape discrimination factor;
- -
- very good operating stability (for years).
2. Crystal Growth and Radiopurity of Crystal Scintillators
- (1)
- minimization of the initial materials and possible radioactive components of the growing set-ups;
- (2)
- a test of the radiopurity level of the detectors;
- (3)
- a study of the effect of double crystallization, development of protocol for surface treatment;
- (4)
- an application of methods to purify enriched isotopes by using combination of chemical (recrystallization) and physical (vacuum distillation, filtration, zone melting) approaches;
- (5)
- minimization of cosmogenic/neutrons activation (the production line and transportation of the crystals to the experiment site should be provided with the safest way, by ground-based) and radioactive background deposit from radon.
3. Calcium Fluoride Crystal Scintillators Enriched in 48Ca
4. Cadmium Tungstate Crystal Scintillators Enriched in 106Cd
Decay Channel, Level of 106Pd (keV) | ||
---|---|---|
Best Limits | Theory | |
2ν2ε, 01+ 1134 | ≥9.9 × 1020 [80] | 1.1 × 1024 [83] |
0ν2ε, g.s. | ≥1.1 × 1021 [69] | |
2νεβ+, g.s | ≥2.1 × 1021 [80] | 8.3 × 1020 [84] 2.7 × 1022 [83] 7.7 × 1022 [85] |
2νεβ+, 01+ 1134 | ≥1.1 × 1021 [69] | 1.1 × 1027 [83] |
0νεβ+, g.s. | ≥1.4 × 1022 [80] | 3.4 × 1026 [25] |
2ν2β+, g.s. | ≥2.3 × 1021 [69] | 2.4 × 1027 [83] 3.1 × 1027 [85] |
0ν2β+, g.s. | ≥5.9 × 1021 [80] | 4.8 × 1027 [25] (1.9–3.2) × 1027 [86] |
Res. 0ν2ε, 2718 | ≥2.9 × 1021 [80] | |
Res. 0ν2ε, 2741 | ≥9.5 × 1020 [69] | |
Res. 0ν2ε, 2748 | ≥1.4 × 1021 [69] |
5. Cadmium Tungstate Crystal Scintillators Enriched in 116Cd
6. Conclusions
Funding
Conflicts of Interest
References
- Suhonen, J.; Civitarese, O. Weak-interaction and nuclear-structure aspects of nuclear double beta decay. Phys. Rep. 1998, 300, 123. [Google Scholar] [CrossRef]
- Caurier, E.; Martínez-Pinedo, G.; Nowacki, F.; Poves, A.; Zuker, A.P. The shell model as a unified view of nuclear structure. Rev. Mod. Phys. 2005, 77, 427. [Google Scholar] [CrossRef] [Green Version]
- Fang, D.-L.; Faessler, A.; Simkovic, F. 0νββ-decay nuclear matrix element for light and heavy neutrino mass mechanisms from deformed quasiparticle random-phase approximation calculations for 76Ge, 82Se, 130Te, 136Xe, and 150Nd with isospin restoration. Phys. Rev. C 2018, 97, 045503. [Google Scholar] [CrossRef] [Green Version]
- Barea, J.; Kotila, J.; Iachello, F. 0νββ and 2νββ nuclear matrix elements in the interacting boson model with isospin restoration. Phys. Rev. C 2015, 91, 034304. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A. Average and recommended half-life values for two-neutrino double beta decay: Upgrade-2019. AIP Conf. Proc. 2019, 2165, 020002. [Google Scholar] [CrossRef] [Green Version]
- Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Incicchitti, A.; Merlo, V. Double beta decay to excited states of daughter nuclei. Universe 2020, 6, 239. [Google Scholar] [CrossRef]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Anthony, M.; Antochi, V.C.; Arneodo, F.; Baudis, L.; et al. Observation of two-neutrino double electron capture in 124Xe with XENON1T. Nature 2019, 568, 532–535. [Google Scholar] [CrossRef]
- Gavrilyuk, Y.M.; Gangapshev, A.M.; Kazalov, V.V.; Kuzminov, V.V.; Panasenko, S.I.; Ratkevich, S.S. Indications of 2ν2K capture in 78Kr. Phys. Rev. C 2013, 87, 035501. [Google Scholar] [CrossRef]
- Meshik, A.P.; Hohenberg, C.M.; Pravdivtseva, O.V.; Kapusta, Y.S. Weak decay of 130Ba and 132Ba: Geochemical measurements. Phys. Rev. C 2001, 64, 035205. [Google Scholar] [CrossRef] [Green Version]
- Pujol, M.; Marty, B.; Burnard, P.; Philippot, P. Xenon in Archean barite: Weak decay of 130Ba, mass-dependent isotopic fractionation and implication for barite formation. Geochim. Cosmochim. Acta 2009, 73, 6834–6846. [Google Scholar] [CrossRef]
- Bilenky, S. Neutrino oscillations: From a historical perspective to the present status. Nucl. Phys. B 2016, 908, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Garcia, M.C.; Maltonic, M.; Schwetz, T. Global analyses of neutrino oscillation experiments. Nucl. Phys. B 2016, 908, 199–217. [Google Scholar] [CrossRef] [Green Version]
- Elliot, S.R.; Vogel, P. Double beta decay. Ann. Rev. Nucl. Part Sci. 2002, 52, 115–151. [Google Scholar] [CrossRef] [Green Version]
- Vergados, J.D.; Ejiri, H.; Šimkovic, F. Neutrinoless double β-decay and neutrino mass. Int. J. Mod. Phys. E 2016, 25, 1630007. [Google Scholar] [CrossRef] [Green Version]
- Avignone, F.T., III; King, G.S.; Zdesenko, Y.G. Next generation double-beta decay experiments: Metrics for their evaluation. New J. Phys. 2005, 7, 6–52. [Google Scholar] [CrossRef]
- Ejiri, H. Double beta decays and neutrino masses. J. Phys. Soc. Jpn. 2005, 74, 2101–2127. [Google Scholar] [CrossRef] [Green Version]
- Klapdor-Kleingrothaus, H.V. Lessons after the evidence for neutrinoless double beta decay—The next step. Int. J. Mod. Phys. E 2008, 17, 505–517. [Google Scholar] [CrossRef]
- Avignone, F.T., III; Elliott, S.R.; Engel, J. Double beta decay, majorana neutrinos, and neutrino mass. Rev. Mod. Phys. 2008, 80, 481–516. [Google Scholar] [CrossRef] [Green Version]
- Barea, J.; Kotila, J.; Iachello, F. Limits on neutrino masses from neutrinoless double-β decay. Phys. Rev. Lett. 2012, 109, 042501. [Google Scholar] [CrossRef] [Green Version]
- Rodejohann, W. Neutrino-less double beta decay and particle physics. J. Phys. G 2012, 39, 124008. [Google Scholar] [CrossRef]
- Päs, H.; Rodejohann, W. Neutrinoless double beta decay. New J. Phys. 2015, 17, 115010. [Google Scholar] [CrossRef] [Green Version]
- Dell’Oro, S.; Marcocci, S.; Viel, M.; Vissani, F. Neutrinoless double beta decay: 2015 review. Adv. High Energy Phys. 2016, 2016, 2162659. [Google Scholar] [CrossRef] [Green Version]
- Deppisch, F.F.; Hirsch, M.; Päs, H. Neutrinoless double-beta decay and physics beyond the standard model. J. Phys. G 2012, 39, 124007. [Google Scholar] [CrossRef]
- Bilenky, S.M.; Giunti, C. Neutrinoless double-beta decay: A probe of physics beyond the Standard Model. Int. J. Mod. Phys. A 2015, 30, 1530001. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, M.; Muto, K.; Oda, T.; Klapdor-Kleingrothaus, H.V. Nuclear structure calculation of ββ, β/EC, and EC/EC decay matrix elements. Z. Phys. A 1994, A347, 151–160. [Google Scholar] [CrossRef]
- Ejiri, H. Neutrino-mass sensitivity and nuclear matrix element for neutrinoless double beta decay. Universe 2020, 6, 225. [Google Scholar] [CrossRef]
- Tetsuno, K.; Ajimura, S.; Akutagawa, K.; Batpurev, T.; Chan, W.M.; Fushimi, K.; Hazama, R.; Iida, T.; Ikeyama, Y.; Khai, B.T.; et al. Status and future prospect of 48Ca double beta decay search in CANDLES. J. Phys. Conf. Ser. 2020, 1468, 012132. [Google Scholar] [CrossRef]
- Agostini, M.; Araujo, G.R.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; et al. Final results of GERDA on the search for neutrinoless double-β decay. Phys. Rev. Lett. 2020, 125, 252502. [Google Scholar] [CrossRef]
- Azzolini, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; Carniti, P.; et al. Final result of CUPID-0 phase-I in the search for the 82Se neutrinoless double-β Decay. Phys. Rev. Lett. 2019, 123, 032501. [Google Scholar] [CrossRef] [Green Version]
- Argyriades, J.; Arnold, R.; Augier, C.; Baker, J.D.; Barabash, A.S.; Basharina-Freshville, A.; Bongrand, M.; Broudin-Bay, G.; Brudanin, V.; Caffrey, A.J.; et al. Measurement of the two neutrino double beta decay half-life of Zr-96 with the NEMO-3 detector. Nucl. Phys. A 2010, 847, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Armengaud, E.; Augier, C.; Barabash, A.S.; Bellini, F.; Benato, G.; Benoît, A.; Beretta, M.; Bergé, L.; Billard, J.; Borovlev, Y.A.; et al. A new limit for neutrinoless double beta decay of 100Mo from the CUPID-Mo experiment. arXiv 2020, arXiv:2011.13243v1. [Google Scholar]
- Barabash, A.; Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D.M.; Danevich, F.A.; d’Angelo, S.; Incicchitti, A.; et al. Final results of the Aurora experiment to study 2β decay of 116Cd with enriched 116CdWO4 crystal scintillators. Phys. Rev. D 2018, 98, 092007. [Google Scholar] [CrossRef] [Green Version]
- Bernatowicz, T.; Brannon, J.; Brazzle, R.; Cowsik, R. Precise determination of relative and absolute ββ-decay rates of 128Te and 130Te. Phys. Rev. C 1993, 47, 806. [Google Scholar] [CrossRef] [PubMed]
- Arnaboldi, C.; Brofferio, C.; Bucci, C.; Capelli, S.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Nucciotti, A.; Pavan, M.; Pedretti, M.; et al. A calorimetric search on double beta decay of 130Te. Phys. Lett. B 2003, 557, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Adams, D.Q.; Alduino, C.; Alfonso, K.; Avignone, F.T.; Azzolini, O.; Bari, G.; Bellini, F.; Benato, G.; Biassoni, M.; Branca, A.; et al. Improved limit on neutrinoless double-beta decay in 130Te with CUORE. Phys. Rev. Lett. 2020, 124, 122501. [Google Scholar] [CrossRef] [Green Version]
- Gando, A.; Gando, Y.; Hachiya, T.; Hayashi, A.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Karino, Y.; Koga, M.; et al. (KamLAND-Zen Collaboration). Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen. Phys. Rev. Lett. 2016, 117, 082503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, R.; Augier, C.; Baker, J.D.; Barabash, A.S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Brudanin, V.; Busto, J.; et al. Measurement of the 2νββ decay half-life of 150Nd and a search for 0νββ decay. Phys. Rev. D 2016, 94, 072003. [Google Scholar] [CrossRef] [Green Version]
- Deppisch, F.F.; Graf, L.; Iachello, F.; Kotila, J. Analysis of light neutrino exchange and short-range mechanisms in 0νββ decay. Phys. Rev. D 2020, 102, 095016. [Google Scholar] [CrossRef]
- Danevich, F.A.; Tretyak, V.I. Radioactive contamination of scintillators. Int. J. Mod. Phys. A 2018, 33, 1843007. [Google Scholar] [CrossRef] [Green Version]
- Moe, M.; Vogel, P. Double beta decay. Annu. Rev. Nucl. Part. Sci. 1994, 44, 247–283. [Google Scholar] [CrossRef]
- Zdesenko, Y.G. The future of double decay research. Rev. Mod. Phys. 2002, 74, 663–684. [Google Scholar] [CrossRef]
- Danevich, F.A. Development of crystal scintillators from enriched isotopes for double decay experiments. IEEE Trans. Nucl. Sci. 2012, 59, 5. [Google Scholar] [CrossRef]
- Solski, I.M.; Sugaka, D.Y.; Vakiv, M.M. Growing large size complex oxide single crystals by czochralski technique for electronic devices. Acta Phys. Pol. A 2013, 124, 314. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Galashov, E.N.; Khyzhun, O.Y.; Bekenev, V.L.; Pokrovsky, L.D.; Borovlev, Y.A.; Zhdankov, V.N. Low thermal gradient Czochralski growth of large MWO4 (M = Zn, Cd) crystals, and microstructural and electronic properties of the (010) cleaved surfaces. J. Optoelectron. Adv. Mater. 2016, 236, 24–31. [Google Scholar] [CrossRef]
- Lee, J.Y.; Aryal, P.; Karki, S.; Kim, H.J.; Kim, S.K.; Kim, Y.; Lee, M.H.; Park, C.W. A Study of 48deplCa100MoO4 scintillation crystals for the AMoRE-I experiment. IEEE Trans. Nucl. Sci. 2008, 65, 2041. [Google Scholar] [CrossRef]
- Karki, S.; Aryal, P.; Kim, H.J.; Kim, Y.D.; Park, H.K. Determination of Mo- and Ca-isotope ratios in Ca100MoO4 crystal for AMoRE-I experiment. Nucl. Instr. Meth. A 2018, 877, 328–330. [Google Scholar] [CrossRef]
- Grigorieva, V.D.; Shlegel, V.N.; Borovlev, Y.A.; Bekker, T.B.; Barabash, A.S.; Konovalov, S.I.; Umatov, V.I.; Borovkov, V.I.; Meshkov, O.I. Li2100deplMoO4 crystals grown by low-thermal-gradient Czochralski technique. J. Cryst. Growth 2020, 552, 125913. [Google Scholar] [CrossRef]
- Cardani, L.; Casali, N.; Nagorny, S.; Pattavina, L.; Piperno, G.; Barinova, O.P.; Beeman, J.W.; Bellini, F.; Danevich, F.A.; Di Domizio, S.; et al. Development of a Li2MoO4 scintillating bolometer for low background physics. J. Instrum. 2013, 8, 10002. [Google Scholar] [CrossRef] [Green Version]
- Poda, D.V. for the LUMINEU and the EDELWEISS Collaborations. Scintillating bolometers based on ZnMoO4 and Zn100MoO4 crystals to search for 0ν2β decay of 100Mo (LUMINEU project): First tests at the Modane Underground Laboratory. Nucl. Part Phys. Proc. 2016, 273–275, 1801–1806. [Google Scholar] [CrossRef] [Green Version]
- Armengaud, E.; Augier, C.; Barabash, A.S.; Beeman, J.W.; Bekker, T.B.; Bellini, F.; Benoît, A.; Bergé, L.; Bergmann, T.; Billard, J.; et al. Development of 100Mo-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search. Eur. Phys. J. C 2017, 77, 785. [Google Scholar] [CrossRef]
- Meija, J.; Coplen, T.; Berglund, M.; Brand, W.; De Bièvre, P.; Gröning, M.; Holden, N.; Irrgeher, J.; Loss, R.; Walczyk, T.; et al. Isotopic compositions of the elements 2013 (IUPAC technical report). Pure Appl. Chem. 2016, 88, 293–306. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Audi, G.; Kondev, F.G.; Huang, W.J.; Naimi, S.; Xu, X. The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 2017, 41, 030003. [Google Scholar] [CrossRef]
- Alenkov, V.; Bae, H.W.; Beyer, J.; Boiko, R.S.; Boonin, K.; Buzanov, O.; Chanthima, N.; Cheoun, M.K.; Chernyak, D.M.; Choe, J.S.; et al. First results from the AMoRE-Pilot neutrinoless double beta decay experiment. Eur. Phys. J. C 2019, 79, 791. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, W.; Augier, C.; Barabash, A.S.; Bellini, F.; Benato, G.; Benoît, A.; Beretta, M.; Bergé, L.; Billard, J.; Borovlev, Y.A.; et al. The CUPID-Mo experiment for neutrinoless double-beta decay: Performance and prospects. Eur. Phys. J. C 2020, 80, 44. [Google Scholar] [CrossRef]
- Nutini, I.; Adams, D.Q.; Alduino, C.; Alfonso, K.; Avignone, F.T., III; Azzolini, O.; Bari, G.; Bellini, F.; Benato, G.; Biassoni, M.; et al. (CUORE Collaboration). The CUORE detector and results. J. Low Temp. Phys. 2020, 199, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Helis, D.L.; Bandac, I.C.; Barabash, A.S.; Billard, J.; Chapellier, M.; de Combarieu, M.; Danevich, F.A.; Dumoulin, L.; Gascon, J.; Giuliani, A.; et al. Neutrinoless double-beta decay searches with enriched 116CdWO4 scintillating bolometers. J. Low Temp. Phys. 2020, 199, 467–474. [Google Scholar] [CrossRef]
- Zdesenko, Y.G.; Avignone, F.T., III; Brudanin, V.B.; Danevich, F.A.; Nagorny, S.S.; Solsky, I.M.; Tretyak, V.I. Scintillation properties and radioactive contamination of CaWO4 crystal scintillators. Nucl. Instr. Meth. A 2005, 538, 657–667. [Google Scholar] [CrossRef]
- Cozzini, C.; Angloher, G.; Bucci, C.; von Feilitzsch, F.; Hauff, D.; Henry, S.; Jagemann, T.; Jochum, J.; Kraus, H.; Majorovits, B.; et al. Detection of the natural α decay of tungsten. Phys. Rev. C 2004, 70, 064606. [Google Scholar] [CrossRef] [Green Version]
- Polischuk, O.G.; Barabash, A.S.; Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Laubenstein, M.; et al. Purification of lanthanides for double beta decay experiments. AIP Conf. Proc. 2013, 1549, 124–128. [Google Scholar] [CrossRef]
- Shirai, J. Results and future plans for the KamLAND-Zen experiment. IOP Conf. Ser. J. Phys. Conf. Ser. 2017, 888, 012031. [Google Scholar] [CrossRef] [Green Version]
- Belli, P.; Bernabei, R.; Borovlev, Y.A.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kasperovych, D.V.; Polischuk, O.G.; et al. New development of radiopure ZnWO4 crystal scintillators. Nucl. Instr. Meth. A 2019, 935, 89–94. [Google Scholar] [CrossRef]
- Pavlyuk, A.A.; Vasiliev, Y.V.; Kharchenko, L.Y.; Kuznetsov, F.A. Low Thermal Gradient technique and method for large oxide crystals growth from melt and flux. In Proceedings of the APSAM-92, Shanghai, China, 26–29 April 1992; Asia Pacific Society for Advanced Materials, Institute of Materials Research, Tohoku University: Sendai, Japan, 1993; pp. 164–171. [Google Scholar]
- Danevich, F.A.; Bailiff, I.K.; Kobychev, V.V.; Kraus, H.; Laubenstein, M.; Loaiza, P.; Mikhailik, V.B.; Nagorny, S.S.; Nikolaiko, A.S.; Nisi, S.; et al. Effect of recrystallisation on the radioactive contamination of CaWO4 crystal scintillators. Nucl. Instr. Meth. A 2011, 631, 44–53. [Google Scholar] [CrossRef]
- Barabash, A.S.; Belli, P.; Bernabei, R.; Borovlev, Y.A.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kobychev, V.V.; et al. Improvement of radiopurity level of enriched 116CdWO4 and ZnWO4 crystal scintillators by recrystallization. Nucl. Instr. Methods A 2016, 833, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Der Mateosian, E.; Goldhaver, M. Limits for lepton-conserving and lepton-nonconserving double beta decay in Ca48. Phys. Rev. 1966, 146, 810. [Google Scholar] [CrossRef]
- Umehara, S.; Kishimoto, T.; Ogawa, I.; Hazama, R.; Miyawaki, H.; Yoshida, S.; Matsuoka, K.; Kishimoto, K.; Katsuki, A.; Sakai, H.; et al. Neutrino-less double-β decay of 48Ca studied by CaF2(Eu) scintillators. Phys. Rev. C 2008, 78, 058501. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, I.; Hazama, R.; Miyawaki, H.; Shiomi, S.; Suzuki, N.; Ishikawa, Y.; Kunitomi, G.; Tanaka, Y.; Itamura, M.; Matsuoka, K.; et al. Search for neutrino-less double beta decay of 48Ca by CaF2 scintillator. Nucl. Phys. A 2004, 730, 215–223. [Google Scholar] [CrossRef]
- Khai, B.T.; Ajimura, S.; Chan, W.M.; Fushimi, K.; Hazama, R.; Hiraoka, H.; Iida, T.; Kanagawa, K.; Kino, H.; Kishimoto, T.; et al. A study on energy resolution of CANDLES detector. IEEE Trans. Nucl. Sci. 2021. [Google Scholar] [CrossRef]
- Belli, P.; Bernabei, R.; Boiko, R.S.; Brudanin, V.B.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D.M.; Danevich, F.A.; d’Angelo, S.; et al. Search for double-β decay processes in 106Cd with the help of a 106CdWO4 crystal scintillator. Phys. Rev. C 2012, 85, 044610. [Google Scholar] [CrossRef] [Green Version]
- De Frenne, D.; Negret, A. Nuclear data sheets for A = 106. Nucl. Data Sheets 2008, 109, 943–1102. [Google Scholar] [CrossRef]
- Belli, P.; Bernabei, R.; Boiko, R.S.; Brudanin, V.B.; Bukilic, V.B.; Cerulli, R.; Chernyak, D.M.; Danevich, F.A.; d’Angelo, S.; Degoda, V.Y.; et al. Development of enriched 106CdWO4 crystal scintillators to search for double b decay processes in 106Cd. Nucl. Instrum. Meth. A 2010, 615, 301–306. [Google Scholar] [CrossRef]
- Bernabey, R.; Virich, V.D.; Grinev, B.V.; Danevich, F.A.; Kovtun, G.P.; Mokina, V.M.; Nagornaya, L.L.; Nagornii, S.S.; Nisi, S.; Solopikhin, D.A.; et al. Production of high-pure Cd and 106Cd for CdWO4 and 106CdWO4 scintillators. Metallofiz. I Noveishie Tekhnologii 2008, 30, 477. [Google Scholar] [CrossRef]
- Kovtun, G.P.; Scherban, A.P.; Gorbenko, Y.V.; Solopikhin, D.A.; Virich, V.D. Production of radiopure natural and isotopically enriched cadmium and zinc for low background scintillators. Funct. Mater. 2011, 18, 121–127. [Google Scholar] [CrossRef]
- Galashov, E.N.; Gusev, V.A.; Shlegel, V.N.; Vasiliev, Y.V. The growth of ZnWO4 and CdWO4 single crystals from melt by the low thermal gradient Czochralski technique. Crystallogr. Rep. 2009, 54, 689–691. [Google Scholar] [CrossRef]
- Belli, P.; Bernabei, R.; Brudanin, V.B.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D.M.; Danevich, F.A.; d’Angelo, S.; Di Marco, A.; et al. Search for double-b decay in 106Cd with an enriched 106CdWO4 crystal scintillator in coincidence with four HPGe detectors. Phys. Rev. C 2016, 93, 045502. [Google Scholar] [CrossRef] [Green Version]
- Boiko, R.S.; Virich, V.D.; Danevich, F.A.; Dovbush, T.I.; Kovtun, G.P.; Nagornyi, S.S.; Nisi, S.; Samchuk, A.I.; Solopikhin, D.A.; Shcherban, A.P. Ultrapurification of archaeological lead. Inorg. Mater. 2011, 47, 645. [Google Scholar] [CrossRef]
- Danevich, F.A.; Kim, S.K.; Kim, H.J.; Kim, Y.D.; Kobychev, V.V.; Kostezh, A.B.; Kropivyansky, B.N.; Laubenstein, M.; Mokina, V.M.; Nagorny, S.S. Ancient Greek lead findings in Ukraine. Nucl. Instr. Methods A 2009, 603, 328–332. [Google Scholar] [CrossRef]
- Laubenstein, M.; Plastino, W.; Aprili, P.; Balata, M.; Bella, F.; Gallese, B.; Ioannucci, L.; Nisi, S. Radioactivity measurements for the ERMES project at the STELLA facility. EPJ Web. Conf. 2012, 24, 02002. [Google Scholar] [CrossRef] [Green Version]
- Danevich, F.A.; Georgadze, A.S.; Kobychev, V.V.; Kropivyansky, B.N.; Nagorny, S.S.; Nikolaiko, A.S.; Poda, D.V.; Tretyak, V.I.; Vyshnevski, I.M.; Yurchenko, S.S.; et al. Application of PbWO4 crystal scintillators in experiment to search for decay of 116Cd. Nucl. Instrum. Meth. A 2006, 556, 259–265. [Google Scholar] [CrossRef] [Green Version]
- Belli, P.; Bernabei, R.; Brudanin, V.B.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kasperovych, D.; Klavdienko, V.R.; et al. Search for double beta decay of 106Cd with an enriched 106CdWO4 crystal scintillator in coincidence with CdWO4 scintillation counters. Universe 2020, 6, 182. [Google Scholar] [CrossRef]
- Nelson, W.R.; Hirayama, H.; Rogers, D.W.O. The EGS4 Code System; SLAC Report No.SLAC-265; Stanford Linear Accelerator Center: Stanford, CA, USA, 1985. [Google Scholar]
- Ponkratenko, O.A.; Tretyak, V.I.; Zdesenko, Y.G.; Tretyak, V.I. The event generator DECAY4 for simulation of double beta processes and decay of radioactive nuclei. Phys. At. Nucl. 2000, 63, 1282–1287. [Google Scholar] [CrossRef] [Green Version]
- Domin, P.; Kovalenko, S.; Šimkovic, F.; Semenov, S.V. Neutrino accompanied β±β±, β+/EC and EC/EC processes within single state dominance hypothesis. Nucl. Phys. A 2005, 753, 337–363. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A.S.; Umatov, V.I.; Gurriarán, R.; Hubert, F.; Hubert, P.; Aunola, M.; Suhonen, J. Theoretical and experimental investigation of the double beta processes in 106Cd. Nucl. Phys. A 1996, 604, 115–128. [Google Scholar] [CrossRef]
- Shukla, A.; Raina, P.K.; Chandra, R.; Rath, P.K.; Hirsch, J.G. Two-neutrino positron double-beta decay of 106Cd for the 0+ → 0+ transition. Eur. Phys. J. A 2005, 23, 235. [Google Scholar] [CrossRef]
- Suhonen, J. Neutrinoless double beta decays of 106Cd revisited. Phys. Lett. B 2011, 701, 490–495. [Google Scholar] [CrossRef] [Green Version]
- Blachot, J. Nuclear Data Sheets for A = 116. Nucl. Data Sheets 2010, 111, 717–895. [Google Scholar] [CrossRef]
- Danevich, F.A.; Zdesenko, Y.G.; Nikolaiko, A.S.; Tretyak, V.I. Search for 2β decay of 116Cd with the help of a 116CdWO4 scintillator. JETP Lett. 1989, 49, 476. [Google Scholar]
- Danevich, F.A.; Georgadze, A.S.; Kobychev, V.V.; Kropivyansky, B.N.; Nikolaiko, A.S.; Ponkratenko, O.A.; Tretyak, V.I.; Zdesenko, S.Y.; Zdesenko, Y.G.; Bizzeti, P.G.; et al. Search for 2β decay of cadmium and tungsten isotopes: Final results of the Solotvina experiment. Phys. Rev. C 2003, 68, 035501. [Google Scholar] [CrossRef]
- Danevich, F.A.; Georgadze, A.S.; Kobychev, V.V.; Kropivyansky, B.N.; Nikolaiko, A.S.; Ponkratenko, O.A.; Tretyak, V.I.; Zdesenko, S.Y.; Zdesenko, Y.G.; Bizzeti, P.G.; et al. New results of 116Cd double β decay study with 116CdWO4 scintillators. Phys. Rev. C 2000, 62, 045501. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A.S.; Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Caracciolo, V.; Chernyak, D.M.; Cerulli, R.; Danevich, F.A.; Di Vacri, M.L.; et al. Low background detector with enriched 116CdWO4 crystal scintillators to search for double β decay of 116Cd. J. Instrum. 2011, 6, P08011. [Google Scholar] [CrossRef] [Green Version]
- Poda, D.V.; Barabash, A.; Belli, P.; Bernabei, R.; Boiko, R.S.; Brudanin, V.B.; Cappella, F.; Caracciolo, V.; Castellano, S.; Cerulli, R.; et al. CdWO4 crystal scintillators from enriched isotopes for double beta decay experiments. Radiat. Meas. 2013, 56, 66–69. [Google Scholar] [CrossRef] [Green Version]
- Danevich, F.A.; Barabash, A.; Belli, P.; Bernabei, R.; Boiko, R.S.; Brudanin, V.B.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D.M.; et al. Development of radiopure cadmium tungstate crystal scintillators from enriched 106Cd and 116Cd to search for double beta decay. AIP Conf. Proc. 2013, 1549, 201. [Google Scholar] [CrossRef]
- Poda, D.V.; Barabash, A.; Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Castellano, S.; Cerulli, R.; Chernyak, D.M.; Danevich, F.A.; et al. Search for 2β decay of 116Cd with the help of enriched 116CdWO4 crystal scintillators. EPJ Web. Conf. 2014, 65, 01005. [Google Scholar] [CrossRef]
- Barabash, A.S. Double beta decay to the excited states: Review. AIP Conf. Proc. 2017, 1894, 020002. [Google Scholar] [CrossRef] [Green Version]
- Pirinen, P.; Suhonen, J. Systematic approach to β and 2νββ decays of mass A=100–136 nuclei. Phys. Rev. C 2015, 91, 054309. [Google Scholar] [CrossRef] [Green Version]
- Piepke, A.; Beck, M.; Bockholt, J.; Glatting, D.; Heusser, G.; Klapdor-Kleingrothaus, H.V.; Maier, B.; Petry, F.; Schmidt-Rohr, U.; Strecker, H.; et al. Investigation of the ββ decay of 116Cd into excited states of 116Sn. Nucl. Phys. A 1994, 577, 493–510. [Google Scholar] [CrossRef]
- Arnold, R.; Augier, C.; Baker, J.D.; Barabash, A.S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Boursette, D.; Brudanin, V.; et al. Measurement of the 2νββ decay half-life and search for the 0νββ decay of 116Cd with the NEMO-3 detector. Phys. Rev. D 2017, 95, 012007. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A.S.; Danevich, F.A.; Gimbal-Zofka, Y.; Giuliani, A.; Mancuso, M.; Konovalov, S.I.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; et al. First test of an enriched 116CdWO4 scintillating bolometer for neutrinoless double-beta-decay searches. Eur. Phys. J. C 2016, 76, 487. [Google Scholar] [CrossRef] [Green Version]
Chain | Nuclide | Activity, mBq/kg | |
---|---|---|---|
Before Recrystallization | After Recrystallization | ||
232Th | 232Th | 0.13 (7) | 0.03 (2) |
228Th | 0.10 (1) | 0.010 (3) | |
238U | 238U | 1.8 (2) | 0.8 (2) |
226Ra | ≤0.1 | ≤0.015 | |
234U + 230Th | 0.6 (2) | 0.4 (1) | |
210Po | 1.6 (2) | 0.4 (1) | |
Total α | 4.44 (4) | 1.62 (4) |
Decay Channel, Level of 116Sn (keV) | |
---|---|
2ν2β, g.s. | |
2ν2β, 2+(1294) | ≥2.3 × 1021 [97] |
2ν2β, 0+(1757) | ≥5.9 × 1021 [97] |
2ν2β, 0+(2027) | ≥2.0 × 1021 [97] |
2ν2β, 2+(2112) | ≥2.5 × 1021 |
2ν2β, 2+(2225) | ≥7.5 × 1021 |
0ν2β, g.s. | ≥2.2 × 1023 |
0ν2β, 2+(1294) | ≥7.1 × 1022 |
0ν2β, 0+(1757) | ≥4.5 × 1022 |
0ν2β, 0+(2027) | ≥3.1 × 1022 |
0ν2β, 2+(2112) | ≥3.7 × 1022 |
0ν2β, 2+(2225) | ≥3.4 × 1022 |
0νχ0 n = 1, g.s. | ≥8.5 × 1021 [98] |
0νχ0 n = 2, g.s. | ≥4.1 × 1021 |
0νχ0 n = 3, g.s. | ≥2.6 × 1021 |
0νχ0χ0 n = 3, g.s. | ≥2.6 × 1021 |
2νχ0LV n = 1, g.s. | ≥1.2 × 1021 |
0νχ0χ0 n = 7, g.s. | ≥8.9 × 1020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polischuk, O.G. Enriched Crystal Scintillators for 2β Experiments. Physics 2021, 3, 103-118. https://doi.org/10.3390/physics3010009
Polischuk OG. Enriched Crystal Scintillators for 2β Experiments. Physics. 2021; 3(1):103-118. https://doi.org/10.3390/physics3010009
Chicago/Turabian StylePolischuk, Oksana G. 2021. "Enriched Crystal Scintillators for 2β Experiments" Physics 3, no. 1: 103-118. https://doi.org/10.3390/physics3010009
APA StylePolischuk, O. G. (2021). Enriched Crystal Scintillators for 2β Experiments. Physics, 3(1), 103-118. https://doi.org/10.3390/physics3010009