Scintillation in Low-Temperature Particle Detectors
Abstract
:1. Scintillating Bolometers for Rare-Event Search Experiments . . . . . . . . . . . . . . . | 475 |
1.1. Bolometers as Viable Detectors of Rare-Event Processes . . . . . . . . . . . . . . . . . | 475 |
1.2. Particle Identification with Low-Temperature Detectors . . . . . . . . . . . . . . . . . | 476 |
1.3. Importance of Scintillation Detection for Bolometric Rare-Event Searches . . | 478 |
1.3.1. Rare Alpha Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 478 |
1.3.2. Rare Beta Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 478 |
1.3.3. Double-Beta Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 479 |
1.3.4. Dark Matter (WIMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 480 |
1.3.5. Solar Axions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 481 |
1.3.6. Solar and Supernova Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 481 |
1.3.7. Coherent Elastic Neutrino-Nucleus Scattering . . . . . . . . . . . . . . . . . . . . . . | 482 |
1.3.8. Neutron Detection in Rare-Event Searches . . . . . . . . . . . . . . . . . . . . . . . . . | 482 |
2. Key Ingredients and Performance of Scintillating Bolometers . . . . . . . . . . . . . | 483 |
2.1. Cryogenic Scintillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 483 |
2.2. Reflector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 484 |
2.3. Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 484 |
2.4. Photodetector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 485 |
2.5. Demands on Particle Identification Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . | 487 |
3. Research and Development on Scintillating Bolometers . . . . . . . . . . . . . . . . . . | 490 |
3.1. Tungstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 491 |
3.1.1. Calcium Tungstate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 491 |
3.1.2. Cadmium Tungstate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 493 |
3.1.3. Lithium Tungstate with Mo Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 495 |
3.1.4. Sodium Tungstate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 495 |
3.1.5. Lead Tungstate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 495 |
3.1.6. Zinc Tungstate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 496 |
3.2. Molybdates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 497 |
3.2.1. Calcium Molybdate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 497 |
3.2.2. Cadmium Molybdate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 498 |
3.2.3. Lithium Molybdate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 498 |
3.2.4. Lithium Magnesium Molybdate Content . . . . . . . . . . . . . . . . . . . . . . . . . . | 501 |
3.2.5. Lithium Zinc Molybdate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 501 |
3.2.6. Magnesium Molybdate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 501 |
3.2.7. Sodium Molybdate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 501 |
3.2.8. Lead Molybdate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 502 |
3.2.9. Strontium Molybdate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 502 |
3.2.10. Zinc Molybdate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 502 |
3.3. Borates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 503 |
3.3.1. Lithium Europium Borate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 503 |
3.3.2. Lithium Gadolinium Borate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 504 |
3.4. Other Oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 504 |
3.4.1. Aluminium Oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 504 |
3.4.2. Bismuth Germanate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 505 |
3.4.3. Lithium Aluminate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 506 |
3.4.4. Tellurium Dioxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 506 |
3.4.5. Yttrium Orthovanadate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 507 |
3.4.6. Zirconium Dioxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 507 |
3.5. Selenides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 508 |
3.5.1. Lithium Indium Diselenide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 508 |
3.5.2. Zinc Selenide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 508 |
3.6. Alkali Metal Fluorides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 510 |
3.6.1. Calcium Fluoride . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 510 |
3.6.2. Lithium Fluoride . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 510 |
3.6.3. Strontium Fluoride . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 511 |
3.7. Alkali Metal Iodides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 511 |
3.7.1. Cesium Iodide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 511 |
3.7.2. Sodium Iodide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 512 |
4. Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 512 |
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 514 |
1. Scintillating Bolometers for Rare-Event Search Experiments
1.1. Bolometers as Viable Detectors of Rare-Event Processes
1.2. Particle Identification with Low-Temperature Detectors
1.3. Importance of Scintillation Detection for Bolometric Rare-Event Searches
1.3.1. Rare Alpha Decay
1.3.2. Rare Beta Decay
1.3.3. Double-Beta Decay
- it provides a valuable nuclear spectroscopy information, such as decay scheme, half-life, summed and/or single electron energy spectra, angular electron correlations (see, e.g., recent topical reviews [33,37,145,160,161] and high precision DBD measurements [154,162,163,164,165,166,167,168,169,170,171,172,173,174,175]);
- it can also be used to test different hypothetical processes, such as Lorentz-violated DBD (Lorentz and (charge-parity-time) symmetry violation) [168,172,190,191,192,193,194,195], DBD with majoron(s) emission (global symmetry violation) [153,168,172,196,197], admixture of right-handed currents in the weak interactions [198], bosonic neutrinos (Pauli exclusion principle violation) [172,199], sterile neutrinos [200,201], light exotic fermions [201], strong neutrino self-interactions [202].
1.3.4. Dark Matter (WIMP)
1.3.5. Solar Axions
1.3.6. Solar and Supernova Neutrinos
1.3.7. Coherent Elastic Neutrino-Nucleus Scattering
1.3.8. Neutron Detection in Rare-Event Searches
2. Key Ingredients and Performance of Scintillating Bolometers
2.1. Cryogenic Scintillator
2.2. Reflector
2.3. Temperature Sensor
- temperature-dependent resistivity of highly doped semiconductors (neutron-transmutation-doped, NTD);
- superconducting transition (transition-edge sensor, TES);
- temperature-dependent magnetization of paramagnetic materials (metallic magnetic calorimeter, MMC);
- kinetic inductance in superconducting materials (kinetic inductance detector, KID).
2.4. Photodetector
- The detection area of a photodetector and the crystal-side surface facing it are made comparable [24,74,272,274]. In an extreme case, an LD can cover a significant part of the cryogenic scintillator surface. For example, a beaker-shaped LD allows us to drastically improve (by a factor of 3) the detected light signal [293,294,295].
- A special LD coating is required to reduce the light reflection. The widely used coating materials are silicon dioxide and oxide, SiO and SiO (e.g., see [75,272,296,297,298,299]). For instance, the detection of ∼600 nm light signal by a Ge LD coated with a 70 nm SiO (SiO) layer is improved by approximately 30% (20%) [298]. Several other materials together with SiO have been recently investigated aiming at the optimization of the antireflective coating [300].
- The distance between scintillator and photodetector is minimized, typically to a few millimeters. A method for putting an LD in direct contact with a crystal has been proposed recently [301].
- an X-ray source facing an LD (the most popular method; for example, Fe with 5.9 and 6.5 keV doublet);
- an external high-activity source to induce X-ray fluorescence near an LD (e.g., it can be useful for the calibration of LDs in low-background experiments, where the presence of an X-ray source near an LD is prohibited);
- the energy distribution of cosmic-ray muons passing through an LD (not valid for deep underground measurements);
- photon statistics (e.g., LED injected photons).
2.5. Demands on Particle Identification Efficiency
3. Research and Development on Scintillating Bolometers
- Tungstates: CaWO, CdWO, LiWO, NaWO, PbWO, and ZnWO;
- Molybdates: CaMoO, CdMoO, LiMoO, LiMg(MoO), LiZn(MoO), MgMoO, NaMoO, PbMoO, SrMoO, and ZnMoO;
- Borates: LiEu(BO) and LiGd(BO);
- Some other oxide scintillators: AlO, BiGeO, LiAlO, TeO, YVO, and ZrO;
- Selenides: LiInSe and ZnSe;
- Alkali metal fluorides: CaF, LiF, and SrF;
- Alkali metal iodides: CsI and NaI.
3.1. Tungstates
3.1.1. Calcium Tungstate
3.1.2. Cadmium Tungstate
3.1.3. Lithium Tungstate with Mo Content
3.1.4. Sodium Tungstate
3.1.5. Lead Tungstate
3.1.6. Zinc Tungstate
3.2. Molybdates
3.2.1. Calcium Molybdate
3.2.2. Cadmium Molybdate
3.2.3. Lithium Molybdate
- The Cz-grown LiMoO crystals (developed by CLYMENE) [478,479] exhibit similar light yield to the LTG Cz produced scintillators. The amount of the detected light for a standard detector design envisaging the use of a reflective film is compatible with highly efficient particle identification in the Mo DBD ROI.
- Crystals produced by the LTG Cz growth from the purified starting materials show reproducible value of the light yield within a minor variation for the same detector structure. In particular, the largest (0.90 keV/MeV median value) for the 20 similar size LiMoO detectors of CUPID-Mo has been measured for crystals viewed by a single LD (placed at bottom) [259,498]. The use of two LDs reduces the amount of the light detected by each of them to 0.64 and 0.74 keV/MeV (median values) for the bottom and top photodetectors, respectively [259,498]. A small difference in the light signals seen by the top and bottom LDs is explained by a slightly reduced entrance window for the bottom one (required to place the crystal). The combination of two LDs allows us to double the measured scintillation light signal (median is 1.33 keV/MeV) and, subsequently, to enhance the particle identification efficiency [159,283,498,504].
- A notably smaller photodetector area than the crystal side facing it (e.g., a factor of 3 difference [74,275]) can decrease the light collection drastically. An order of tens % difference [69,283,501] can be tolerated, because an efficient particle identification capability would be still possible without the needs of a high-performing LD.
- The absence of a reflective film around a crystal inserted inside a fully closed Cu housing, decreases the light collection by almost a factor 2 [345]. A similar reduction factor is observed for bare crystals compared to ones surrounded by the reflective film in an opened detector structure [283]. This result combined with Monte Carlo simulations of the scintillation light production, propagation, and absorption show that the surface roughness does not play an important role for LiMoO crystals [283] (for instance, similar observations are reported for tungstates [276,277], while a stronger impact of the surface roughness on the light collection is expected, for example, for zinc molybdate [275] and tellurium dioxide [271,505]).
- Despite a large variation in the measured , imposed by light collection efficiency, the value remains rather similar, ∼0.2, showing a small variation. The quenching factor for +triton events (), detected in neutron calibrations of LiMoO scintillating bolometers, is about 10% larger than that of ’s of similar energy. The difference in the light yield induced by and +t interactions in a scintillator illustrates Birck’s formula (see Section 1.2): more than a half of the energy release in the Li(n,t) reaction is taken away by a lighter nucleus, triton, which induces a higher light output than of the same energy loss.
3.2.4. Lithium Magnesium Molybdate
3.2.5. Lithium Zinc Molybdate
3.2.6. Magnesium Molybdate
3.2.7. Sodium Molybdate
3.2.8. Lead Molybdate
3.2.9. Strontium Molybdate
3.2.10. Zinc Molybdate
3.3. Borates
3.3.1. Lithium Europium Borate
3.3.2. Lithium Gadolinium Borate
3.4. Other Oxides
3.4.1. Aluminium Oxide
3.4.2. Bismuth Germanate
3.4.3. Lithium Aluminate
3.4.4. Tellurium Dioxide
3.4.5. Yttrium Orthovanadate
3.4.6. Zirconium Dioxide
3.5. Selenides
3.5.1. Lithium Indium Diselenide
3.5.2. Zinc Selenide
- Light and heat signals exhibit correlation [347,565,570,573] (in contrast to other efficient scintillation materials showing anti-correlation). Taking into account that this feature (and anti-correlation as well) deteriorates the energy resolution of a bolometer, a simultaneous detection of heat and scintillation signals is thus needed to improve the energy resolution of ZnSe-based scintillating bolometers [347,565,570,573].
- A scintillation signal induced by an particle is few times higher than the one of ’s of the same energy. Therefore, the parameter is larger than 1, and amounts to ∼3–5 (see Table 8), in contrast to other scintillation materials tested with a scintillating bolometer approach.
- The reduction of scintillation light is observed for some events (similar to surface events in a CdWO scintillating bolometer, see Section 3.1.2), which are then leaking into the band of events spoiling particle identification [347,565,569,573]. Moreover, the number of events in the tail of the population depends on the crystal surface quality (optical or rough) facing the source [347].
- Scintillation light signals induced by ’s are faster than those of ’s, thus a highly efficient particle identification can be done using a pulse-shape analysis of signals acquired by a bolometric LD [312,347,565,568,569,571,573,574]. The particle-dependent difference in the pulse-shape also affects the estimate. Indeed, if one uses the pulse area (instead of the signal maximum amplitude obtained with the optimal filtering technique) as an energy estimate, the value is reduced by a factor 1.5, but still higher than 1 [347].
- A thermal treatment of ZnSe crystals (under an argon atmosphere) improves their homogeneity and reduces microcracks [575,576]. However, the pulse-shape, the signal amplitude, and the light yield of scintillating bolometers based on the annealed ZnSe crystals are found to be deteriorated [575]. It is interesting to note that the parameter is found to be less than 1 [575]. These observations suggest changes of the annealed crystal defect structure (affecting the bolometric performance of the material) and reductions of the luminescence centers or changes their nature (affecting the light yield and the kinetics of luminescence) [575]. A subsequent characterization shows that the donor-acceptor pairs consisting of Zn vacancies and Al donors, present in as-grown material with concentrations of the order of ppm and responsible for the good scintillation properties, are lost during the ZnSe thermal treatment [576]. Therefore, more studies are needed (and some are proposed in [576]) to understand the influence of the defects present in ZnSe aiming at the optimization of ZnSe-based scintillating bolometers.
3.6. Alkali Metal Fluorides
3.6.1. Calcium Fluoride
3.6.2. Lithium Fluoride
3.6.3. Strontium Fluoride
3.7. Alkali Metal Iodides
3.7.1. Cesium Iodide
3.7.2. Sodium Iodide
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DBD | neutrinoless double-beta decay |
DBD | two-neutrino double-beta decay |
BGO | BiGeO |
BS | Bridgman–Stockbarger |
CENNS | coherent elastic neutrino-nucleus scattering |
Cz | Czochralski |
DBD | double-beta decay |
DM | dark matter |
DP | discrimination power |
KID | kinetic inductance detector |
Ky | Kyropoulos |
LD | light detector |
light-to-heat | |
LNGS | Laboratori Nazionali del Gran Sasso |
LSC | Laboratorio Subterráneo de Canfranc |
LSM | Laboratoire Souterrain de Modane |
LTD | low-temperature detector |
LTG Cz | low-temperature-gradient Czochralski |
MMC | metallic magnetic calorimeter |
n/a | not available |
NTD | neutron-transmutation-doped |
NTL | Neganov-Trofimov-Luke |
QET | quasiparticle-trap-assisted electrothermal feedback transition-edge sensor |
QF | quenching factor |
R&D | research and development |
RMS | root mean square |
ROI | region-of-interest |
SM | Standard Model |
SOS | silicon-on-sapphire |
TES | transition-edge sensor |
Ve | Verneuil |
Y2L | Yangyang laboratory |
WIMP | weakly interactive massive particles |
References
- Fiorini, E.; Niinikoski, T. Low-temperature calorimeters for rare decays. Nucl. Instrum. Methods Phys. Res. A 1984, 224, 83. [Google Scholar] [CrossRef] [Green Version]
- Moseley, S.H.; Mather, J.C.; McCammon, D. Thermal detectors as x-ray spectrometers. J. Appl. Phys. 1984, 56, 1257. [Google Scholar] [CrossRef]
- Gonzalez-Mestres, L.; Perret-Gallix, D. Detection of low energy solar neutrinos and galactic dark matter with crystal scintillators. Nucl. Instrum. Methods Phys. Res. A 1989, 279, 382–387. [Google Scholar] [CrossRef]
- Alessandrello, A.; Camin, D.V.; Fiorini, E.; Giuliani, A.; Buraschi, M.; Pignatel, G. Bolometric detection of particles. Nucl. Instrum. Methods Phys. Res. A 1989, 279, 142–147. [Google Scholar] [CrossRef]
- Stodolsky, L. Neutrino and dark-matter detection at low temperature. Phys. Today 1991, 44, 24–32. [Google Scholar] [CrossRef]
- Giuliani, A.; Sanguinetti, S. Phonon-mediated particle detectors: Physics and materials. Mat. Sci. Eng. R 1993, 11, 1–52. [Google Scholar] [CrossRef]
- Young, B.A. Phonon-mediated particle detection: An overview. Nucl. Phys. B (Proc. Suppl.) 1993, 32, 127–137. [Google Scholar] [CrossRef]
- Richards, P.L. Bolometers for infrared and millimeter waves. J. Appl. Phys. 1994, 76, 1. [Google Scholar] [CrossRef] [Green Version]
- Twerenbold, D. Cryogenic particle detectors. Rep. Prog. Phys. 1996, 59, 349–426. [Google Scholar] [CrossRef]
- Booth, B.; Cabrera, N.; Fiorini, E. Low-temperature particle detectors. Annu. Rev. Nucl. Part. Sci. 1996, 46, 471–532. [Google Scholar] [CrossRef]
- Booth, N.E.; Goldie, D.J. Superconducting particle detectors. Supercond. Sci. Technol. 1996, 9, 493–516. [Google Scholar] [CrossRef]
- Kraus, H. Superconductive bolometers and calorimeters. Supercond. Sci. Technol. 1996, 9, 827–842. [Google Scholar] [CrossRef]
- Alessandrello, A.; Brofferio, C.; Camin, D.V.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Nucciotti, A.; Pavan, M.; Pessina, G.; Previtali, E.; et al. Low temperature thermal detectors in searches for rare events. Czech. J. Phys. 1998, 48, 133. [Google Scholar] [CrossRef]
- Giuliani, A. Particle and radiation detection with low-temperature devices. Physica B 2000, 280, 501–508. [Google Scholar] [CrossRef]
- Pretzl, K. Cryogenic calorimeters in astro and particle physics. Nucl. Instrum. Methods Phys. Res. A 2000, 454, 114–127. [Google Scholar] [CrossRef] [Green Version]
- McCammon, D. Physics of low-temperature microcalorimeters. Nucl. Instrum. Methods Phys. Res. A 2004, 520, 11–15. [Google Scholar] [CrossRef]
- Enss, C. (Ed.) Cryogenic Particle Detection; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Eitel, K. Direct Dark Matter search with heat-and-ionization detectors. Prog. Part. Nucl. Phys. 2006, 57, 366–374. [Google Scholar] [CrossRef]
- Enss, C.; McCammon, D. Physical principles of low temperature detectors: Ultimate performance limits and current detector capabilities. J. Low Temp. Phys. 2008, 151, 5–24. [Google Scholar] [CrossRef]
- Giuliani, A. Neutrino Physics with Low-Temperature Detectors. J. Low Temp. Phys. 2012, 167, 991–1003. [Google Scholar] [CrossRef]
- Ullom, J.N.; Bennett, D.A. Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy. Supercond. Sci. Technol. 2015, 28, 084003. [Google Scholar] [CrossRef]
- Nucciotti, A. The use of low temperature detectors for direct measurements of the mass of the electron neutrino. Adv. High Energy Phys. 2016, 2016, 9153024. [Google Scholar] [CrossRef] [Green Version]
- Pirro, S.; Mauskopf, P. Advances in bolometer technology for fundamental physics. Annu. Rev. Nucl. Part. Sci. 2017, 67, 161. [Google Scholar] [CrossRef]
- Poda, D.; Giuliani, A. Low background techniques in bolometers for double-beta decay search. Int. J. Mod. Phys. A 2017, 32, 1743012. [Google Scholar] [CrossRef]
- Bellini, F. Potentialities of the future technical improvements in the search of rare nuclear decays by bolometers. Int. J. Mod. Phys. A 2018, 33, 1843003. [Google Scholar] [CrossRef] [Green Version]
- Biassoni, M.; Cremonesi, O. Search for neutrino-less double beta decay with thermal detectors. Progr. Part. Nucl. Phys. 2020, 114, 103803. [Google Scholar] [CrossRef]
- Beretta, M.; Pagnanini, L. Development of cryogenic detectors for neutrinoless double beta decay searches with CUORE and CUPID. Appl. Sci. 2021, 11, 1606. [Google Scholar] [CrossRef]
- Kittel, C. (Ed.) Introduction to Solid State Physics [Global Edition]; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Belli, P.; Bernabei, R.; Danevich, F.A.; Incicchitti, A.; Tretyak, V.I. Experimental searches for rare alpha and beta decays. Eur. Phys. J. A 2019, 55, 140. [Google Scholar] [CrossRef] [Green Version]
- Haaranen, M.; Srivastava, P.C.; Suhonen, J. Forbidden nonunique β decays and effective values of weak coupling constants. Phys. Rev. C 2016, 93, 034308. [Google Scholar] [CrossRef] [Green Version]
- Suhonen, J.T. Value of the axial-vector coupling strength in β and ββ decays: A review. Front. Phys. 2017, 5, 55. [Google Scholar] [CrossRef]
- Kostensalo, J.; Suhonen, J. Beta-spectrum shapes of forbidden β decays. Int. J. Mod. Phys. A 2018, 33, 1843008. [Google Scholar] [CrossRef] [Green Version]
- Tretyak, V.I.; Zdesenko, Y.G. Tables of double beta decay data. At. Data Nucl. Data Tables 1995, 61, 43–90. [Google Scholar] [CrossRef] [Green Version]
- Tretyak, V.I.; Zdesenko, Y.G. Tables of double beta decay data—An update. At. Data Nucl. Data Tables 2002, 80, 83–116. [Google Scholar] [CrossRef]
- Giuliani, A.; Poves, A. Neutrinoless double-beta decay. Adv. High Energy Phys. 2012, 2012, 857016. [Google Scholar] [CrossRef]
- Dolinski, M.J.; Poon, A.W.P.; Rodejohann, W. Neutrinoless double-beta decay: Status and prospects. Annu. Rev. Nucl. Part. Sci. 2019, 69, 219–251. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A.S. Precise half-life values for two-neutrino double-β decay: 2020 Review. Universe 2020, 6, 159. [Google Scholar] [CrossRef]
- Ellis, J.; Flores, R.A. Elastic supersymmetric relic-nucleus scattering revisited. Phys. Lett. B 1991, 263, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Bednyakov, V.A.; Šimkovic, F. Nuclear spin structure in dark matter search: The finite momentum transfer Limit. Phys. Part. Nuclei 2005, 37, S106–S128. [Google Scholar] [CrossRef] [Green Version]
- Matarrese, S.; Colpi, M.; Gorini, V.; Moschella, U. (Eds.) Dark Matter and Dark Energy: A Challenge for Modern Cosmology; Springer: Cham, Switzerland, 2011. [Google Scholar]
- Roszkowski, L.; Sessolo, E.M.; Trojanowski, S. WIMP dark matter candidates and searches—Current status and future prospects. Rep. Prog. Phys. 2018, 81, 066201. [Google Scholar] [CrossRef] [Green Version]
- Moriyama, S. Proposal to search for a monochromatic component of solar axions using 57Fe. Phys. Rev. Lett. 1995, 75, 3222. [Google Scholar] [CrossRef] [Green Version]
- Krčmar, M.; Krečak, Z.; Ljubičič, A.; Stipčević, M.; Bradley, D.A. Search for solar axions using 7Li. Phys. Rev. D 2001, 64, 115016. [Google Scholar] [CrossRef] [Green Version]
- Jakovčić, K.; Krečak, Z.; Krčmar, M.; Ljubičič, A. Search for solar hadronic axions using 83Kr. Radiat. Phys. Chem. 2004, 71, 793–794. [Google Scholar] [CrossRef] [Green Version]
- Derbin, A.V.; Bakhlanov, S.B.; Egorov, A.I.; Mitropolsky, I.A.; Muratova, V.N.; Semenov, D.A.; Unzhakov, E.V. Search for solar axions generated by the Primakoff effect with resonance absorption by 169Tm. Bull. Russ. Acad. Sci. Phys. 2010, 74, 481–486. [Google Scholar] [CrossRef]
- Abdelhameed, A.H.; Bakhlanov, S.V.; Bauer, P.; Bento, A.; Bertoldo, E.; Canonica, L.; Derbin, A.V.; Drachnev, I.S.; Iachellini, N.F.; Fuchs, D.; et al. New limits on the resonant absorption of solar axions obtained with a 169Tm-containing cryogenic detector. Eur. Phys. J. C 2020, 80, 376. [Google Scholar] [CrossRef]
- Ejiri, H.; Engel, J.; Hazama, R.; Krastev, P.; Kudomi, N.; Robertson, R.G.H. Spectroscopy of double-beta and inverse-beta decays from 100Mo for neutrinos. Phys. Rev. Lett. 2000, 85, 2917. [Google Scholar] [CrossRef] [Green Version]
- Ejiri, H.; Engel, J.; Kudomi, N. Supernova-neutrino studies with 100Mo. Phys. Lett. B 2002, 530, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Zuber, K. Spectroscopy of low energy solar neutrinos using CdTe detectors. Phys. Lett. B 2003, 571, 148–154. [Google Scholar] [CrossRef]
- Ejiri, H.; Elliott, S.R. Solar neutrino interactions with the double-β decay nuclei 82Se, 100Mo, and 150Nd. Phys. Rev. C 2017, 95, 055501. [Google Scholar] [CrossRef] [Green Version]
- Billard, J.; Figueroa-Feliciano, E.; Strigari, L. Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments. Phys. Rev. D 2014, 89, 023524. [Google Scholar] [CrossRef] [Green Version]
- Gütlein, A.; Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Erb, A.; Feilitzsch, F.V.; Iachellini, N.F.; Gorla, P.; Hauff, D.; et al. Impact of coherent neutrino nucleus scattering on direct dark matter searches based on CaWO4 crystals. Astropart. Phys. 2015, 69, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Billard, J.; Johnston, J.; Kavanagh, B.J. Prospects for exploring new physics in coherent elastic neutrino-nucleus scattering. J. Cosmol. Astropart. Phys. 2018, 11, 016. [Google Scholar] [CrossRef] [Green Version]
- Akimov, D.Y.; Belov, V.A.; Bolozdynya, A.I.; Efremenko, Y.V.; Konovalov, A.M.; Kumpan, A.V.; Rudik, D.G.E.; Sosnovtsev, V.V.E.; Khromov, A.V.; Shakirov, A.V.; et al. Coherent elastic neutrino scattering on atomic nucleus: Recently discovered type of low-energy neutrino interaction. Phys. Usp. 2019, 62, 166–178. [Google Scholar] [CrossRef]
- Angloher, G.; Ardellier-Desages, F.; Bento, A.; Canonica, L.; Erhart, A.; Ferreiro, N.; Friedl, M.; Ghete, V.M.; Hauff, D.; Kluck, H.; et al. Exploring CEνNS with NUCLEUS at the Chooz Nuclear Power Plant. Eur. Phys. J. C 2019, 79, 1018. [Google Scholar] [CrossRef] [Green Version]
- Galindo-Uribarri, A.; Miranda, O.G.; Sanchez Garcia, G. A novel approach for the study of CEvNS. arXiv 2020, arXiv:hep-ph/2011.10230. [Google Scholar]
- Eijk, C.W.E. Inorganic scintillators for thermal neutron detection. Radiat. Meas. 2004, 38, 337–342. [Google Scholar] [CrossRef]
- Bell, Z.W.; Carpenter, D.A.; Cristy, S.S.; Lamberti, V.E.; Burger, A.; Woodfield, B.F.; Niedermayr, T.; Dragos Hau, I.; Labov, S.E.; Friedrich, S.; et al. Neutron detection with cryogenics and semiconductors. Phys. Status Solidi C 2005, 2, 1592–1605. [Google Scholar] [CrossRef] [Green Version]
- Martínez, M.; Coron, N.; Ginestra, C.; Gironnet, J.; Gressier, V.; Leblanc, J.; de Marcillac, P.; Redon, T.; Di Stefano, P.; Torres, L.; et al. Scintillating bolometers for fast neutron spectroscopy in rare events searches. J. Phys. Conf. Ser. 2012, 375, 012025. [Google Scholar] [CrossRef]
- Coron, N.; Cuesta, C.; García, E.; Ginestra, C.; Gironnet, J.; de Marcillac, P.; Martínez, M.; Ortigoza, Y.; de Solórzano, A.O.; Puimedón, J.; et al. Neutron spectrometry with scintillating bolometers of LiF and sapphire. IEEE Trans. Nucl. Sci. 2016, 63, 1967–1975. [Google Scholar] [CrossRef] [Green Version]
- Pietropaolo, A.; Angelone, M.; Bedogni, R.; Colonna, N.; Hurd, A.J.; Khaplanov, A.; Murtas, F.; Pillon, M.; Piscitelli, F.; Schooneveld, E.M.; et al. Neutron detection techniques from μeV to GeV. Phys. Rep. 2020, 875, 1–65. [Google Scholar] [CrossRef]
- White, G.K.; Meeson, J. Experimental Techniques in Low-Temperature Physics; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Enss, C.; Hunklinger, S. Low-Temperature Physics; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Ekin, J.W. Experimental Techniques for Low-Temperature Measurements: Cryostat Design, Material Properties and Superconductor Critical-Current Testing; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Pobell, F. Matter and Methods at Low Temperatures; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Ventura, G.; Risegari, L. The Art of Cryogenics; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Zhao, Z.; Wang, C. (Eds.) Cryogenic Engineering and Technologies: Principles and Applications of Cryogen-Free Systems; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Armengaud, E.; Arnaud, Q.; Augier, C.; Benoît, A.; Bergé, L.; Bergmann, T.; Billard, J.; De Boissière, T.; Bres, G.; Broniatowski, A.; et al. Performance of the EDELWEISS-III experiment for direct dark matter searches. J. Instrum. 2017, 12, P08010. [Google Scholar] [CrossRef]
- Armatol, A.; Armengaud, E.; Armstrong, W.; Augier, C.; Avignone, F.T., III; Azzolini, O.; Bandac, I.C.; Barabash, A.S.; Bari, G. A CUPID Li2100MoO4 scintillating bolometer tested in the CROSS underground facility. J. Instrum. 2021, 16, P02037. [Google Scholar] [CrossRef]
- Gorla, P.; Bucci, C.; Pirro, S. Complete elimination of 1K Pot vibrations in dilution refrigerators. Nucl. Instrum. Methods Phys. Res. A 2004, 520, 641–643. [Google Scholar] [CrossRef]
- Pirro, S. Further developments in mechanical decoupling of large thermal detectors. Nucl. Instrum. Methods Phys. Res. A 2006, 559, 672. [Google Scholar] [CrossRef]
- Olivieri, E.; Billard, J.; De Jesus, M.; Juillard, A.; Leder, A. Vibrations on pulse tube based dry dilution refrigerators for low noise measurements. Nucl. Instrum. Methods Phys. Res. A 2017, 858, 73. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Jo, H.S.; Kang, C.S.; Kim, G.B.; Kim, I.; Kim, S.R.; Kim, Y.H.; Lee, H.J.; So, J.H.; Yoon, Y.S. Vibration isolation system for cryogenic phonon-scintillation calorimeters. J. Instrum. 2017, 12, C02057. [Google Scholar] [CrossRef]
- Armengaud, E.; Augier, C.; Barabash, A.S.; Beeman, J.W.; Bekker, T.B.; Bellini, F.; Benoît, A.; Bergé, L.; Bergmann, T.; Billard, J.; et al. Development of 100Mo-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search. Eur. Phys. J. C 2017, 77, 785. [Google Scholar] [CrossRef]
- Azzolini, O.; Barrera, M.T.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Canonica, L.; Capelli, S.; et al. CUPID-0: The first array of enriched scintillating bolometers for 0νββ decay investigations. Eur. Phys. J. C 2018, 78, 428. [Google Scholar] [CrossRef]
- D’Addabbo, A.; Bucci, C.; Canonica, L.; Di Domizio, S.; Gorla, P.; Marini, L.; Nucciotti, A.; Nutini, I.; Rusconi, C.; Welliver, B. An active noise cancellation technique for the CUORE pulse tube cryocoolers. Cryogenics 2018, 93, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Alduino, C.; Alessandria, F.; Balata, M.; Biare, D.; Biassoni, M.; Bucci, C.; Caminata, A.; Canonica, L.; Cappelli, L.; Ceruti, G.; et al. The CUORE cryostat: An infrastructure for rare event searches at millikelvin temperatures. Cryogenics 2019, 102, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Alduino, C.; Alessandria, F.; Alfonso, K.; Andreotti, E.; Arnaboldi, C.; Avignone, F.T., III; Azzolini, O.; Balata, M.; Bandac, I.; Banks, T.I.; et al. First results from CUORE: A search for lepton number violation via 0νββ decay of 130Te. Phys. Rev. Lett. 2018, 120, 132501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, D.Q.; Alduino, C.; Alfonso, K.; Avignone, F.T., III; Azzolini, O.; Bari, G.; Bellini, F.; Benato, G.; Biassoni, M.; Branca, A.; et al. Improved limit on neutrinoless double-beta decay in 130Te with CUORE. Phys. Rev. Lett. 2020, 124, 122501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, D.Q.; Alduino, C.; Alfonso, K.; Avignone, F.T., III; Azzolini, O.; Bari, G.; Bellini, F.; Benato, G.; Beretta, M.; Biassoni, M.; et al. High sensitivity neutrinoless double-beta decay search with one tonne-year of CUORE data. arXiv 2021, arXiv:nucl-ex/2104.06906. [Google Scholar]
- Alenkov, V.; Aryal, P.; Beyer, J.; Boiko, R.S.; Boonin, K.; Buzanov, O.; Chanthima, N.; Chernyak, M.K.; Choi, J.; Choi, S.; et al. Technical design report for the AMoRE 0νββ decay search experiment. arXiv 2015, arXiv:physics.ins-det/1512.05957. [Google Scholar]
- Armstrong, W.R.; Chang, C.; Hafidi, K.; Lisovenko, M.; Novosad, V.; Pearson, J.; Polakovic, T.; Wang, G.; Yefremenko, V.; Zhang, J.; et al. CUPID pre-CDR. arXiv 2019, arXiv:physics.ins-det/1907.09376. [Google Scholar]
- Heusser, G. Low-radioactivity background techniques. Annu. Rev. Nucl. Part. Sci. 1995, 45, 543–590. [Google Scholar] [CrossRef]
- Bucci, C.; Capelli, S.; Carrettoni, M.; Clemenza, M.; Cremonesi, O.; Gironi, L.; Gorla, P.; Maiano, C.; Nucciotti, A.; Pattavina, L.; et al. Background study and Monte Carlo simulations for large-mass bolometers. Eur. Phys. J. A 2009, 41, 155–168. [Google Scholar] [CrossRef]
- Pattavina, L. Radon-Induced Surface Contaminations in Neutrinoless Double Beta Decay and Dark Matter Experiments. Ph.D. Thesis, Institut de Physique Nucléaire de Lyon, Lyon, France, 2011. [Google Scholar]
- Pattavina, L. Radon induced surface contaminations in low background experiments. AIP Conf. Proc. 2013, 1549, 82–85. [Google Scholar]
- Artusa, D.R.; Avignone, F.T.; Azzolini, O.; Balata, M.; Banks, T.I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; et al. Exploring the neutrinoless double beta decay in the inverted neutrino hierarchy with bolometric detectors. Eur. Phys. J. C 2014, 74, 3096. [Google Scholar] [CrossRef] [Green Version]
- Ejiri, H.; Elliott, S.R. Charged current neutrino cross section for solar neutrinos, and background to ββ(0ν) experiments. Phys. Rev. C 2014, 89, 055501. [Google Scholar] [CrossRef] [Green Version]
- Bernabei, R.; Belli, P.; Dai, C.J. Adopted low background techniques and analysis of radioactive trace impurities. Int. J. Mod. Phys. A 2016, 31, 1642003. [Google Scholar] [CrossRef]
- Abgrall, N.; Arnquist, I.J.; Avignone, F.T., III; Back, H.O.; Barabash, A.S.; Bertrand, F.E.; Boswell, M.; Bradley, A.W.; Brudanin, V.; Busch, M.; et al. The MAJORANA DEMONSTRATOR radioassay program. Nucl. Instrum. Methods Phys. Res. A 2016, 828, 22–36. [Google Scholar] [CrossRef] [Green Version]
- Best, A.; Görres, J.; Junker, M.; Kratz, K.L.; Laubenstein, M.; Long, A.; Nisi, S.; Smith, K.; Wiescher, M. Low energy neutron background in deep underground laboratories. Nucl. Instrum. Methods Phys. Res. A 2016, 812, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Mei, D.; Kudryavtsev, V.A.; Fiorucci, S. Cosmogenic activation of materials used in rare event search experiments. Astropart. Phys. 2016, 84, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Cebrián, S. Cosmogenic activation of materials. Int. J. Mod. Phys. A 2017, 32, 1743006. [Google Scholar] [CrossRef] [Green Version]
- Westerdale, S.; Meyers, P.D. Radiogenic neutron yield calculations for low-background experiments. Nucl. Instrum. Methods Phys. Res. A 2017, 875, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Danevich, F.A. Radiopure tungstate and molybdate crystal scintillators for double beta decay experiments. Int. J. Mod. Phys. A 2017, 32, 1743008. [Google Scholar] [CrossRef] [Green Version]
- Danevich, F.A.; Tretyak, V.I. Radioactive contamination of scintillators. Int. J. Mod. Phys. A 2018, 33, 1843007. [Google Scholar] [CrossRef] [Green Version]
- Amare, J.; Castel, J.; Cebrián, S.; Coarasa, I.; Cuesta, C.; Dafni, T.; Galán, J.; García, E.; Garza, J.G.; Iguaz, F.J.; et al. Cosmogenic production of tritium in dark matter detectors. Astropart. Phys. 2018, 97, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Cebrián, S. Cosmogenic activation in double beta decay experiments. Universe 2020, 6, 162. [Google Scholar] [CrossRef]
- Laubenstein, M.; Lawson, I. Low background radiation detection techniques and mitigation of radioactive backgrounds. Front. Phys. 2020, 8, 577734. [Google Scholar] [CrossRef]
- Gironi, L. Scintillating bolometers for double beta decay search. Nucl. Instrum. Methods Phys. Res. A 2010, 617, 478–481. [Google Scholar] [CrossRef] [Green Version]
- Arnaboldi, C.; Brofferio, C.; Cremonesi, O.; Gironi, L.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E. A novel technique of particle identification with bolometric detectors. Astropart. Phys. 2011, 34, 797–804. [Google Scholar] [CrossRef] [Green Version]
- Gironi, L. Development of Cryogenic Detectors for Rare Event Searches. Ph.D. Thesis, Università degli Studi di Milano, Milan, Italy, 2011. [Google Scholar]
- Spooner, N.J.C.; Bewick, A.; Homer, G.J.; Smith, P.F.; Lewin, J.D. Demonstration of nuclear recoil discrimination for low temperature dark matter detectors, by measurement of simultaneous ionization and thermal pulses in silicon. Phys. Lett. B 1991, 273, 333–337. [Google Scholar] [CrossRef]
- Shutt, T.; Ellman, B.; Barnes, P.D., Jr.; Cummings, A.; Da Silva, A.; Emes, J.; Giraud-Héraud, Y.; Haller, E.E.; Lange, A.E.; Ross, R.R.; et al. Measurement of ionization and phonon production by nuclear recoils in a 60 g crystal of germanium at 25 mK. Phys. Rev. Lett. 1992, 69, 3425. [Google Scholar] [CrossRef]
- Brink, P.L.; Cabrera, B.; Castle, J.P.; Cooley, J.; Novak, L.; Ogburn, R.W.; Pyle, M.; Ruderman, J.; Tomada, A.; Young, B.A.; et al. First test runs of a dark-matter detector with interleaved ionization electrodes and phonon sensors for surface-event rejection. Nucl. Instrum. Methods Phys. Res. A 2006, 559, 414–416. [Google Scholar] [CrossRef]
- Broniatowski, A.; Defay, X.; Armengaud, E.; Bergé, L.; Benoit, A.; Besida, O.; Blümer, J.; Chantelauze, A.; Chapellier, M.; Chardin, G.; et al. A new high-background-rejection dark matter Ge cryogenic detector. Phys. Lett. B 2009, 681, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Agnese, R.; Anderson, A.J.; Balakishiyeva, D.; Basu Thakur, R.; Bauer, D.A.; Borgland, A.; Brandt, D.; Brink, P.L.; Bunker, R.; Cabrera, B.; et al. Demonstration of surface electron rejection with interleaved germanium detectors for dark matter searches. Appl. Phys. Lett. 2013, 103, 164105. [Google Scholar] [CrossRef]
- Agnese, R.; Anderson, A.J.; Aramaki, T.; Arnquist, I.; Baker, W.; Barker, D.; Thakur, R.B.; Bauer, D.A.; Borgland, A.; Bowles, M.A.; et al. Projected sensitivity of the SuperCDMS SNOLAB experiment. Phys. Rev. D 2017, 95, 082002. [Google Scholar] [CrossRef] [Green Version]
- Arnaud, Q.; Armengaud, E.; Augier, C.; Benoît, A.; Bergé, L.; Billard, J.; Broniatowski, A.; Camus, P.; Cazes, A.; Chapellier, M.; et al. Optimizing EDELWEISS detectors for low-mass WIMP searches. Phys. Rev. D 2018, 97, 022003. [Google Scholar] [CrossRef] [Green Version]
- Hellmig, J.; Gaitskell, R.J.; Abusaidi, R.; Cabrera, B.; Clarke, R.M.; Emes, J.; Nam, S.W.; Saab, T.; Sadoulet, B.; Seitz, D.; et al. The CDMS II Z-sensitive ionization and phonon germanium detector. Nucl. Instrum. Methods Phys. Res. A 2000, 444, 308–311. [Google Scholar] [CrossRef] [Green Version]
- Juillard, A.; Marnieros, S.; Dolgorouky, Y.; Bergé, L.; Collin, S.; Fiorucci, S.; Lalu, F.; Dumoulin, L. Development of Ge/NbSi detectors for EDELWEISS-II with identification of near-surface events. Nucl. Instrum. Methods Phys. Res. A 2006, 559, 393–395. [Google Scholar] [CrossRef]
- Nones, C.; Bergé, L.; Collin, S.; Dumoulin, L.; Juillard, A.; Marnieros, S.; Olivieri, E. New TeO2/NbSi detectors for rare event search. J. Low Temp. Phys. 2008, 151, 871–876. [Google Scholar] [CrossRef]
- Olivieri, E.; Bergé, L.; Chapellier, M.; Collin, S.; Dolgorouky, Y.; Dumoulin, L.; Juillard, A.; Marnieros, S.; Nones, C. Modelling of the surface-event identification mechanism in Ge detectors equipped with NbSi thin films. J. Low Temp. Phys. 2008, 151, 884–890. [Google Scholar] [CrossRef]
- Marnieros, S.; Bergé, L.; Broniatowski, A.; Chapellier, M.; Collin, S.; Crauste, O.; Defay, X.; Dolgorouky, Y.; Dumoulin, L.; Juillard, A.; et al. Surface event rejection of the EDELWEISS cryogenic Germanium detectors based on NbSi thin film sensors. J. Low Temp. Phys. 2008, 151, 835–840. [Google Scholar] [CrossRef] [Green Version]
- Nones, C. Identification of surface events in massive bolometers for the search of rare events. Nuovo Cimento B 2010, 125, 417–437. [Google Scholar]
- Schnagl, J.; Angloher, G.; Feilitzsch, F.V.; Huber, M.; Jochum, J.; Lanfranchi, J.; Sarsa, M.L.; Wänninger, S. First tests on phonon threshold spectroscopy. Nucl. Instrum. Methods Phys. Res. A 2000, 444, 245–248. [Google Scholar] [CrossRef]
- Nones, C.; Bergé, L.; Dumoulin, L.; Marnieros, S.; Olivieri, E. Superconducting aluminum layers as pulse shape modifiers: An innovative solution to fight against surface background in neutrinoless double beta decay experiments. J. Low Temp. Phys. 2012, 167, 1029–1034. [Google Scholar] [CrossRef]
- Bandac, I.C.; Barabash, A.S.; Bergé, L.; Brière, M.; Bourgeois, C.; Carniti, P.; Chapellier, M.; de Combarieu, M.; Dafinei, I.; Danevich, F.A.; et al. The 0ν2β-decay CROSS experiment: Preliminary results and prospects. J. High Energy Phys. 2020, 1, 018. [Google Scholar] [CrossRef] [Green Version]
- Khalife, H.; Bergé, L.; Chapellier, M.; Dumoulin, L.; Giuliani, A.; Loaiza, P.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.A.; Nones, C.; et al. The CROSS experiment: Rejecting surface events by PSD induced by superconducting films. J. Low Temp. Phys. 2020, 199, 19. [Google Scholar] [CrossRef] [Green Version]
- Bandac, I.C.; Barabash, A.S.; Bergé, L.; Bourgeois, C.; Calvo-Mozota, J.M.; Carniti, P.; Chapellier, M.; de Combarieu, M.; Dafinei, I.; Danevich, F.A.; et al. Phonon-mediated crystal detectors with metallic film coating capable of rejecting α and β events induced by surface radioactivity. Appl. Phys. Lett. 2021, 118, 184105. [Google Scholar] [CrossRef]
- Sangiorgio, S.; Barucci, M.; Foggetta, L.; Giuliani, A.; Jug, G.; Nones, C.; Pasca, E.; Pedretti, M.; Pessina, G.; Risegari, L.; et al. Innovations in low-temperature calorimeters: Surface sensitive bolometers for background rejection and capacitive bolometers for higher energy resolution. Proc. SPIE 2004, 5540, 165–176. [Google Scholar]
- Foggetta, L.; Giuliani, A.; Nones, C.; Pedretti, M.; Sangiorgio, S. Surface-sensitive macrobolometers for the identification of external charged particles. Appl. Phys. Lett. 2005, 86, 134106. [Google Scholar] [CrossRef] [Green Version]
- Nones, C.; Foggetta, L.; Giuliani, A.; Pedretti, M.; Salvioni, C.; Sangiorgio, S. A new method for background rejection with surface sensitive bolometers. Nucl. Instrum. Methods Phys. Res. A 2006, 559, 355–357. [Google Scholar] [CrossRef]
- Pedretti, M.; Cremonesi, O.; Foggetta, L.; Giachero, A.; Giuliani, A.; Gorla, P.; Nones, C.; Pavan, M.; Salvioni, C.; Sangiorgio, S. A new technique for the identification of surface background: The surface sensitive bolometers. J. Low Temp. Phys. 2008, 151, 841–847. [Google Scholar] [CrossRef]
- Foggetta, L.; Giuliani, A.; Nones, C.; Pedretti, M.; Sangiorgio, S. Surface-sensitive macrobolometers for the identification of external charged particles. Astropart. Phys. 2011, 34, 809–821. [Google Scholar] [CrossRef] [Green Version]
- Birks, J.B. Scintillations from organic Ccrystals: Specific fluorescence and relative response to different radiations. Proc. Phys. Soc. A 1951, 64, 874–877. [Google Scholar] [CrossRef]
- Birks, J.B. The Theory and Practice of Scintillation Counting; Pergamon Press: Oxford, UK, 1964. [Google Scholar]
- Tretyak, V.I. Semi-empirical calculation of quenching factors for ions in scintillators. Astropart. Phys. 2010, 33, 40. [Google Scholar] [CrossRef] [Green Version]
- Geiger, H.; Nuttall, J.M. LVII. The ranges of the α particles from various radioactive substances and a relation between range and period of transformation. Ph. Mag. 1911, 22, 613–621. [Google Scholar] [CrossRef] [Green Version]
- Qi, C.; Liotta, R.J.; Wyss, R. Generalization of the Geiger-Nuttall law and alpha clustering in heavy nuclei. J. Phys. Conf. Ser. 2012, 381, 012131. [Google Scholar] [CrossRef] [Green Version]
- Qi, C.; Andreyev, A.N.; Huyse, M.; Liotta, R.J.; Van Duppen, P.; Wyss, R. On the Validity of the Geiger-Nuttall alpha-decay law and its microscopic basis. Phys. Lett. B 2014, 734, 203–206. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Audi, G.; Kondev, F.G.; Huang, W.J.; Naimi, S.; Xu, X. The AME2016 atomic mass evaluation * (II). Tables, graphs and references. Chin. Phys. C 2017, 41, 030003. [Google Scholar] [CrossRef]
- De Marcillac, P.; Coron, N.; Dambier, G.; Leblanc, J.; Moalic, J.P. Experimental detection of α-particles from the radioactive decay of natural bismuth. Nature 2003, 422, 876–878. [Google Scholar] [CrossRef] [PubMed]
- Beeman, J.W.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; Carrettoni, M.; Clemenza, M.; Cremonesi, O.; Ferri, E.; et al. First measurement of the partial widths of 209Bi decay to the ground and to the first excited states. Phys. Rev. Lett. 2012, 108, 062501. [Google Scholar]
- Gove, N.B.; Martin, M.J. Log-f tables for beta decay. At. Data Nucl. Data Tables 1971, 10, 205–219. [Google Scholar] [CrossRef]
- Singh, B.; Rodriguez, J.L.; Wong, S.S.M.; Tuli, J.K. Review of logft values in β decay. Nucl. Data Sheets 1998, 84, 487–563. [Google Scholar] [CrossRef]
- Haaranen, M.; Kotila, J.; Suhonen, J. Spectrum-shape method and the next-to-leading-order terms of the β-decay shape factor. Phys. Rev. C 2017, 95, 024327. [Google Scholar] [CrossRef]
- Suhonen, J.; Kostensalo, J. Double β decay and the axial strength. Front. Phys. 2019, 7, 29. [Google Scholar] [CrossRef]
- Gysbers, P.; Hagen, G.; Holt, J.D.; Jansen, G.R.; Morris, T.D.; Navrátil, P.; Papenbrock, T.; Quaglioni, S.; Schwenk, A.; Stroberg, S.R.; et al. Discrepancy between experimental and theoretical β-decay rates resolved from first principles. Nat. Phys. 2019, 15, 428–431. [Google Scholar] [CrossRef]
- Märkisch, B.; Mest, H.; Saul, H.; Wang, X.; Abele, H.; Dubbers, D.; Klopf, M.; Petoukhov, A.; Roick, C.; Soldner, T.; et al. Measurement of the weak axial-vector coupling constant in the decay of free neutrons using a pulsed cold neutron beam. Phys. Rev. Lett. 2019, 122, 242501. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, M.; Muto, K.; Oda, T.; Klapdor-Kleingrothaus, H.V. Nuclear structure calculation of β+β+, β+/EC and EC/EC decay matrix elements. Z. Phys. A 1994, 347, 151–160. [Google Scholar] [CrossRef]
- Suhonen, J.; Civitarese, O. Weak-interaction and nuclear-structure aspects of nuclear double beta decay. Phys. Rep. 1998, 300, 123–214. [Google Scholar] [CrossRef]
- Vergados, J.D. The neutrinoless double beta decay from a modern perspective. Rep. Prog. Phys. 2002, 361, 1–56. [Google Scholar] [CrossRef] [Green Version]
- Kotila, J.; Iachello, F. Phase space factors for β+β+ decay and competing modes of double-β decay. Phys. Rev. C 2013, 87, 024313. [Google Scholar] [CrossRef] [Green Version]
- Saakyan, R. Two-neutrino double-beta decay. Annu. Rev. Nucl. Part. Sci. 2013, 63, 503–529. [Google Scholar] [CrossRef]
- Maalampi, J.; Suhonen, J. Neutrinoless double β+/EC decays. Adv. High Energy Phys. 2013, 2013, 505874. [Google Scholar] [CrossRef]
- Kotila, J.; Barea, J.; Iachello, F. Neutrinoless double-electron capture. Rev. Mod. Phys. 2020, 92, 045007. [Google Scholar] [CrossRef] [Green Version]
- Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; di Vacri, M.L.; Incicchitti, A.; Kropivyansky, B.N.; et al. First search for 2ε and εβ+ processes in 168Yb. Nucl. Phys. A 2019, 990, 64–78. [Google Scholar] [CrossRef] [Green Version]
- Vergados, J.D.; Ejiri, H.; Šimkovic, F. Theory of neutrinoless double-beta decay. Rep. Prog. Phys. 2012, 75, 106301. [Google Scholar] [CrossRef] [Green Version]
- Päs, H.; Rodejohann, W. Neutrinoless double-beta decay. New J. Phys. 2015, 17, 115010. [Google Scholar] [CrossRef] [Green Version]
- Vergados, J.D.; Ejiri, H.; Šimkovic, F. Neutrinoless double beta decay and neutrino mass. Int. J. Mod. Phys. E 2016, 25, 1630007. [Google Scholar] [CrossRef] [Green Version]
- Vissani, F. Signal of neutrinoless double beta decay, neutrino spectrum and oscillation scenarios. J. High Energy Phys. 1999, 6, 022. [Google Scholar] [CrossRef]
- Arnold, R.; Augier, C.; Baker, J.D.; Barabash, A.S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Brudanin, V.; Busto, J.; et al. Results of the search for neutrinoless double-β decay in 100Mo with the NEMO-3 experiment. Phys. Rev. D 2015, 92, 072011. [Google Scholar] [CrossRef] [Green Version]
- Gando, A.; Gando, Y.; Hachiya, T.; Hayashi, A.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Karino, Y.; Koga, M.; et al. Search for majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen. Phys. Rev. Lett. 2016, 117, 082503. [Google Scholar] [CrossRef] [Green Version]
- Anton, G.; Badhrees, I.; Barbeau, P.S.; Beck, D.; Belov, V.; Bhatta, T.; Breidenbach, M.; Brunner, T.; Cao, G.F.; Cen, W.R.; et al. Search for neutrinoless double-β decay with the complete EXO-200 dataset. Phys. Rev. Lett. 2019, 123, 161802. [Google Scholar] [CrossRef] [Green Version]
- Alvis, S.I.; Arnquist, I.J.; Avignone, F.T., III; Barabash, A.S.; Barton, C.J.; Basu, V.; Bertrand, F.E.; Bos, B.; Busch, M.; Buuck, M.; et al. Search for neutrinoless double-β decay in 76Ge with 26 kg yr of exposure from the Majorana Demonstrator. Phys. Rev. C 2019, 100, 025501. [Google Scholar] [CrossRef] [Green Version]
- Azzolini, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; Carniti, P.; et al. Final result of CUPID-0 phase-I in the search for the 82Se neutrinoless double-β decay. Phys. Rev. Lett. 2019, 123, 032501. [Google Scholar] [CrossRef] [Green Version]
- Agostini, M.; Araujo, G.R.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; et al. Final results of GERDA on the search for neutrinoless double-β decay. Phys. Rev. Lett. 2020, 125, 252502. [Google Scholar] [CrossRef]
- Armengaud, E.; Augier, C.; Barabash, A.S.; Bellini, F.; Benato, G.; Benoît, A.; Beretta, M.; Bergé, L.; Billard, J.; Borovlev, Y.A.; et al. New limit for neutrinoless double-beta decay of 100Mo from the CUPID-Mo experiment. Phys. Rev. Lett. 2021, 126, 181802. [Google Scholar] [CrossRef]
- Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Incicchitti, A.; Merlo, V. Double beta decay to excited states of daughter nuclei. Universe 2020, 6, 239. [Google Scholar] [CrossRef]
- Barabash, A.S. Double beta decay to the excited states: Review. AIP Conf. Proc. 2017, 1894, 020002. [Google Scholar]
- Albert, J.B.; Auger, M.; Auty, D.J.; Barbeau, P.S.; Beauchamp, E.; Beck, D.; Belov, V.; Benitez-Medina, C.; Bonatt, J.; Breidenbach, M.; et al. Improved measurement of the 2νββ half-life of 136Xe with the EXO-200 detector. Phys. Rev. C 2014, 89, 015502. [Google Scholar] [CrossRef] [Green Version]
- Arnold, R.; Augier, C.; Barabash, A.S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Brudanin, V.; Busto, J.; Caffrey, A.J.; et al. Investigation of double beta decay of 100Mo to excited states of 100Ru. Nucl. Phys. A 2014, 925, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Balata, M.; D’Andrea, V.; di Vacri, A.; Junker, M.; Laubenstein, M.; Macolino, C.; Zavarise, P.; Pandola, L.; Borowicz, D.; Frodyma, N.; et al. Results on ββ decay with emission of two neutrinos or Majorons in 76Ge from GERDA Phase I. Eur. Phys. J. C 2015, 75, 416. [Google Scholar]
- Arnold, R.; Augier, C.; Baker, J.D.; Barabash, A.S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Brudanin, V.; Busto, J.; et al. Measurement of the 2νββ decay half-life of 150Nd and a search for 2νββ decay processes with the full exposure from the NEMO-3 detector. Phys. Rev. D 2016, 94, 072003. [Google Scholar] [CrossRef] [Green Version]
- Arnold, R.; Augier, C.; Baker, J.D.; Barabash, A.S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Boursette, D.; Brudanin, V.; et al. Measurement of the 2νββ decay half-life and search for the 0νββ decay of 116Cd with the NEMO-3 detector. Phys. Rev. D 2017, 95, 012007. [Google Scholar] [CrossRef] [Green Version]
- Arnold, R.; Augier, C.; Barabash, A.S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Boursette, D.; Brudanin, V.; Busto, J.; et al. Final results on 82Se double beta decay to the ground state of 82Kr from the NEMO-3 experiment. Eur. Phys. J. C 2018, 78, 821. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A.S.; Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D.M.; Danevich, F.A.; d’Angelo, S.; Incicchitti, A.; et al. Final results of the Aurora experiment to study 2β decay of 116Cd with enriched 116CdWO4 crystal scintillators. Phys. Rev. D 2018, 98, 092007. [Google Scholar] [CrossRef] [Green Version]
- Azzolini, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; Carniti, P.; et al. Evidence of single state sominance in the two-neutrino double-β decay of 82Se with CUPID-0. Phys. Rev. Lett. 2019, 123, 262501. [Google Scholar] [CrossRef] [Green Version]
- Kasperovych, D.V.; Barabash, A.S.; Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Di Marco, A.; et al. Study of double-β decay of 150Nd to the first 0+ excited level of 150Sm. AIP Conf. Proc. 2019, 2165, 020014. [Google Scholar]
- Gando, A.; Gando, Y.; Hachiya, T.; Ha Minh, M.; Hayashida, S.; Honda, Y.; Hosokawa, K.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; et al. Precision analysis of the 136Xe two-neutrino ββ spectrum in KamLAND-Zen and its impact on the quenching of nuclear matrix elements. Phys. Rev. Lett. 2019, 122, 192501. [Google Scholar] [CrossRef] [Green Version]
- Arnold, R.; Augier, C.; Barabash, A.S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongr, M.; Boursette, D.; Brudanin, V.; Busto, J.; et al. Detailed studies of 100Mo two-neutrino double beta decay in NEMO-3. Eur. Phys. J. C 2019, 79, 440. [Google Scholar] [CrossRef]
- Armengaud, E.; Augier, C.; Barabash, A.S.; Bellini, F.; Benato, G.; Benoît, A.; Beretta, M.; Bergé, L.; Billard, J.; Borovlev, Y.A.; et al. Precise measurement of 2νββ decay of 100Mo with the CUPID-Mo detection technology. Eur. Phys. J. C 2020, 80, 674. [Google Scholar] [CrossRef]
- Polischuk, O.G.; Barabash, A.S.; Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Di Marco, A.; et al. Double beta decay of 150Nd to the first 0+ excited level of 150Sm. Phys. Scr. 2021, 96, 085302. [Google Scholar] [CrossRef]
- Adams, D.Q.; Alduino, C.; Alfonso, K.; Avignone, F.T., III; Azzolini, O.; Bari, G.; Bellini, F.; Benato, G.; Biassoni, M.; Branca, A.; et al. Measurement of the 2νββ decay half-life of 130Te with CUORE. Phys. Rev. Lett. 2021, 126, 171801. [Google Scholar] [CrossRef]
- Engel, J.; Menéndez, J. Status and future of nuclear matrix elements for neutrinoless double-beta decay: A review. Rep. Prog. Phys. 2017, 80, 046301. [Google Scholar] [CrossRef]
- Suhonen, J.T. Impact of the quenching of gA on the sensitivity of 0νββ experiments. Phys. Rev. C 2017, 96, 055501. [Google Scholar] [CrossRef] [Green Version]
- Rodin, V.A.; Faessler, A.; Šimkovic, F.; Vogel, P. Assessment of uncertainties in QRPA 0νββ-decay nuclear matrix elements. Nucl. Phys. A 2006, 766, 107–131, Erratum in 2007, 793, 213–215. [Google Scholar] [CrossRef] [Green Version]
- Kortelainen, M.; Suhonen, J. Nuclear matrix elements of 0νββ decay with improved short-range correlations. Phys. Rev. C 2007, 76, 024315. [Google Scholar] [CrossRef] [Green Version]
- Šimkovic, F.; Faessler, A.; Rodin, V.; Engel, J. Anatomy of the 0νββ nuclear matrix elements. Phys. Rev. C 2008, 77, 045503. [Google Scholar] [CrossRef] [Green Version]
- Šimkovic, F.; Dvornický, R.; Štefánik, D.; Faessler, A. Improved description of the 2νββ-decay and a possibility to determinethe effective axial-vector coupling constant. Phys. Rev. C 2018, 97, 034315. [Google Scholar] [CrossRef] [Green Version]
- Abad, J.; Morales, A.; Núñez-Lagos, R.; Pacheco, A.F. An estimation of the rates of (two-neutrino) double beta decay and related processes. J. Phys. Colloques 1984, 45, C3-147–C3-150. [Google Scholar] [CrossRef]
- Civitarese, O.; Suhonen, J. Is the single-state dominance realized in double-β-decay transitions? Phys. Rev. C 1998, 58, 1535. [Google Scholar] [CrossRef] [Green Version]
- Šimkovic, F.; Domin, P.; Semenov, S.V. The single state dominance hypothesis and the two-neutrino double beta decay of 100Mo. J. Phys. G 2001, 27, 2233–2240. [Google Scholar] [CrossRef] [Green Version]
- Kotila, J.; Iachello, F. Phase-space factors for double-β decay. Phys. Rev. C 2012, 85, 034316. [Google Scholar] [CrossRef] [Green Version]
- Domin, P.; Kovalenko, S.; Šimkovic, F.; Semenov, S.V. Neutrino accompanied β±β±, β+/EC and EC/EC processes within single state dominance hypothesis. Nucl. Phys. A 2005, 753, 337–363. [Google Scholar] [CrossRef] [Green Version]
- Moreno, O.; Álvarez-Rodríguez, R.; Sarriguren, P.; Moya de Guerra, E.; Šimkovic, F.; Faessler, A. Single- and low-lying-states dominance in two-neutrino double-beta decay. J. Phys. G 2008, 36, 015106. [Google Scholar] [CrossRef] [Green Version]
- Suhonen, J.; Civitarese, O. Single and double beta decays in the A = 100, A = 116 and A = 128 triplets of isobars. Nucl. Phys. A 2014, 924, 1–23. [Google Scholar] [CrossRef]
- Arnold, R.; Augier, C.; Baker, J.; Barabash, A.; Brudanin, V.; Caffrey, A.J.; Egorov, V.; Guyonnet, J.L.; Hubert, F.; Hubert, P.; et al. Study of 2β-decay of 100Mo and 82Se using the NEMO3 detector. JETP Lett. 2004, 80, 377–381. [Google Scholar] [CrossRef]
- Díaz, J.S. Limits on Lorentz and CPT violation from double beta decay. Phys. Rev. D 2014, 89, 036002. [Google Scholar] [CrossRef] [Green Version]
- Díaz, J.S. Neutrinos as Probes of Lorentz Invariance. Adv. High Energy Phys. 2014, 2014, 962410. [Google Scholar] [CrossRef] [Green Version]
- Albert, J.B.; Barbeau, P.S.; Beck, D.; Belov, V.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cao, G.F.; Chambers, C.; Cleveland, B.; et al. First search for Lorentz and CPT violation in double beta decay with EXO-200. Phys. Rev. D 2016, 93, 072001. [Google Scholar] [CrossRef] [Green Version]
- Azzolini, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; Carniti, P.; et al. First search for Lorentz violation in double beta decay with scintillating calorimeters. Phys. Rev. D 2019, 100, 092002. [Google Scholar] [CrossRef]
- Niţescu, O.; Ghinescu, S.; Stoica, S. Lorentz violation effects in 2νββ decay. J. Phys. G 2020, 47, 055112. [Google Scholar] [CrossRef] [Green Version]
- Niţescu, O.; Ghinescu, S.; Mirea, M.; Stoica, S. Probing Lorentz violation in 2νββ using single electron spectra and angular correlations. Phys. Rev. D 2021, 103, 031701. [Google Scholar] [CrossRef]
- Blum, K.; Nira, Y.; Shavit, M. Neutrinoless double-beta decay with massive scalar emission. Phys. Lett. B 2018, 785, 354–361. [Google Scholar] [CrossRef]
- Cepedello, R.; Deppisch, F.F.; González, L.; Hati, C.; Hirsch, M. Neutrinoless Double-β Decay with Nonstandard Majoron Emission. Phys. Rev. Lett 2019, 122, 181801. [Google Scholar] [CrossRef] [Green Version]
- Deppisch, F.F.; Graf, L.; Šimkovic, F. Searching for new physics in two-neutrino double beta decay. Phys. Rev. Lett. 2020, 125, 171801. [Google Scholar] [CrossRef]
- Barabash, A.S.; Dolgov, A.D.; Dvornický, R.; Šimkovic, F.; Smirnov, A.Y. Statistics of neutrinos and the double beta decay. Nucl. Phys. B 2007, 783, 90–111. [Google Scholar] [CrossRef] [Green Version]
- Bolton, P.D.; Deppisch, F.F.; Gráf, L.; Šimkovic, F. Two-neutrino double beta decay with sterile neutrinos. Phys. Rev. D 2021, 103, 055019. [Google Scholar] [CrossRef]
- Agostini, M.; Bossio, E.; Ibarra, A.; Marcano, X. Search for light exotic fermions in double-beta decays. Phys. Lett. B 2021, 815, 136127. [Google Scholar] [CrossRef]
- Deppisch, F.F.; Graf, L.; Rodejohann, W.; Xu, X.J. Neutrino self-interactions and double beta decay. Phys. Rev. D 2020, 102, 051701. [Google Scholar] [CrossRef]
- Alduino, C.; Alfonso, K.; Artusa, D.R.; Avignone, F.T., III; Azzolini, O.; Banks, T.I.; Bari, G.; Beeman, J.W.; Bellini, F.; Bersani, A.; et al. Measurement of the two-neutrino double-beta decay half-life of 130Te with the CUORE-0 experiment. Eur. Phys. J. C 2017, 77, 13. [Google Scholar] [CrossRef] [Green Version]
- Arnaboldi, C.; Beeman, J.W.; Cremonesi, O.; Gironi, L.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E. CdWO4 scintillating bolometer for Double Beta Decay: Light and heat anticorrelation, light yield and quenching factors. Astropart. Phys. 2010, 34, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Chernyak, D.M.; Danevich, F.A.; Giuliani, A.; Olivieri, E.; Tenconi, M.; Tretyak, V.I. Random coincidence of 2ν2β decay events as a background source in bolometric 0ν2β decay experiments. Eur. Phys. J. C 2012, 72, 1989. [Google Scholar] [CrossRef] [Green Version]
- Chernyak, D.M.; Danevich, F.A.; Giuliani, A.; Mancuso, M.; Nones, C.; Olivieri, E.; Tenconi, M.; Tretyak, V.I. Rejection of randomly coinciding events in ZnMoO4 scintillating bolometers. Eur. Phys. J. C 2014, 74, 2913. [Google Scholar] [CrossRef] [Green Version]
- Chernyak, D.M.; Danevich, F.A.; Dumoulin, L.; Giuliani, A.; Mancuso, M.; De Marcillac, P.; Marnieros, S.; Nones, C.; Olivieri, E.; Poda, D.V.; et al. Rejection of randomly coinciding events in Li2100MoO4 scintillating bolometers using light detectors based on the Neganov-Luke effect. Eur. Phys. J. C 2017, 77, 3. [Google Scholar] [CrossRef] [Green Version]
- Pirro, S. Scintillating bolometers for next generation double beta decay. In Proceedings of the International Workshop on Double Beta Decay and Neutrinos, Hawaii, HA, USA, 11–13 October 2009. [Google Scholar]
- AMoRE-Advanced Mo-Based Rare Process Experiment. Available online: https://amore.ibs.re.kr/ (accessed on 30 June 2021).
- ISOTope Trace Analysis. Available online: http://isotta.in2p3.fr/ (accessed on 30 June 2021).
- LUCIFER-Low Background Underground Cryogenic Installation for Elusive Rates. Available online: https://web.infn.it/lucifer/ (accessed on 30 June 2021).
- CUPID-0. Available online: https://www.lngs.infn.it/en/cupid-eng (accessed on 30 June 2021).
- Luminescent Underground Molybdenum Investigation for NEUtrino Mass and Nature. Available online: http://lumineu.in2p3.fr/ (accessed on 30 June 2021).
- CUPID-Mo. Available online: https://cupid-mo.mit.edu/ (accessed on 30 June 2021).
- Czochralski Growth of Li2MoO4 crYstals for the Scintillating boloMeters Used in the Rare EveNts sEarches. Available online: http://clymene.in2p3.fr/ (accessed on 30 June 2021).
- Cryogenic Rare-Event Observatory with Surface Sensitivity. Available online: https://cordis.europa.eu/project/id/742345 (accessed on 30 June 2021).
- CANDLES-CAlcium Fluoride for the Study of Neutrinos and Dark Matters by Low Energy Spectrometer. Available online: http://www.rcnp.osaka-u.ac.jp/candles/index.html (accessed on 30 June 2021).
- Brofferio, C.; Dell’Oro, S. The saga of neutrinoless double beta decay search with TeO2 thermal detectors. Rev. Sci. Instrum. 2018, 89, 121502. [Google Scholar] [CrossRef] [Green Version]
- CUORE Upgrade with Particle Identification. Available online: https://cupid-i.lngs.infn.it (accessed on 30 June 2021).
- Bi-Isotope 0ν2β Next Generation Observatory. Available online: https://cordis.europa.eu/project/id/865844 (accessed on 30 June 2021).
- Luković, V.; Cabella, P.; Vittorio, N. Dark matter in cosmology. Int. J. Mod. Phys. A 2014, 29, 1443001. [Google Scholar] [CrossRef] [Green Version]
- Arun, K.; Gudennavar, S.B.; Sivaram, C. Dark matter, dark energy, and alternate models: A review. Adv. Space Res. 2017, 60, 166–186. [Google Scholar] [CrossRef] [Green Version]
- Bertone, G.; Tait, T.M.P. A new era in the search for dark matter. Nature 2018, 562, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Schumann, M. Direct detection of WIMP dark matter: Concepts and status. J. Phys. G 2019, 46, 103003. [Google Scholar] [CrossRef] [Green Version]
- Stark, M.; Boslau, O.; Feilitzsch, F.; Goldstra, P.; Jochum, J.; Kemmer, J.; Potzel, W.; Rau, W. Application of the Neganov-Luke effect to low-threshold light detectors. Nucl. Instrum. Methods Phys. Res. A 2005, 545, 738–743. [Google Scholar] [CrossRef]
- Angloher, G.; Bauer, M.; Bavykina, I.; Bento, A.; Bucci, C.; Ciemniak, C.; Deuter, G.; von Feilitzsch, F.; Hauff, D.; Huff, P.; et al. Results from 730 kg days of the CRESST-II Dark Matter search. Eur. Phys. J. C 2012, 72, 1971. [Google Scholar] [CrossRef] [Green Version]
- Spergel, D.N. Motion of the Earth and the detection of weakly interacting massive particles. Phys. Rev. D 1988, 37, 1353. [Google Scholar] [CrossRef]
- Belli, P.; Bernabei, R.; Bacci, C.; Incicchitti, A.; Prosperi, D. Identifying a “dark matter” signal by nonisotropic scintillation detector. Il Nuovo Cim. C 1992, 15, 473–479. [Google Scholar] [CrossRef]
- Bernabei, R.; Belli, P.; Nozzoli, F.; Incicchitti, A. Anisotropic scintillators for WIMP direct detection: Revisited. Eur. Phys. J. C 2003, 28, 203–209. [Google Scholar] [CrossRef]
- Shimizu, Y.; Minowa, M.; Sekiya, H.; Inoue, Y. Directional scintillation detector for the detection of the wind of WIMP. Nucl. Instrum. Methods Phys. Res. A 2003, 496, 347–352. [Google Scholar] [CrossRef] [Green Version]
- Cappella, F.; Bernabei, R.; Belli, P.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; d’Angelo, A.; Di Marco, A.; Incicchitti, A.; Poda, D.V.; et al. On the potentiality of the ZnWO4 anisotropic detectors to measure the directionality of Dark Matter. Eur. Phys. J. C 2013, 73, 2276. [Google Scholar] [CrossRef] [Green Version]
- Rare Objects SEarch with Bolometers UndergrounD. Available online: http://www.unizar.es/lfnae/rosebud/ (accessed on 31 December 2020).
- CREST-Cryogenic Rare Event Search with Superconducting Thermometers. Available online: http://www.cresst.de/ (accessed on 30 June 2021).
- Cryogenic Dark Matter Search. Available online: http://cdms.berkeley.edu/ (accessed on 31 December 2020).
- EDELWEISS-Expérience pour DEtecter Les WIMP En Site Souterrain. Available online: http://edelweiss.in2p3.fr/ (accessed on 30 June 2021).
- EURECA-European Underground Rare Event Calorimeter Array. Available online: https://www.eureca.kit.edu/ (accessed on 30 June 2021).
- Kraus, H.; Armengaud, E.; Bauer, M.; Bavykina, I.; Benoit, A.; Bento, A.; Blümer, J.; Bornschein, L.; Broniatowski, A.; Burghart, G.; et al. EURECA—The Future of cryogenicDark Matter Ddtection in Europe. PoS 2008, idm2008, 013. [Google Scholar]
- Kraus, H.; Armengaud, E.; Bauer, M.; Bavykina, I.; Benoit, A.; Bento, A.; Blümer, J.; Bornschein, L.; Broniatowski, A.; Burghart, G.; et al. EURECA—Setting the scene for scintillators. In Proceedings of the 1st International Workshop on Radiopure Scintillators for EURECA (RPScint 2008), Kyiv, Ukraine, 9–10 September 2008. [Google Scholar]
- Angloher, G.; Armengaud, E.; Augier, C.; Benoit, A.; Bergmann, T.; Blümer, J.; Broniatowski, A.; Brudanin, V.; Camus, P.; Cazes, A.; et al. EURECA Conceptual Design Report. Phys. Dark Universe 2014, 3, 41–74. [Google Scholar] [CrossRef]
- Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Erb, A.; Feilitzsch, F.V.; Iachellini, N.F.; Gorla, P.; Gütlein, A.; Hauff, D.; et al. Probing low WIMP masses with the next generation of CRESST detector. arXiv 2015, arXiv:astro-ph.IM/1503.08065. [Google Scholar]
- COSINUS-Cryogenic Observatory for SIgnals Seen in Next-Generation Underground Searches. Available online: https://www.lngs.infn.it/en/cosinus-eng (accessed on 30 June 2021).
- Peccei, R.D.; Quinn, H.R. CP conservation in the presence of pseudoparticles. Phys. Rev. Lett. 1977, 38, 1440. [Google Scholar] [CrossRef] [Green Version]
- Peccei, R.D.; Quinn, H.R. Constraints imposed by CP conservation in the presence of pseudoparticles. Phys. Rev. D 1977, 16, 1791. [Google Scholar] [CrossRef]
- Irastorza, I.G.; Redondo, J. New experimental approaches in the search for axion-like particles. Prog. Part. Nucl. Phys. 2018, 102, 89–159. [Google Scholar] [CrossRef] [Green Version]
- Freedman, D.Z. Coherent effects of a weak neutral current. Phys. Lett. B 1974, 9, 1389. [Google Scholar] [CrossRef]
- Drukier, A.; Stodolsky, L. Principles and applications of a neutral current detector for neutrino physics and astronomy. Phys. Rev. D 1984, 30, 2295. [Google Scholar] [CrossRef]
- Akimov, D.; Albert, J.B.; An, P.; Awe, C.; Barbeau, P.S.; Becker, B.; Belov, V.; Brown, A.; Bolozdynya, A.; Cabrera-Palmer, B.; et al. Observation of coherent elastic neutrino-nucleus scattering. Science 2017, 357, 1123. [Google Scholar] [CrossRef] [Green Version]
- Monroe, J.; Fisher, P. Neutrino backgrounds to dark matter searches. Phys. Rev. D 2007, 76, 033007. [Google Scholar] [CrossRef] [Green Version]
- BASKET-Bolometers At Sub-KeV Energy Thresholds. Available online: http://irfu.cea.fr/Phocea/Page/index.php?id=861 (accessed on 30 June 2021).
- Thulliez, L.; Lhuillier, D.; Cappella, F.; Casali, N.; Cerulli, R.; Chalil, A.; Chebboubi, A.; Dumonteil, E.; Erhart, A.; Giuliani, A.; et al. Calibration of nuclear recoils at the 100 eV scale using neutron capture. arXiv 2021, arXiv:physics.ins-det/2011.13803. [Google Scholar]
- Brooks, F.D.; Klein, H. Neutron spectrometry: Historical review and present status. Nucl. Instrum. Methods Phys. Res. A 2002, 476, 1–11. [Google Scholar] [CrossRef]
- Klein, H.; Brooks, F.D. Scintillation detectors for fast neutrons. PoS 2006, FNDA2006, 097. [Google Scholar]
- Cieślak, M.J.; Gamage, K.A.A.; Glover, R. Critical review of scintillating crystals for neutron detection. Crystals 2019, 9, 480. [Google Scholar] [CrossRef] [Green Version]
- Gironnet, J.; van den Brandt, B.; Coron, N.; Hautle, P.; Filges, U.; Konter, J.A.; de Marcillac, P.; Ortigoza, Y.; Puimedon, J.; Rolon, T.; et al. Neutron spectroscopy with 6LiF bolometers. AIP Conf. Proc. 2009, 1185, 751–754. [Google Scholar]
- Ginestra, C. Fast Neutron Spectrometry by Bolometers Lithium Target for the Reduction of Background Experiences of Direct Detection of Dark Matter. Ph.D. Thesis, Université Paris Sud XI, Orsay, France, 2010. (In French). [Google Scholar]
- Dumazert, J.; Coulon, R.; Lecomte, Q.; Bertrand, G.H.V.; Hamel, M. Gadolinium for neutron detection in current nuclear instrumentation research: A review. Nucl. Instrum. Methods Phys. Res. A 2018, 882, 53–68. [Google Scholar] [CrossRef]
- Coron, N.; Cuesta, C.; Domange, J.; García, E.; Gironnet, J.; Leblanc, J.; de Marcillac, P.; Martínez, M.; Ortigoza, Y.; de Solórzano, A.O.; et al. Detection of fast neutrons with LiF and Al2O3 scintillating bolometers. J. Phys. Conf. Ser. 2010, 203, 012139. [Google Scholar] [CrossRef]
- Coron, N.; Cuesta, C.; García, E.; Ginestra, C.; Gironnet, J.; de Marcillac, P.; Martínez, M.; Ortigoza, Y.; Pobes, C.; Puimedón, J.; et al. Measurement of the differential neutron flux inside a lead shielding in a cryogenic experiment. J. Phys. Conf. Ser. 2012, 375, 012018. [Google Scholar] [CrossRef] [Green Version]
- Armengaud, E.; Augier, C.; Barabash, A.S.; Bellini, F.; Benato, G.; Benoît, A.; Beretta, M.; Bergé, L.; Billard, J.; Borovlev, Y.A.; et al. The CUPID-Mo experiment for neutrinoless double-beta decay: Performance and prospects. Eur. Phys. J. C 2020, 80, 44. [Google Scholar] [CrossRef]
- Mikhailik, V.B.; Kraus, H. Cryogenic scintillators in searches for extremely rare events. J. Phys. D 2006, 39, 1181–1191. [Google Scholar] [CrossRef] [Green Version]
- Mikhailik, V.B.; Kraus, H. Performance of scintillation materials at cryogenic temperatures. Phys. Status Solidi B 2010, 247, 1583. [Google Scholar] [CrossRef] [Green Version]
- Dafinei, I.; Fasoli, M.; Ferroni, F.; Mihokova, E.; Orio, F.; Pirro, S.; Vedda, A. Low temperature scintillation in ZnSe crystals. IEEE Trans. Nucl. Sci. 2010, 57, 1470–1474. [Google Scholar] [CrossRef]
- Sailer, C.; Lubsandorzhiev, B.; Strandhagen, C.; Jochum, J. Low temperature light yield measurements in NaI and NaI(Tl). Eur. Phys. J. C 2012, 72, 2061. [Google Scholar] [CrossRef] [Green Version]
- Mikhailik, V.B.; Kapustyanyk, V.; Tsybulskyi, V.; Rudyk, V.; Kraus, H. Luminescence and scintillation properties of CsI: A potential cryogenic scintillator. Phys. Status Solidi B 2015, 252, 804–810. [Google Scholar] [CrossRef] [Green Version]
- Tower, J.; Winslow, L.; Churilov, A.; Ogorodnik, Y.; Hong, H.; Glodo, J.; van Loef, E.; Giuliani, A.; Poda, D.; Leder, A.; et al. New scintillating bolometer crystals for rare particle detection. Nucl. Instrum. Methods Phys. Res. A 2020, 954, 162300. [Google Scholar] [CrossRef]
- Barinova, O.P.; Danevich, F.A.; Degoda, V.Y.; Kirsanova, S.V.; Kudovbenko, V.M.; Pirro, S.; Tretyak, V.I. First test of Li2MoO4 crystal as a cryogenic scintillating bolometer. Nucl. Instrum. Methods Phys. Res. A 2010, 613, 54–57. [Google Scholar] [CrossRef] [Green Version]
- Coron, N.; Dambier, G.; Leblanc, E.; Leblanc, J.; de Marcillac, P.; Moalic, J.P. Scintillating and particle discrimination properties of selected crystals for low-temperature bolometers: From LiF to BGO. Nucl. Instrum. Methods Phys. Res. A 2004, 520, 159–162. [Google Scholar] [CrossRef]
- Dafinei, I.; Dujardin, C.; Longo, E.; Vignati, M. Low temperature photoluminescence of pure and doped paratellurite (TeO2) crystals. Phys. Status Solidi A 2007, 204, 1567–1570. [Google Scholar] [CrossRef]
- Bergé, L.; Chapellier, M.; De Combarieu, M.; Dumoulin, L.; Giuliani, A.; Gros, M.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; et al. Complete event-by-event α/γ(β) separation in a full-size TeO2 CUORE bolometer by Neganov-Luke-magnified light detection. Phys. Rev. C 2018, 97, 032501. [Google Scholar] [CrossRef] [Green Version]
- Tabarelli de Fatis, T. Cerenkov emission as a positive tag of double beta decays in bolometric experiments. Eur. Phys. J. C 2010, 65, 359–361. [Google Scholar] [CrossRef] [Green Version]
- Casali, N. Model for the Cherenkov light emission of TeO2 cryogenic calorimeters. Astropart. Phys. 2017, 91, 44–50. [Google Scholar] [CrossRef]
- Frank, T. Development of Scintillating Calorimeters for Discrimination of Nuclear Recoils and Fully Ionizing Events. Ph.D. Thesis, Technische Universität München, Munich, Germany, 2002. [Google Scholar]
- Ninković, J. Investigation of CaWO4 Crystals for Simultaneous Phonon-Light Detection in the CRESST Dark Matter Search. Ph.D. Thesis, Technische Universität München, Munich, Germany, 2005. [Google Scholar]
- Wahl, D. Optimisation of Light Collection in Inorganic Scintillators for Rare Event Searches. Ph.D. Thesis, University of Oxford, Oxford, UK, 2005. [Google Scholar]
- Chernyak, D.M.; Danevich, F.A.; Degoda, V.Y.; Dmitruk, I.M.; Ferri, F.; Galashov, E.N.; Giuliani, A.; Ivanov, I.M.; Kobychev, V.V.; Mancuso, M.; et al. Optical, luminescence and thermal properties of radiopure ZnMoO4 crystals used in scintillating bolometers for double beta decay search. Nucl. Instrum. Methods Phys. Res. A 2013, 729, 856. [Google Scholar] [CrossRef]
- Danevich, F.A.; Kobychev, R.V.; Kobychev, V.V.; Kraus, H.; Mikhailik, V.B.; Mokina, V.M. Optimization of light collection from crystal scintillators for cryogenic experiments. Nucl. Instrum. Methods Phys. Res. A 2014, 744, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Danevich, F.A.; Kobychev, V.V.; Kobychev, R.V.; Kraus, H.; Mikhailik, V.B.; Mokina, V.M.; Solsky, I.M. Impact of geometry on light collection efficiency of scintillation detectors for cryogenic rare event searches. Nucl. Instrum. Meth. B 2014, 336, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Janecek, M.; Moses, W.W. Optical reflectance measurements for commonly used reflectors. IEEE Trans. Nucl. Sci. 2008, 55, 2432–2437. [Google Scholar] [CrossRef] [Green Version]
- Janecek, M. Reflectivity Spectra for Commonly Used Reflectors. IEEE Trans. Nucl. Sci. 2012, 59, 490–497. [Google Scholar] [CrossRef] [Green Version]
- Langenkämper, A.; Ulrich, A.; Defay, X.; Feilitzsch, F.; Lanfranchi, J.C.; Mondragón, E.; Münster, A.; Oppenheimer, C.; Potzel, W.; Roth, S.; et al. Low-temperature relative reflectivity measurements of reflective and scintillating foils used in rare event searches. Nucl. Instrum. Methods Phys. Res. A 2018, 884, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Lang, R.F.; Angloher, G.; Bauer, M.; Bavykina, I.; Bento, A.; Brown, A.; Bucci, C.; Ciemniak, C.; Coppi, C.; Deuter, G.; et al. Discrimination of recoil backgrounds in scintillating calorimeters. Astropart. Phys. 2010, 33, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Biassoni, M.; Brofferio, C.; Bucci, C.; Canonica, L.; di Vacri, M.L.; Gorla, P.; Pavan, M.; Yeh, M. Rejection of alpha surface background in non-scintillating bolometric detectors: The ABSuRD project. J. Low Temp. Phys. 2016, 184, 879–884. [Google Scholar] [CrossRef]
- Armatol, A.; Armengaud, E.; Armstrong, W.; Augier, C.; Avignone, F.T.; Azzolini, O.; Barabash, A.; Bari, G.; Barresi, A.; Baudin, D.; et al. Characterization of cubic Li2100MoO4 crystals for the CUPID experiment. Eur. Phys. J. C 2021, 81, 104. [Google Scholar] [CrossRef]
- Baselmans, J. Kinetic inductance detectors. J. Low Temp. Phys. 2012, 167, 292–304. [Google Scholar] [CrossRef]
- Lee, S.J.; Choi, J.H.; Danevich, F.A.; Jang, Y.S.; Kang, W.G.; Khanbekov, N.; Kim, H.J.; Kim, I.H.; Kim, S.C.; Kim, S.K.; et al. The development of a cryogenic detector with CaMoO4 crystals for neutrinoless double beta decay search. Astropart. Phys. 2011, 34, 732–737. [Google Scholar] [CrossRef]
- Casali, N.; Cardani, L.; Colantoni, I.; Cruciani, A.; Di Domizio, S.; Martinez, M.; Pettinari, G.; Vignati, M. Phonon and light read out of a Li2MoO4 crystal with multiplexed kinetic inductance detectors. Eur. Phys. J. C 2019, 79, 724. [Google Scholar] [CrossRef]
- Alessandrello, A.; Bashkirov, V.; Brofferio, C.; Camin, D.V.; Cremonesi, O.; Fiorini, E.; Gervasio, G.; Giuliani, A.; Pavan, M.; Pessina, G.; et al. Development of a thermal scintillating detector for double beta decay of 48Ca. Nucl. Phys. B (Proc. Suppl.) 1992, 28, 233–235. [Google Scholar] [CrossRef]
- Alessandrello, A.; Bashkirov, V.; Brofferio, C.; Camin, D.V.; Cremonesi, O.; Fiorini, E.; Gervasio, G.; Giuliani, A.; Pavan, M.; Pessina, G.; et al. Search for double beta decay of 130Te with a cryogenic thermal detector and simultaneous detection of light and thermal signals in a cryogenic CaF2 detector. In Proceedings of the 12th Moriond Workshop on Progress in Atomic Physics, Neutrinos and Gravitation, Les Arcs, Savoie, France, 25 January–1 February 1992. [Google Scholar]
- Alessandrello, A.; Bashkirov, V.; Brofferio, C.; Bucci, C.; Camin, D.V.; Cremonesi, O.; Fiorini, E.; Gervasio, G.; Giuliani, A.; Nucciotti, A.; et al. A scintillating bolometer for experiments on double beta decay. Phys. Lett. B 1998, 420, 109–113. [Google Scholar] [CrossRef]
- Bobin, C. Bolomètres Massifs et Détection de la Matière Noire non Baryonique. Ph.D. Thesis, Université Claude Bernard Lyon-1, Lyon, France, 1995. [Google Scholar]
- Bobin, C.; Berkes, I.; Hadjout, J.P.; Coron, N.; Leblanc, J.; De Marcillac, P. Alpha/gamma discrimination with a CaF2(Eu) target bolometer optically coupled to a composite infrared bolometer. Nucl. Instrum. Methods Phys. Res. A 1997, 386, 453–457. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, J.; Mikhailik, V.B.; Kraus, H. Cryogenic phonon–scintillation detectors with PMT readout for rare event search experiments. Astropart. Phys. 2016, 79, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Angloher, G.; Bauer, P.; Bento, A.; Bucci, C.; Canonica, L.; Defay, X.; Erb, A.; Feilitzsch, F.V.; Iachellini, N.F.; Gorla, P.; et al. Performance of a CRESST-II detector module with true 4π-veto. arXiv 2017, arXiv:astro-ph.IM/1708.01581. [Google Scholar]
- Scha¨ffner, K.; Angloher, G.; Carniti, P.; Cassina, L.; Gironi, L.; Gotti, C.; Gütlein, A.; Mancuso, M.; Di Marco, N.; Pagnanini, L.; et al. A NaI-based cryogenic scintillating calorimeter: Results from a COSINUS prototype detector. J. Low Temp. Phys. 2018, 193, 1174–1181. [Google Scholar] [CrossRef]
- Reindl, F.; Angloher, G.; Carniti, P.; Cassina, L.; Gironi, L.; Gotti, C.; Gütlein, A.; Maino, M.; Mancuso, M.; Di Marco, N.; et al. Results of the first NaI scintillating calorimeter prototypes by COSINUS. J. Phys. Conf. Ser. 2020, 1342, 012099. [Google Scholar] [CrossRef]
- Pirro, S.; Beeman, J.W.; Capelli, S.; Pavan, M.; Previtali, E.; Gorla, P. Scintillating double-beta-decay bolometers. Phys. At. Nucl. 2006, 69, 2109. [Google Scholar] [CrossRef] [Green Version]
- Beeman, J.W.; Gentils, A.; Giuliani, A.; Mancuso, M.; Pessina, G.; Plantevin, O.; Rusconi, C. Effect of SiO2 coating in bolometric Ge light detectors for rare event searches. Nucl. Instrum. Methods Phys. Res. A 2013, 709, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Mancuso, M.; Beeman, J.W.; Giuliani, A.; Dumoulin, L.; Olivieri, E.; Pessina, G.; Plantevin, O.; Rusconi, C.; Tenconi, M. An experimental study of antireflective coatings in Ge light detectors for scintillating bolometers. EPJ Web Conf. 2014, 65, 04003. [Google Scholar] [CrossRef] [Green Version]
- Artusa, D.R.; Avignone, F.T., III; Beeman, J.W.; Dafinei, I.; Dumoulin, L.; Ge, Z.; Giuliani, A.; Gotti, C.; de Marcillac, P.; Marnieros, S.; et al. Enriched TeO2 bolometers with active particle discrimination: Towards the CUPID experiment. Phys. Lett. B 2017, 767, 321. [Google Scholar] [CrossRef]
- Hansen, E.V.; DePorzio, N.; Winslow, L. Characterization of single layer anti-reflective coatings for bolometer-based rare event searches. J. Instrum. 2017, 12, P09018. [Google Scholar] [CrossRef] [Green Version]
- Barucci, M.; Beeman, J.W.; Caracciolo, V.; Pagnanini, L.; Pattavina, L.; Pessina, G.; Pirro, S.; Rusconi, C.; Schäffner, K. Cryogenic light detectors with enhanced performance for rare event physics. Nucl. Instrum. Methods Phys. Res. A 2019, 935, 150. [Google Scholar] [CrossRef] [Green Version]
- Isaila, C.; Ciemniak, C.; Feilitzsch, F.; Gütlein, A.; Kemmer, J.; Lachenmaier, T.; Lanfranchi, J.C.; Pfister, S.; Potzel, W.; Roth, S.; et al. Low-temperature light detectors: Neganov-Luke amplification and calibration. Phys. Lett. B 2012, 716, 160. [Google Scholar] [CrossRef]
- Novati, V.; Bergé, L.; Dumoulin, L.; Giuliani, A.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Olivieri, E.; Poda, D.V.; Tenconi, M.; et al. Charge-to-heat transducers exploiting the Neganov-Trofimov-Luke effect for light detection in rare-event searches. Nucl. Instrum. Methods Phys. Res. A 2019, 940, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Piperno, G.; Pirro, S.; Vignati, M. Optimizing the energy threshold of light detectors coupled to luminescent bolometers. J. Instrum. 2011, 6, P10005. [Google Scholar] [CrossRef] [Green Version]
- Neganov, B.; Trofimov, V. USSR patent No 1037771. Otkrytiya Izobret. 1985, 146, 215. [Google Scholar]
- Luke, P.N. Voltage-assisted calorimetric ionization detector. J. Appl. Phys. 1988, 64, 6858. [Google Scholar] [CrossRef] [Green Version]
- Beeman, J.W.; Danevich, F.A.; Degoda, V.Y.; Galashov, E.N.; Giuliani, A.; Ivanov, I.M.; Mancuso, M.; Marnieros, S.; Nones, C.; Pessina, G.; et al. An Improved ZnMoO4 scintillating bolometer for the search for neutrinoless double beta decay of 100Mo. J. Low Temp. Phys. 2012, 167, 1021. [Google Scholar] [CrossRef]
- Tenconi, M. Development of Luminescent Bolometers and Light Detectors for Neutrinoless Double Beta Decay Search. Ph.D. Thesis, Université Paris-Sud, Orsay, France, 2015. [Google Scholar]
- Coron, N.J.; de Marcillac, P.; Leblanc, J.; Dambier, G.; Moalic, J.P. Highly sensitive large-area bolometers for scintillation studies below 100 mK. Opt. Eng. 2004, 43, 1568. [Google Scholar] [CrossRef]
- Pirro, S.; Arnaboldi, C.; Beeman, J.W.; Pessina, G. Development of bolometric light detectors for double beta decay searches. Nucl. Instrum. Methods Phys. Res. A 2006, 559, 361–363. [Google Scholar] [CrossRef]
- Bekker, T.B.; Coron, N.; Danevich, F.A.; Degoda, V.Y.; Giuliani, A.; Grigorieva, V.D.; Ivannikova, N.V.; Mancuso, M.; de Marcillac, P.; Moroz, I.M.; et al. Aboveground test of an advanced Li2MoO4 scintillating bolometer to search for neutrinoless double beta decay of 100Mo. Astropart. Phys. 2016, 72, 38. [Google Scholar] [CrossRef] [Green Version]
- Artusa, D.R.; Balzoni, A.; Beeman, J.W.; Bellini, F.; Biassoni, M.; Brofferio, C.; Camacho, A.; Capelli, S.; Cardani, L.; Carniti, P.; et al. First array of enriched Zn82Se bolometers to search for double beta decay. Eur. Phys. J. C 2016, 76, 364. [Google Scholar] [CrossRef] [Green Version]
- Mancuso, M. Development and Optimization of Scintillating Bolometers and Innovative Light Detectors for the Search for Neutrinoless Double Beta Decay. Ph.D. Thesis, Université Paris-Sud, Orsay, France, 2016. [Google Scholar]
- Zolotarova, A. Study and Selection of Scintillating Crystals for the Bolometric Search for Neutrinoless Double Beta Decay. Ph.D. Thesis, Université Paris-Saclay, Saint-Aubin, France, 2018. [Google Scholar]
- Novati, V. Sensitivity Enhancement of the CUORE Experiment Via the Development of Cherenkov Hybrid TeO2 Bolometers. Ph.D. Thesis, Université Paris-Saclay, Orsay, France, 2018. [Google Scholar]
- Tenconi, M.; Chernyak, D.; Danevich, F.; Giuliani, A.; Mancuso, M.; Marnieros, S.; Olivieri, E.; Rusconi, C. Bolometric light detectors for Neutrinoless Double Beta Decay search. PoS 2012, PhotoDet 2012, 072. [Google Scholar]
- Beeman, J.W.; Bellini, F.; Casali, N.; Cardani, L.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; Gironi, L.; Nagorny, S.; Orio, F.; et al. Characterization of bolometric Light Detectors for rare event searches. J. Instrum. 2013, 8, P07021. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A.S.; Chernyak, D.M.; Danevich, F.A.; Giuliani, A.; Ivanov, I.M.; Makarov, E.P.; Mancuso, M.; Marnieros, S.; Nasonov, S.G.; Nones, C.; et al. Enriched Zn100MoO4 scintillating bolometers to search for 0ν2β decay of 100Mo with the LUMINEU experiment. Eur. Phys. J. C 2014, 74, 3133. [Google Scholar] [CrossRef] [Green Version]
- Beeman, J.W.; Bellini, F.; Cardani, L.; Casali, N.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; Orio, F.; Pessina, G.; Pirro, S.; et al. Discrimination of α and β/γ interactions in a TeO2 bolometer. Astropart. Phys. 2012, 35, 558–562. [Google Scholar] [CrossRef] [Green Version]
- Biassoni, M.; Brofferio, C.; Capelli, S.; Cassina, L.; Clemenza, M.; Cremonesi, O.; Faverzani, M.; Ferri, E.; Giachero, A.; Gironi, L.; et al. Large area Si low-temperature light detectors with Neganov-Luke effect. Eur. Phys. J. C 2015, 75, 480. [Google Scholar] [CrossRef] [Green Version]
- Gironi, L.; Biassoni, M.; Brofferio, C.; Capelli, S.; Carniti, P.; Cassina, L.; Clemenza, M.; Cremonesi, O.; Faverzani, M.; Ferri, E.; et al. Cerenkov light identification with Si low-temperature detectors with Neganov-Luke effect-enhanced sensitivity. J. Instrum. 2016, 94, 054608. [Google Scholar] [CrossRef] [Green Version]
- Abdelhameed, A.H.; Angloher, G.; Bauer, P.; Bento, A.; Bertoldo, E.; Bucci, C.; Canonica, L.; D’Addabbo, A.; Defay, X.; Di Lorenzo, S.; et al. First results on sub-GeV spin-dependent dark matter interactions with 7Li. Eur. Phys. J. C 2019, 79, 630. [Google Scholar] [CrossRef]
- Bertoldo, E.; Abdelhameed, A.H.; Angloher, G.; Bauer, P.; Bento, A.; Breier, R.; Bucci, C.; Canonica, L.; D’Addabbo, A.; Di Lorenzo, S.; et al. Lithium-containing crystals for light dark matter search experiments. J. Low Temp. Phys. 2020, 199, 510–518. [Google Scholar] [CrossRef] [Green Version]
- Pantić, E. Performance of Cryogenic Light Detectors in the CRESST-II Dark Matter Search. Ph.D. Thesis, Technische Universität München, Munich, Germany, 2008. [Google Scholar]
- Scha¨ffner, K.; Angloher, G.; Bellini, F.; Casali, N.; Ferroni, F.; Hauff, D.; Nagorny, S.S.; Pattavina, L.; Petricca, F.; Pirro, S.; et al. Particle discrimination in TeO2 bolometers using light detectors read out by transition edge sensors. Astropart. Phys. 2015, 69, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Rothe, J.; Angloher, G.; Bauer, P.; Bento, A.; Bucci, C.; Canonica, L.; D’Addabbo, A.; Defay, X.; Erb, A.; Feilitzsch, F.V.; et al. TES-Based Light Detectors for the CRESST Direct Dark Matter Search. J. Low Temp. Phys. 2018, 193, 1160–1166. [Google Scholar] [CrossRef] [Green Version]
- Di Stefano, P.C.F.; Frank, T.; Angloher, G.; Bruckmayer, M.; Cozzini, C.; Hauff, D.; Pröbst, F.; Rutzinger, S.; Seidel, W.; Stodolsky, L.; et al. Textured silicon calorimetric light detector. J. Appl. Phys. 2003, 94, 6887–6891. [Google Scholar] [CrossRef] [Green Version]
- Petricca, F. Dark Matter Search with Cryogenic Phonon-Light Detectors. Ph.D. Thesis, Ludwig-Maximilians-Universität, Munich, Germany, 2005. [Google Scholar]
- Ren, R.; Bathurst, C.; Chang, Y.Y.; Chen, R.; Fink, C.W.; Hong, Z.; Kurinsky, N.A.; Mast, N.; Mishra, N.; Novati, V.; et al. Design and characterization of a phonon-mediated cryogenic particle detector with an eV-scale threshold and 100 keV-scale dynamic range. arXiv 2020, arXiv:physics.ins-det/2012.12430. [Google Scholar]
- Fink, C.W.; Watkins, S.L.; Aramaki, T.; Brink, P.L.; Camilleri, J.; Defay, X.; Ganjam, S.; Kolomensky, Y.G.; Mahapatra, R.; Mirabolfathi, N.; et al. Performance of a large area photon detector for rare event search applications. Appl. Phys. Lett. 2021, 118, 022601. [Google Scholar] [CrossRef]
- Isaila, C.; Boslau, O.; Coppi, C.; Feilitzsch, F.; Goldstraß, P.; Jagemann, T.; Jochum, J.; Kemmer, J.; Lachenmaier, T.; Lanfranchi, J.C.; et al. Scintillation light detectors with Neganov–Luke amplification. Nucl. Instrum. Methods Phys. Res. A 2006, 559, 399. [Google Scholar] [CrossRef]
- Isaila, C. Development of Cryogenic Light Detectors with Neganov-Luke Amplification for the Dark Matter Experiments CRESST and EURECA. Ph.D. Thesis, Technische Universität München, Munich, Germany, 2010. [Google Scholar]
- Willers, M. Background Suppression in TeO2 Bolometers with Neganov-Luke Amplified Cryogenic Light Detectors. Ph.D. Thesis, Technische Universität München, Munich, Germany, 2015. [Google Scholar]
- Willers, M.; Feilitzsch, F.V.; Gütlein, A.; Münster, A.; Lanfranchi, J.C.; Oberauer, L.; Potzel, W.; Roth, S.; Schönert, S.; Sivers, M.V.; et al. Neganov-Luke amplified cryogenic light detectors for the background discrimination in neutrinoless double beta decay search with TeO2 bolometers. J. Instrum. 2015, 10, P03003. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Armstrong, W.; Benato, G.; Beretta, M.; Chang, C.L.; Fujikawa, B.K.; Hafidi, K.; Hansen, E.; Huang, R.; Karapetrov, G.; et al. Development of transition-edge sensor based large area photon detectors for CUPID. In Proceedings of the XXIX International (online) Conference on Neutrino Physics and Astrophysics (Neutrino 2020), Minneapolis, MI, USA, 22 June–2 July 2020. [Google Scholar]
- Cardani, L.; Casali, N.; Colantoni, I.; Cruciani, A.; Bellini, F.; Castellano, M.G.; Cosmelli, C.; D’Addabbo, A.; Di Domizio, S.; Martinez, M.; et al. High sensitivity phonon-mediated kinetic inductance detector with combined amplitude and phase read-out. Appl. Phys. Lett. 2017, 110, 033504. [Google Scholar] [CrossRef] [Green Version]
- Cardani, L.; Casali, N.; Cruciani, A.; Le Sueur, H.; Martinez, M.; Bellini, F.; Calvo, M.; Castellano, M.G.; Colantoni, I.; Cosmelli, C.; et al. Al/Ti/Al phonon-mediated KIDs for UV–vis light detection over large areas. Supercond. Sci. Technol. 2018, 31, 075002. [Google Scholar] [CrossRef] [Green Version]
- Cardani, L.; Casali, N.; Colantoni, I.; Cruciani, A.; Di Domizio, S.; Martinez, M.; Pettinacci, V.; Pettinari, G.; Vignati, M. Final results of CALDER: Kinetic inductance light detectors to search for rare events. arXiv 2021, arXiv:physics.ins-det/2104.06850. [Google Scholar]
- Lee, H.J.; So, J.H.; Kang, C.S.; Kim, G.B.; Kim, S.R.; Lee, J.H.; Lee, M.K.; Yoon, W.S.; Kim, Y.H. Development of a scintillation light detector for a cryogenic rare-event-search experiment. Nucl. Instrum. Methods Phys. Res. A 2015, 784, 508–512. [Google Scholar] [CrossRef]
- Jeon, J.A.; Kim, H.L.; Kim, I.; Kim, S.G.; Kim, S.R.; Kim, T.S.; Kim, Y.H.; Kwon, D.H.; Lee, H.; Song, J.H.; et al. Study on phonon amplification of Neganov-Luke light detectors. J. Low Temp. Phys. 2020, 199, 883–890. [Google Scholar] [CrossRef]
- Gray, D.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Hassel, C.; Hengstler, D.; Kempf, S.; Loidl, M.; Navick, X.F.; Rodrigues, M. The first tests of a large-area light detector equipped with metallic magnetic calorimeters for scintillating bolometers for the LUMINEU neutrinoless double beta decay search. J. Low Temp. Phys. 2016, 184, 904–909. [Google Scholar] [CrossRef]
- Gatti, E.; Manfredi, P. Processing the signals from solid-state detectors in elementary-particle physics. Riv. Nuovo Cim. 1986, 9, 1. [Google Scholar] [CrossRef]
- Radeka, V.; Karlovac, N. Least-square-error amplitude measurement of pulse signals in presence of noise. Nucl. Instrum. Meth. 1967, 52, 86–92. [Google Scholar] [CrossRef]
- Beeman, J.W.; Bellini, F.; Capelli, S.; Cardani, L.; Casali, N.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; Galashov, E.N.; Gironi, L.; et al. ZnMoO4: A promising bolometer for neutrinoless double beta decay searches. Astropart. Phys. 2012, 35, 813. [Google Scholar] [CrossRef] [Green Version]
- Poda, D.V. 100Mo-enriched Li2MoO4 scintillating bolometers for 0ν2β decay search: From LUMINEU to CUPID-0/Mo projects. AIP Conf. Proc. 2017, 1894, 020017. [Google Scholar]
- Barabash, A.S.; Danevich, F.A.; Gimbal-Zofka, Y.; Giuliani, A.; Mancuso, M.; Konovalov, S.I.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; et al. First test of an enriched 116CdWO4 scintillating bolometer for neutrinoless double-beta-decay searches. Eur. Phys. J. C 2016, 76, 487. [Google Scholar] [CrossRef] [Green Version]
- Arnaboldi, C.; Capelli, S.; Cremonesi, O.; Gironi, L.; Pavan, M.; Pessina, G.; Pirro, S. Characterization of ZnSe scintillating bolometers for Double Beta Decay. Astropart. Phys. 2011, 34, 344–353. [Google Scholar] [CrossRef] [Green Version]
- Scheel, H.J. Historical aspects of crystal growth technology. J. Cryst. Growth 2000, 211, 1–12. [Google Scholar] [CrossRef]
- Dhanaraj, G.; Byrappa, K.; Prasad, V.; Dudley, M. (Eds.) Springer Handbook of Crystal Growth; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Shlegel, V.N.; Borovlev, Y.A.; Grigoriev, D.N.; Grigorieva, V.D.; Danevich, F.A.; Ivannikova, N.V.; Postupaeva, A.G.; Vasiliev, Y.V. Recent progress in oxide scintillation crystals development by low-thermal gradient Czochralski technique for particle physics experiments. J. Instrum. 2017, 12, C08011. [Google Scholar] [CrossRef]
- Barabash, A.S.; Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Di Marco, A.; Incicchitti, A.; Kasperovych, D.V.; et al. Low background scintillators to investigate rare processes. J. Instrum. 2020, 15, C07037. [Google Scholar] [CrossRef]
- Degoda, V.Y.; Danevich, F.A.; Grigorieva, V.D.; Podust, G.P.; Shlegel, V.N.; Stanovyy, O. Luminescence of Li2Mo1−0.05W0.05O4 crystal under X-ray excitation. Optik 2020, 206, 164273. [Google Scholar] [CrossRef]
- Ryadun, A.A.; Rakhmanova, M.I.; Grigorieva, V.D. Photoluminescence properties of perspective bolometric crystals Na2Mo2O7 and Na2W2O7 grown by low-thermal-gradient Czochralski technique. Opt. Mat. 2020, 99, 109537. [Google Scholar] [CrossRef]
- Kolobanov, V.N.; Kamenskikh, I.A.; Mikhailin, V.V.; Shpinkov, I.N.; Spassky, D.A.; Zadneprovsky, B.I.; Potkin, L.I.; Zimmerer, G. Optical and luminescent properties of anisotropic tungstate crystals. Nucl. Instrum. Methods Phys. Res. A 2002, 486, 496–503. [Google Scholar] [CrossRef]
- Itoh, M. Luminescence study of self-trapped excitons in CdMoO4. J. Lumin. 2012, 132, 645–651. [Google Scholar] [CrossRef]
- Danevich, F.A.; Degoda, V.Y.; Dulger, L.L.; Dumoulin, L.; Giuliani, A.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; Olivieri, E.; et al. Growth and characterization of a Li2Mg2(MoO4)3 scintillating bolometer. Nucl. Instrum. Methods Phys. Res. A 2018, 889, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Bashmakova, N.V.; Danevich, F.A.; Degoda, V.Y.; Dmitruk, I.M.; Kudovbenko, V.M.; Kutovyi, S.Y.; Mikhailin, V.V.; Nagorny, S.S.; Nikolaiko, A.S.; Nisi, S. Li2Zn2(MoO4)3 crystal as a potential detector for 100Mo 2β-decay search. Funct. Mater. 2009, 16, 266–274. [Google Scholar]
- Mikhailik, V.B.; Kraus, H.; Itoh, M.; Iri, D.; Uchida, M. Radiative decay of self-trapped excitons in CaMoO4 and MgMoO4 crystals. J. Phys. Condens. Matter 2005, 17, 7209. [Google Scholar] [CrossRef]
- Spassky, D.A.; Kozlova, N.S.; Brik, M.G.; Nagirnyi, V.; Omelkov, S.; Buzanov, O.A.; Buryi, M.; Laguta, V.; Shlegel, V.N.; Ivannikova, N.V. Luminescent, optical and electronic properties of Na2Mo2O7 single crystals. J. Lumin. 2017, 192, 1264–1272. [Google Scholar] [CrossRef]
- Spassky, D.A.; Ivanov, S.N.; Kolobanov, V.N.; Mikhailin, V.V.; Zemskov, V.N.; Zadneprovski, B.I.; Potkin, L.I. Optical and luminescent properties of the lead and barium molybdates. Radiat. Meas. 2004, 38, 607–610. [Google Scholar] [CrossRef]
- Mikhailik, V.B.; Elyashevskyi, Y.; Kraus, H.; Kim, H.J.; Kapustianyk, V.; Panasyuk, M. Temperature dependence of scintillation properties of SrMoO4. Nucl. Instrum. Methods Phys. Res. A 2015, 792, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Bergé, L.; Boiko, R.S.; Chapellier, M.; Chernyak, D.M.; Coron, N.; Danevich, F.A.; Decourt, R.; Degoda, V.Y.; Devoyon, L.; Drillien, A.; et al. Purification of molybdenum, growth and characterization of medium volume ZnMoO4 crystals for the LUMINEU program. J. Instrum. 2014, 9, P06004. [Google Scholar] [CrossRef]
- Belhoucif, R.; Velázquez, M.; Petit, Y.; Pérez, O.; Glorieux, B.; Viraphong, O.; de Marcillac, P.; Coron, N.; Torres, L.; Véron, E.; et al. Growth and spectroscopic properties of 6Li- and 10B-enriched crystals for heat-scintillation cryogenic bolometers used in the rare events searches. CrystEngComm 2013, 15, 3785–3792. [Google Scholar] [CrossRef]
- Ogorodnikov, I.N.; Poryvay, N.E.; Sedunova, I.N.; Tolmachev, A.V.; Yavetskiy, R.P. Thermally stimulated recombination processes and luminescence in Li6(Y,Gd,Eu)(BO3)3 crystals. Phys. Solid State 2011, 53, 263–270. [Google Scholar] [CrossRef]
- Mikhailik, V.B.; Kraus, H.; Balcerzyk, M.; Czarnacki, W.; Moszyński, M.; Mykhaylyk, M.S.; Wahl, D. Low-temperature spectroscopic and scintillation characterisation of Ti-doped Al2O3. Nucl. Instrum. Methods Phys. Res. A 2005, 546, 523–534. [Google Scholar] [CrossRef]
- Yanagida, T.; Fujimoto, Y.; Koshimizu, M.; Kawano, N.; Okada, G.; Kawaguchi, N. Comparative Studies of Optical and Scintillation Properties between LiGaO2 and LiAlO2 Crystals. J. Phys. Soc. Jpn. 2017, 86, 094201. [Google Scholar] [CrossRef]
- Pankratov, V.; Grigorjeva, L.; Millers, D.; Yochum, H.M. Intrinsic luminescence and energy transfer processes in pure and doped YVO4 crystals. Phys. Status Solidi C 2007, 4, 801–804. [Google Scholar] [CrossRef]
- Smits, K.; Millers, D.; Grigorjeva, L.; Fidelus, J.D.; Lojkowski, W. Comparison of ZrO2:Y nanocrystals and macroscopic single crystal luminescence. J. Phys. Conf. Ser. 2007, 93, 012035. [Google Scholar] [CrossRef] [Green Version]
- Tsuboi, T.; Silfsten, P. The lifetime of Eu2+ fluorescence in CaF2:Eu2+ crystals. J. Phys. Condens. Matter 1991, 3, 9163. [Google Scholar] [CrossRef]
- Nakonechnyi, S.; Kärner, T.; Lushchik, A.; Lushchik, C.; Babin, V.; Feldbach, E.; Kudryavtseva, I.; Liblik, P.; Pung, L.; Vasil’chenko, E. Low-temperature excitonic, electron–hole and interstitial-vacancy processes in LiF single crystals. J. Phys. Condens. Matter 2005, 18, 379. [Google Scholar] [CrossRef] [Green Version]
- Ginestra, C. Characterization of Scintillating Bolometers for Particle Detection and Installation of a Bolometric Test Facility in the University of Zaragoza. Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, 2013. [Google Scholar]
- Shiran, N.; Boiaryntseva, I.; Gektin, A.; Gridin, S.; Shlyakhturov, V.; Vasuykov, S. Luminescence and radiation resistance of undoped NaI crystals. Mater. Res. Bull. 2014, 59, 13–17. [Google Scholar] [CrossRef]
- Edison, T.A. Communication to Lord Kelvin. Nature 1896, 53, 470–474. [Google Scholar]
- McGregor, D.S. Materials for gamma-ray spectrometers: Inorganic scintillators. Annu. Rev. Mater. Res. 2018, 48, 245–277. [Google Scholar] [CrossRef]
- Dorenbos, P. The quest for high resolution γ-ray scintillators. Opt. Mat. X 2019, 1, 100021. [Google Scholar] [CrossRef]
- Cebrián, S.; Coron, N.; Dambier, G.; de Marcillac, P.; García, E.; Irastorza, I.G.; Leblanc, J.; Morales, A.; Morales, J.; de Solórzano, A.O.; et al. First underground light versus heat discrimination for dark matter search. Phys. Lett. B 2003, 563, 48–52. [Google Scholar] [CrossRef]
- Cebrián, S.; Coron, N.; Dambier, G.; García, E.; Irastorza, I.G.; Leblanc, J.; de Marcillac, P.; Morales, A.; Morales, J.; de Solórzano, A.O.; et al. Bolometric WIMP search at Canfranc with different absorbers. Astropart. Phys. 2004, 21, 23–34. [Google Scholar] [CrossRef]
- Angloher, G.; Bucci, C.; Christ, P.; Cozzini, C.; Von Feilitzsch, F.; Hauff, D.; Henry, S.; Jagemann, T.; Jochum, J.; Kraus, H.; et al. Limits on WIMP dark matter using scintillating CaWO4 cryogenic detectors with active background suppression. Astropart. Phys. 2005, 23, 325–339. [Google Scholar] [CrossRef] [Green Version]
- Angloher, G.; Bauer, M.; Bavykina, I.; Bento, A.; Brown, A.; Bucci, C.; Ciemniak, C.; Coppi, C.; Deuter, G.; Von Feilitzsch, F.; et al. Commissioning run of the CRESST-II dark matter search. Astropart. Phys. 2009, 31, 270–276. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.; Henry, S.; Kraus, H.; McCabe, C. Extending the CRESST-II commissioning run limits to lower masses. Phys. Rev. D 2012, 85, 021301. [Google Scholar] [CrossRef] [Green Version]
- Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Erb, A.; von Feilitzsch, F.; Iachellini, N.F.; Gorla, P.; Gütlein, A.; Hauff, D.; et al. Results on low mass WIMP using an upgraded CRESST-II detector. Eur. Phys. J. C 2014, 74, 3184. [Google Scholar] [CrossRef] [Green Version]
- Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Defay, X.; Erb, A.; von Feilitzsch, F.; Iachellini, N.F.; Gorla, P.; Gütlein, A.; et al. Results on light dark matter particles with a low-threshold CRESST-II detector. Eur. Phys. J. C 2016, 76, 25. [Google Scholar] [CrossRef] [Green Version]
- Abdelhameed, A.H.; Angloher, G.; Bauer, P.; Bento, A.; Bertoldo, E.; Bucci, C.; Canonica, L.; D’Addabbo, A.; Defay, X.; Di Lorenzo, S.; et al. First results from the CRESST-III low-mass dark matter program. Phys. Rev. D 2019, 100, 102002. [Google Scholar] [CrossRef] [Green Version]
- Cebrián, S.; Coron, N.; Dambier, G.; De Marcillac, P.; Garcia, E.; Irastorza, I.G.; Leblanc, J.; Morales, A.; Morales, J.; de Solorzano, A.O.; et al. Improved limits for natural α radioactivity of tungsten with a CaWO4 scintillating bolometer. Phys. Lett. B 2003, 556, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Cozzini, C.; Angloher, G.; Bucci, C.; von Feilitzsch, F.; Hauff, D.; Henry, S.; Jagemann, T.; Jochum, J.; Kraus, H.; Majorovits, B.; et al. Detection of the natural α decay of tungsten. Phys. Rev. C 2004, 70, 064606. [Google Scholar] [CrossRef] [Green Version]
- Angloher, G.; Bauer, M.; Bauer, P.; Bavykina, I.; Bento, A.C.; Bucci, C.; Canonica, L.; Ciemniak, C.; Defay, X.; Deuter, G.; et al. New limits on double electron capture of 40Ca and 180W. J. Phys. G 2016, 43, 095202. [Google Scholar] [CrossRef] [Green Version]
- Danevich, F.A.; Georgadze, A.S.; Kobychev, V.V.; Nagorny, S.S.; Nikolaiko, A.S.; Ponkratenko, O.A.; Tretyak, V.I.; Zdesenko, S.Y.; Zdesenko, Y.G.; Bizzeti, P.G.; et al. α activity of natural tungsten isotopes. Phys. Rev. C 2003, 67, 014310. [Google Scholar] [CrossRef] [Green Version]
- Zdesenko, Y.G.; Avignone, F.T., III; Brudanin, V.B.; Danevich, F.A.; Nagorny, S.S.; Solsky, I.M.; Tretyak, V.I. Scintillation properties and radioactive contamination of CaWO4 crystal scintillators. Nucl. Instrum. Methods Phys. Res. A 2005, 538, 657–667. [Google Scholar] [CrossRef]
- Zdesenko, Y.G.; Avignone, F.T., III; Brudanin, V.B.; Danevich, F.A.; Kobychev, V.V.; Kropivyansky, B.N.; Nagorny, S.S.; Tretyak, V.I.; Vylov, T. CARVEL experiment with 48CaWO4 crystal scintillators for the double β decay study of 48Ca. Astropart. Phys. 2005, 23, 249–263. [Google Scholar] [CrossRef]
- Danevich, F.A.; Georgadze, A.S.; Kobychev, V.V.; Kropivyansky, B.N.; Nagorny, S.S.; Nikolaiko, A.S.; Poda, D.V.; Tretyak, V.I.; Zdesenko, S.Y.; Zdesenko, Y.G.; et al. Radioactive contamination of CaWO4, ZnWO4, CdWO4, and Gd2SiO5:Ce crystal scintillators. AIP Conf. Proc. 2005, 785, 87–92. [Google Scholar]
- Danevich, F.A.; Bailiff, I.K.; Kobychev, V.V.; Kraus, H.; Laubenstein, M.; Loaiza, P.; Mikhailik, V.B.; Nagorny, S.S.; Nikolaiko, A.S.; Nisi, S.; et al. Effect of recrystallisation on the radioactive contamination of CaWO4 crystal scintillators. Nucl. Instrum. Methods Phys. Res. A 2011, 631, 44–53. [Google Scholar] [CrossRef]
- Meunier, P.; Bravin, M.; Bruckmayer, M.; Giordano, S.; Loidl, M.; Meier, O.; Pröbst, F.; Seidel, W.; Sisti, M.; Stodolsky, L.; et al. Discrimination between nuclear recoils and electron recoils by simultaneous detection of phonons and scintillation light. Appl. Phys. Lett. 1999, 75, 1335. [Google Scholar] [CrossRef] [Green Version]
- Bravin, M.; Bruckmayer, M.; Frank, T.; Giordano, S.; Loidl, M.; Meier, O.; Meunier, P.; Pergolesi, D.; Pröbst, F.; Seidel, W.; et al. Simultaneous measurement of phonons and scintillation light for active background rejection in the CRESST experiment. Nucl. Instrum. Methods Phys. Res. A 2000, 444, 323–326. [Google Scholar] [CrossRef]
- Cebrián, S.; Coron, N.; Dambier, G.; Garcia, E.; Irastorza, I.G.; Leblanc, J.; De Marcillac, P.; Morales, A.; Morales, J.; de Solórzano, A.O.; et al. The ROSEBUD experiment at Canfranc: 2001 report. Nucl. Phys. B (Proc. Suppl.) 2002, 110, 97–99. [Google Scholar]
- Erb, A.; Lanfranchi, J.C. Growth of high-purity scintillating CaWO4 single crystals for the low-temperature direct dark matter search experiments CRESST-II and EURECA. CrystEngComm 2013, 15, 2301. [Google Scholar] [CrossRef]
- Münster, A.; Sivers, M.V.; Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Erb, A.; Feilitzsch, F.V.; Gorla, P.; Gütlein, A.; et al. Radiopurity of CaWO4 crystals for direct dark matter search with CRESST and EURECA. J. Cosmol. Astropart. Phys. 2014, 5, 018. [Google Scholar] [CrossRef]
- Strauss, R.; Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Erb, A.; von Feilitzsch, F.; Ferreiro, N.; Gorla, P.; Gütlein, A.; et al. A detector module with highly efficient surface-alpha event rejection operated in CRESST-II Phase 2. Eur. Phys. J. C 2015, 75, 352. [Google Scholar] [CrossRef]
- Kiefer, M.; Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Erb, A.; von Feilitzsch, F.; Iachellini, N.F.; Gorla, P.; Gütlein, A.; et al. In-situ study of light production and transport in phonon/light detector modules for dark matter search. Nucl. Instrum. Methods Phys. Res. A 2016, 821, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Strauss, R.; Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Erb, A.; von Feilitzsch, F.; Iachellini, N.F.; Gorla, P.; Gütlein, A.; et al. Beta/gamma and alpha backgrounds in CRESST-II Phase 2. J. Cosmol. Astropart. Phys. 2015, 06, 030. [Google Scholar] [CrossRef]
- Strauss, R.; Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Carli, W.; Erb, A.; von Feilitzsch, F.; Gorla, P.; Gütlein, A.; et al. Energy-dependent light quenching in CaWO4 crystals at mK temperatures. Eur. Phys. J. C 2014, 74, 2957. [Google Scholar] [CrossRef] [Green Version]
- Danevich, F.A.; Zdesenko, Y.G.; Nikolaiko, A.S.; Tretyak, V. Search for 2β decay of 116Cd with the help of a 116CdWO4 scintillator. JETP Lett. 1989, 49, 476. [Google Scholar]
- Danevich, F.A.; Georgadze, A.S.; Kobychev, V.V.; Kropivyansky, B.N.; Kuts, V.N.; Nikolaiko, A.S.; Tretyak, V.I.; Zdesenko, Y. The research of 2β decay of 116Cd with enriched 116CdWO4 crystal scintillators. Phys. Lett. B 1995, 344, 72. [Google Scholar] [CrossRef]
- Danevich, F.A.; Georgadze, A.S.; Kobychev, V.V.; Kropivyansky, B.N.; Nikolaiko, A.S.; Ponkratenko, O.A.; Tretyak, V.I.; Zdesenko, S.Y.; Zdesenko, Y.G.; Bizzeti, P.G.; et al. Search for 2β decay of cadmium and tungsten isotopes: Final results of the Solotvina experiment. Phys. Rev. C 2003, 68, 035501. [Google Scholar] [CrossRef]
- Belli, P.; Bernabei, R.; Bukilic, N.; Cappella, F.; Cerulli, R.; Dai, C.J.; Danevich, F.A.; De Laeter, J.R.; Incicchitti, A.; Kobychev, V.V.; et al. Investigation of β decay of 113Cd. Phys. Rev. C 2007, 76, 064603. [Google Scholar] [CrossRef]
- Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F.A.; d’Angelo, S.; Incicchitti, A.; Kobychev, V.V.; Nagorny, S.S.; Nozzoli, F.; et al. Search for double-β decay processes in 108Cd and 114Cd with the help of the low-background CdWO4 crystal scintillator. Eur. Phys. J. A 2008, 36, 167–170. [Google Scholar] [CrossRef]
- Barabash, A.S.; Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Caracciolo, V.; Chernyak, D.M.; Cerulli, R.; Danevich, F.A.; Di Vacri, M.L.; et al. Low background detector with enriched 116CdWO4 crystal scintillators to search for double β decay of 116Cd. J. Instrum. 2011, 6, P08011. [Google Scholar] [CrossRef] [Green Version]
- Belli, P.; Bernabei, R.; Boiko, R.S.; Brudanin, V.B.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D.M.; Danevich, F.A.; d’Angelo, S.; et al. Search for double-β decay processes in 106Cd with the help of a 106CdWO4 crystal scintillator. Phys. Rev. C 2012, 85, 044610. [Google Scholar] [CrossRef] [Green Version]
- Belli, P.; Bernabei, R.; Brudanin, V.B.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kasperovych, D.V.; Klavdiienko, V.R.; et al. Search for 2β decay of 106Cd with an enriched 106CdWO4 crystal scintillator in coincidence with four HPGe detectors. Phys. Rev. C 2016, 93, 045502. [Google Scholar] [CrossRef] [Green Version]
- Alessandrello, A.; Brofferio, C.; Camin, D.V.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; de Marcillac, P.; Pavan, M.; Pessina, G.; Previtali, E.; et al. High Z Bolometers for Analysis of Internal β and α Activities. J. Low Temp. Phys. 1993, 93, 815–820. [Google Scholar] [CrossRef]
- Helis, D.L. A low energy threshold CdWO4 scintillating bolometer for gA measurement. In Proceedings of the XXIX International (online) Conference on Neutrino Physics and Astrophysics (Neutrino 2020), Minneapolis, MI, USA, 22 June–2 July 2020. [Google Scholar]
- Danevich, F.A.; Georgadze, A.S.; Kobychev, V.V.; Kropivyansky, B.N.; Nagorny, S.S.; Nikolaiko, A.S.; Poda, D.V.; Tretyak, V.I.; Yurchenko, S.S.; Grinyov, B.V.; et al. Application of PbWO4 crystal scintillators in experiment to search for decay of 116Cd. Nucl. Instrum. Methods Phys. Res. A 2006, 556, 259–265. [Google Scholar] [CrossRef] [Green Version]
- Bardelli, L.; Bini, M.; Bizzeti, P.G.; Carraresi, L.; Danevich, F.A.; Fazzini, T.F.; Grinyov, B.V.; Ivannikova, N.V.; Kobychev, V.V.; Kropivyansky, B.N.; et al. Further study of CdWO4 crystal scintillators as detectors for high sensitivity 2β experiments: Scintillation properties and pulse-shape discrimination. Nucl. Instrum. Methods Phys. Res. A 2006, 569, 743–753. [Google Scholar] [CrossRef] [Green Version]
- Gironi, L.; Arnaboldi, C.; Capelli, S.; Cremonesi, O.; Pessina, G.; Pirro, S.; Pavan, M. CdWO4 bolometers for double beta decay search. Opt. Mat. 2009, 31, 1388–1392. [Google Scholar] [CrossRef] [Green Version]
- Gorla, P. Scintillating bolometers for double beta decay search. J. Low Temp. Phys. 2008, 151, 854–859. [Google Scholar] [CrossRef]
- Scha¨ffner, K.; Pröbst, F.; Seidel, W.; Petricca, F.; Hauff, D.; Kleindienst, R. Alternative scintillating materials for the CRESST dark matter search. J. Low Temp. Phys. 2012, 167, 1075–1080. [Google Scholar] [CrossRef]
- Scha¨ffner, K. Study of Backgrounds in the CRESST Dark Matter Search. Ph.D. Thesis, Technischen Universität München, Munich, Germany, 2013. [Google Scholar]
- Helis, D.L.; Bandac, I.C.; Barabash, A.S.; Billard, J.; Chapellier, M.; de Combarieu, M.; Danevich, F.A.; Dumoulin, L.; Gascon, J.; Giuliani, A.; et al. Neutrinoless double-beta decay searches with enriched 116CdWO4 scintillating bolometers. J. Low Temp. Phys. 2020, 199, 467. [Google Scholar] [CrossRef]
- Galashov, E.N.; Atuchin, V.V.; Kozhukhov, A.S.; Pokrovsky, L.D.; Shlegel, V.N. Growth of CdWO4 crystals by the low thermal gradient Czochralski technique and the properties of a (010) cleaved surface. J. Cryst. Growth 2014, 401, 156–159. [Google Scholar] [CrossRef]
- Giuliani, A.; Danevich, F.A.; Tretyak, V.I. A multi-isotope 0ν2β bolometric experiment. Eur. Phys. J. C 2018, 78, 272. [Google Scholar] [CrossRef] [Green Version]
- Barinova, O.; Sadovskiy, A.; Ermochenkov, I.; Kirsanova, S.; Khomyakov, A.; Zykova, M.; Kuchuk, Z.; Avetissov, I. Solid solution Li2MoO4–Li2WO4 crystal growth and characterization. J. Cryst. Growth 2017, 468, 365–368. [Google Scholar] [CrossRef]
- Matskevich, N.I.; Semerikova, A.N.; Shlegel, V.N.; Zaitsev, V.P.; Matskevich, M.Y.; Anyfrieva, O.I. Czochralski growth, thermodynamic analysis and luminescent properties of Li2Mo1−xWxO4 crystal material. J. Alloys Compd. 2021, 850, 156683. [Google Scholar] [CrossRef]
- Aliane, A.; Avetissov, I.C.; Barinova, O.P.; de la Broise, X.; Danevich, F.A.; Dumoulin, L.; Dussopt, L.; Giuliani, A.; Goudon, V.; Kirsanova, S.V.; et al. First test of a Li2WO4(Mo) bolometric detector for the measurement of coherent neutrino-nucleus scattering. Nucl. Instrum. Methods Phys. Res. A 2020, 949, 162784. [Google Scholar] [CrossRef]
- Mauri, B. First results from BASKET innovative bolometers for the CEνNS detection. In Proceedings of the XXIX International (online) Conference on Neutrino Physics and Astrophysics (Neutrino 2020), Minneapolis, MI, USA, 22 June–2 July 2020. [Google Scholar]
- Bernabei, R.; Belli, P.; Cappella, F.; Cerulli, R.; Montecchia, F.; Nozzoli, F.; Incicchitti, A.; Prosperi, D.; Dai, C.J.; Kuang, H.H.; et al. Dark Matter search. Riv. Nuovo Cim. 2003, 26, 1–73. [Google Scholar] [CrossRef]
- Bernabei, R.; Belli, P.; Cappella, F.; Caracciolo, V.; Castellano, S.; Cerulli, R.; Dai, C.J.; d’Angelo, A.; d’Angelo, S.; Di Marco, A.; et al. Final model independent result of DAMA/LIBRA-phase1. Eur. Phys. J. C 2013, 73, 2648. [Google Scholar] [CrossRef] [Green Version]
- Bernabei, R.; Belli, P.; Bussolotti, A.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Dai, C.J.; d’Angelo, A.; Di Marco, A.; He, H.L.; et al. First model independent results from DAMA/LIBRA-phase2. Universe 2018, 4, 116. [Google Scholar] [CrossRef] [Green Version]
- Bernabei, R.; Belli, P.; Caracciolo, V.; Cerulli, R.; Merlo, V.; Cappella, F.; d’Angelo, A.; Incicchitti, A.; Di Marco, A.; Dai, C.J.; et al. DAMA/LIBRA–phase2 results and implications on several dark matter scenarios. Int. J. Mod. Phys. A 2020, 35, 2044023. [Google Scholar] [CrossRef]
- Pandey, I.R.; Kim, H.J.; Lee, H.S.; Kim, Y.D.; Lee, M.H.; Grigorieva, V.D.; Shlegel, V.N. The Na2W2O7 crystal: A crystal scintillator for dark matter search experiment. Eur. Phys. J. C 2018, 78, 973. [Google Scholar] [CrossRef] [Green Version]
- Nagorny, S.; Rusconi, C.; Sorbino, S.; Beeman, J.W.; Bellini, F.; Cardani, L.; Grigorieva, V.D.; Pagnanini, L.; Nisi, S.; Novoselov, I.I.; et al. Na-based crystal scintillators for next-generation rare event searches. Nucl. Instrum. Methods Phys. Res. A 2020, 977, 164160. [Google Scholar] [CrossRef]
- Van Loo, W. Luminescence of Lead Molybdate and Lead Tungstate. I. Experimental. Phys. Status Solidi A 1979, 27, 565–574. [Google Scholar] [CrossRef]
- Nagornaya, L.L.; Danevich, F.A.; Dubovik, A.M.; Grinyov, B.V.; Henry, S.; Kapustyanyk, V.; Kraus, H.; Poda, D.V.; Kudovbenko, V.M.; Mikhailik, V.B.; et al. Tungstate and Molybdate scintillators to search for Dark Matter and double beta decay. IEEE Trans. Nucl. Sci. 2009, 56, 2513–2518. [Google Scholar] [CrossRef]
- Danevich, F.A.; Grinyov, B.V.; Henry, S.; Kosmyna, M.B.; Kraus, H.; Krutyak, N.; Kudovbenko, V.M.; Mikhailik, V.B.; Nagornaya, L.L.; Nazarenko, B.P.; et al. Feasibility study of PbWO4 and PbMoO4 crystal scintillators for cryogenic rare events experiments. Nucl. Instrum. Methods Phys. Res. A 2010, 622, 608–613. [Google Scholar] [CrossRef]
- Alessandrello, A.; Arpesella, C.; Brofferio, C.; Bucci, C.; Cattadori, C.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Latorre, S.; Nucciotti, A.; et al. Measurements of internal radioactive contamination in samples of Roman lead to be used in experiments on rare events. Nucl. Instrum. Meth. B 1998, 142, 163. [Google Scholar] [CrossRef] [Green Version]
- Danevich, F.A.; Kim, S.K.; Kim, H.J.; Kim, Y.D.; Kobychev, V.V.; Kostezh, A.B.; Kropivyansky, B.N.; Laubenstein, M.; Mokina, V.M.; Nagorny, S.S.; et al. Ancient Greek lead findings in Ukraine. Nucl. Instrum. Methods Phys. Res. A 2009, 603, 328–332. [Google Scholar] [CrossRef]
- Beeman, J.W.; Bellini, F.; Cardani, L.; Casali, N.; Di Domizio, S.; Fiorini, E.; Gironi, L.; Nagorny, S.S.; Nisi, S.; Orio, F.; et al. New experimental limits on the α decays of lead isotopes. Eur. Phys. J. A 2013, 49, 50. [Google Scholar] [CrossRef] [Green Version]
- Danevich, F.A.; Zdesenko, Y.G.; Nikolaiko, A.S.; Burachas, S.F.; Nagornaya, L.L.; Ryzhikov, V.D.; Batenchuk, M.M. CdWO4, ZnSe and ZnWO4 scintillators in studies of 2β-processes. Instr. Exp. R. 1989, 32, 1059–1064. [Google Scholar]
- Danevich, F.A.; Kobychev, V.V.; Nagorny, S.S.; Poda, D.V.; Tretyak, V.I.; Yurchenko, S.S.; Zdesenko, Y.G. ZnWO4 crystals as detectors for 2β decay and dark matter experiments. Nucl. Instrum. Methods Phys. Res. A 2005, 544, 553–564. [Google Scholar] [CrossRef] [Green Version]
- Kraus, H.; Mikhailik, V.B.; Ramachers, Y.; Day, D.; Hutton, K.B.; Telfer, J. Feasibility study of a ZnWO4 scintillator for exploiting materials signature in cryogenic WIMP dark matter searches. Phys. Lett. B 2005, 610, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F.A.; Dubovik, A.M.; d’Angelo, S.; Galashov, E.N.; Grinyov, B.V.; Incicchitti, A.; et al. Radioactive contamination of ZnWO4 crystal scintillators. Nucl. Instrum. Methods Phys. Res. A 2011, 626–627, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Belli, P.; Bernabei, R.; Borovlev, Y.A.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kasperovych, D.V.; Polischuk, O.G.; et al. New development of radiopure ZnWO4 crystal scintillators. Nucl. Instrum. Methods Phys. Res. A 2019, 935, 89–94. [Google Scholar] [CrossRef]
- Bavykina, I.; Angloher, G.; Hauff, D.; Pantic, E.; Petricca, F.; Pröbst, F.; Seidel, W.; Stodolsky, L. Investigation of ZnWO4 crystals as scintillating absorbers for direct dark matter search experiments. IEEE Trans. Nucl. Sci. 2008, 55, 1449–1452. [Google Scholar] [CrossRef]
- Moszyński, M.; Syntfeld-Każuch, A.; Swiderski, L.; Grodzicka, M.; Iwanowska, J.; SSibczyński, P.; Szczęśniak, T. Energy resolution of scintillation detectors. Nucl. Instrum. Methods Phys. Res. A 2016, 805, 25–35. [Google Scholar] [CrossRef]
- Wolszczak, W.; Dorenbos, P. Nonproportional Response of Scintillators to Alpha Particle Excitation. IEEE Trans. Nucl. Sci. 2017, 64, 1580–1591. [Google Scholar]
- Bavykina, I.; Angloher, G.; Hauff, D.; Kiefer, M.; Petricca, F.; Pröbst, F. Development of cryogenic phonon detectors based on CaMoO4 and ZnWO4 scintillating crystals for direct dark matter search experiments. Opt. Mat. 2009, 31, 1382–1387. [Google Scholar] [CrossRef]
- Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Cherubini, N.; Danevich, F.A.; Incicchitti, A.; Kasperovych, D.V.; Merlo, V.; et al. Measurements of ZnWO4 anisotropic response to nuclear recoils for the ADAMO project. Eur. Phys. J. A 2020, 56, 83. [Google Scholar] [CrossRef]
- Jeon, J.A.; Kim, H.L.; Kim, S.R.; Kim, Y.H.; Lee, H.J.; Sekiya, H. Low temperature measurement on directional dependence of phonon-scintillation signals from a zinc tungstate crystal. In Proceedings of the 18th International Workshop on Low Temperature Detectors (LTD-18), Milan, Italy, 22–26 July 2019. [Google Scholar]
- Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F.A.; d’Angelo, S.; Incicchitti, A.; Kobychev, V.V.; Poda, D.V.; Tretyak, V.I. Final results of an experiment to search for 2β processes in zinc and tungsten with the help of radiopure ZnWO4 crystal scintillators. J. Phys. G 2011, 38, 115107. [Google Scholar] [CrossRef] [Green Version]
- Casali, N.; Dubovik, A.; Nagorny, S.; Nisi, S.; Orio, F.; Pattavina, L.; Pirro, S.; Schäffner, K.; Tupitsyna, I.; Yakubovskaya, A. Cryogenic Detectors for Rare Alpha Decay Search: A New Approach. J. Low Temp. Phys. 2016, 184, 952–957. [Google Scholar] [CrossRef]
- Khalife, H. BINGO: Bi-Isotope 0ν2β Next Generation Observatory. In Proceedings of the GDR DUPhy (Deep Underground Physics) Online Kick-Off Meeting, Lyon, France, 31 May–2 June 2021. [Google Scholar]
- Nones, C.; IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France. Private communication, 2021.
- Belogurov, S.; Kornoukhov, V.; Annenkov, A.; Borisevich, A.; Fedorov, A.; Korzhik, M.; Ligoun, V.; Missevitch, O.; Kim, S.K.; Kim, S.C.; et al. CaMoO4 scintillation crystal for the search of 100Mo double beta decay. IEEE Trans. Nucl. Sci. 2005, 52, 1131–1135. [Google Scholar] [CrossRef]
- Annenkov, A.N.; Buzanov, O.A.; Danevich, F.A.; Georgadze, A.S.; Kim, S.K.; Kim, H.J.; Kim, Y.D.; Kobychev, V.V.; Kornoukhov, V.N.; Korzhik, M.; et al. Development of CaMoO4 crystal scintillators for a double beta decay experiment with 100Mo. Nucl. Instrum. Methods Phys. Res. A 2008, 584, 334–345. [Google Scholar] [CrossRef] [Green Version]
- Bavykina, I. Investigation of ZnWO4 and CaMoO4 as Target Materials for the CRESST-II Dark Matter Search. Ph.D. Thesis, Ludwig-Maximilians-Universität München, Munich, Germany, 2009. [Google Scholar]
- Bhang, H.; Boiko, R.S.; Chernyak, D.M.; Choi, J.H.; Choi, S.; Danevich, F.A.; Efendiev, K.V.; Enss, C.; Fleischmann, A.; Gangapshev, A.M.; et al. AMoRE experiment: A search for neutrinoless double beta decay of 100Mo isotope with 40Ca100MoO4 cryogenic scintillation detector. J. Phys. Conf. Ser. 2012, 375, 042023. [Google Scholar] [CrossRef]
- Alenkov, V.V.; Buzanov, O.A.; Khanbekov, N.; Kim, S.K.; Kim, H.J.; Kornoukhov, V.N.; Kraus, H.; Mikhailik, V.B. Growth and characterization of isotopically enriched 40Ca100MoO4 single crystals for rare event search experiments. Cryst. Res. Technol. 2011, 46, 1223–1228. [Google Scholar] [CrossRef]
- Meija, J.; Coplen, T.B.; Berglund, M.; Brand, W.A.; De Bièvre, P.; Grüning, M.; Holden, N.E.; Irrgeher, J.; Loss, R.D.; Walczyk, T.; et al. Isotopic compositions of the elements 2013 (IUPAC Technical Report). Pure Appl. Chem. 2016, 88, 293. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Alenkov, V.; Ali, L.; Beyer, J.; Bibi, R.; Boiko, R.S.; Boonin, K.; Buzanov, O.; Chanthima, N.; Cheoun, M.K.; et al. A Study of Radioactive Contamination of 40Ca100MoO4 Crystals for the AMoRE Experiment. IEEE Trans. Nucl. Sci. 2016, 63, 543–547. [Google Scholar] [CrossRef]
- Alenkov, V.V.; Buzanov, O.A.; Dosovitskii, A.E.; Kornoukhov, V.N.; Mikhlin, A.L.; Moseev, P.S.; Khanbekov, N.D. Ultrapurification of Isotopically Enriched Materials for 40Ca100MoO4 Crystal Growth. Inorg. Mater. 2013, 49, 1220–1223. [Google Scholar] [CrossRef]
- Park, H.K. Purifications of calcium carbonate and molybdenum oxide powders for neutrinoless double beta decay experiment AMoRE. AIP Conf. Proc. 2015, 1672, 150003. [Google Scholar]
- Kim, G.B.; Choi, S.; Danevich, F.A.; Fleischmann, A.; Kang, C.S.; Kim, H.J.; Kim, S.R.; Kim, Y.D.; Kim, Y.H.; Kornoukhov, V.A.; et al. A CaMoO4 crystal low temperature detector for the AMoRE neutrinoless double beta decay search. Adv. High Energy Phys. 2015, 2015, 817530. [Google Scholar] [CrossRef]
- Kim, G.B.; Choi, J.H.; Jo, H.S.; Kang, C.S.; Kim, H.J.; Kim, H.L.; Kim, I.W.; Kim, S.R.; Kim, Y.D.; Kim, Y.H.; et al. Heat and light measurement of a 40Ca100MoO4 crystal for the AMoRE double beta decay experiment. IEEE Trans. Nucl. Sci. 2016, 63, 539–542. [Google Scholar] [CrossRef]
- Kim, G.B.; Choi, J.H.; Jo, H.S.; Kang, C.S.; Kim, H.L.; Kim, I.; Kim, S.R.; Kim, Y.H.; Lee, C.; Lee, H.J.; et al. Novel measurement method of heat and light detection for neutrinoless double beta decay. Astropart. Phys. 2017, 91, 105–112. [Google Scholar] [CrossRef]
- Kang, C.S.; Jeon, J.A.; Jo, H.S.; Kim, G.B.; Kim, H.L.; Kim, I.; Kim, S.R.; Kim, Y.H.; Kwon, D.H.; Lee, C.; et al. MMC-based low-temperature detector system of the AMoRE-Pilot experiment. Supercond. Sci. Technol. 2017, 30, 084011. [Google Scholar] [CrossRef]
- Jo, H.S.; Choi, S.; Danevich, F.A.; Fleischmann, A.; Jeon, J.A.; Kang, C.S.; Kang, W.G.; Kim, G.B.; Kim, H.J.; Kim, H.L.; et al. Status of the AMoRE Experiment Searching for Neutrinoless Double Beta Decay Using Low-Temperature Detectors. J. Low Temp. Phys. 2018, 193, 1182–1189. [Google Scholar] [CrossRef]
- Alenkov, V.; Bae, H.W.; Beyer, J.; Boiko, R.S.; Boonin, K.; Buzanov, O.; Chanthima, N.; Cheoun, M.K.; Chernyak, D.M.; Choe, J.S.; et al. First results from the AMoRE-Pilot neutrinoless double beta decay experiment. Eur. Phys. J. C 2019, 79, 791. [Google Scholar] [CrossRef] [Green Version]
- Jo, H.S. Status of the AMoRE experiment. J. Phys. Conf. Ser. 2017, 888, 012232. [Google Scholar] [CrossRef] [Green Version]
- Luqman, A.; Ha, D.H.; Lee, J.J.; Jeon, E.J.; Jo, H.S.; Kim, H.J.; Kim, Y.D.; Kim, Y.H.; Kobychev, V.V.; Lee, H.S.; et al. Simulations of background sources in AMoRE-I experiment. Nucl. Instrum. Methods Phys. Res. A 2017, 855, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y. AMoRE: A search for neutrinoless double-beta decay of 100Mo using low-temperature molybdenum-containing crystal detectors. J. Instrum. 2020, 15, C08010. [Google Scholar] [CrossRef]
- Park, H.K. The AMoRE search for neutrinoless double beta decay in 100Mo. In Proceedings of the 11th International Conference MEDEX’2017, Prague, Czech Republic, 29 May–2 June 2017. [Google Scholar]
- Pirro, S. Radiopure scintillators for Double Beta Decay searches. In Proceedings of the International Workshop on Radiopure Scintillators for EURECA (RPSCINT-2008), Kyiv, Ukraine, 9–10 September 2008. [Google Scholar]
- Xue, M.X.; Zhang, Y.L.; Peng, H.P.; Xu, Z.Z.; Wang, X.L. Study of CdMoO4 crystal for a neutrinoless double beta decay experiment with 116Cd and 100Mo nuclides. Chin. Phys. C 2017, 41, 046002. [Google Scholar] [CrossRef] [Green Version]
- Xue, M.; Poda, D.V.; Zhang, Y.; Khalife, H.; Giuliani, A.; Peng, H.; de Marcillac, P.; Olivieri, E.; Wen, S.; Zhao, K.; et al. First test of a CdMoO4 scintillating bolometer for neutrinoless double beta decay experiments with 116Cd and 100Mo nuclides. Nucl. Instrum. Methods Phys. Res. A 2019, 943, 162395. [Google Scholar] [CrossRef] [Green Version]
- Barinova, O.P.; Cappella, F.; Cerulli, R.; Danevich, F.A.; Kirsanova, S.V.; Kobychev, V.V.; Laubenstein, M.; Nagorny, S.S.; Nozzoli, F.; Tretyak, V.I. Intrinsic radiopurity of a Li2MoO4 crystal. Nucl. Instrum. Methods Phys. Res. A 2009, 607, 573. [Google Scholar] [CrossRef]
- Cardani, L.; Casali, N.; Nagorny, S.; Pattavina, L.; Piperno, G.; Barinova, O.P.; Beeman, J.W.; Bellini, F.; Danevich, F.A.; Di Domizio, S.; et al. Development of a Li2MoO4 scintillating bolometer for low background physics. J. Instrum. 2013, 8, P10002. [Google Scholar] [CrossRef] [Green Version]
- Poda, D.V.; Bergé, L.; Boiko, R.S.; Chapellier, M.; Chernyak, D.M.; Coron, N.; Danevich, F.A.; Devoyond, L.; Drillien, A.-A.; Dumoulin, L.; et al. Molybdenum containing scintillating bolometers for double-beta decay search (LUMINEU program). In Proceedings of the 3rd French-Ukrainian workshop on the instrumentation developments for High Energy Physics, Orsay, France, 15–16 October 2015; 2015; pp. 86–94. [Google Scholar]
- Grigorieva, V.D.; Shlegel, V.N.; Borovlev, Y.A.; Bekker, T.B.; Barabash, A.S.; Konovalov, S.I.; Umatov, V.I.; Borovkov, V.I. Li2MoO4 crystals grown by low thermal gradient Czochralski technique. J. Mat. Sci. Eng. B 2017, 7, 63. [Google Scholar]
- Giuliani, A. A neutrinoless double-beta-decay search based on ZnMoO4 and Li2MoO4 scintillating bolometers. J. Phys. Conf. Ser. 2017, 888, 012239. [Google Scholar] [CrossRef] [Green Version]
- Veber, P.; Moutatouia, M.; De Marcillac, P.; Giuliani, A.; Loaiza, P.; Denux, D.; Decourt, R.; El Hafid, H.; Laubenstein, M. Exploratory growth in the Li2MoO4-MoO3 system for the next crystal generation of heat-scintillation cryogenic bolometers. Solid State Sci. 2017, 65, 41. [Google Scholar]
- Buşe, G.; Giuliani, A.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; Olivieri, E.; Poda, D.V.; Redon, T.; Sand, J.B.; et al. First scintillating bolometer tests of a CLYMENE R&D on Li2MoO4 scintillators towards a large-scale double-beta decay experiment. Nucl. Instrum. Methods Phys. Res. A 2018, 891, 87–91. [Google Scholar]
- Stelian, C.; Velázquez, M.; Veber, P.; Ahmine, A.; Sand, J.B.; Buşe, G.; Cabane, H.; Duffar, T. Numerical modeling of Czochralski growth of Li2MoO4 crystals for heat-scintillation cryogenic bolometers. J. Cryst. Growth 2018, 545, 6–12. [Google Scholar] [CrossRef]
- Stelian, C.; Velázquez, M.; Veber, P.; Ahmine, A.; Duffar, T.; de Marcillac, P.; Giuliani, A.; Poda, D.V.; Marnieros, S.; Nones, C.; et al. Experimental and numerical investigations of the Czochralski growth of Li2MoO4 crystals for heat-scintillation cryogenic bolometers. J. Cryst. Growth 2020, 531, 125385. [Google Scholar] [CrossRef]
- Ra, S.; Lee, C.H.; Son, J.K.; Shin, K.A.; Choe, J.S.; Kim, D.Y.; Lee, M.H.; Kang, W.G.; Leonard, D.; So, J.H.; et al. Scintillation crystal growth at the CUP. PoS 2018, ICHEP2018, 668. [Google Scholar]
- Son, J.K.; Choe, J.; Gileva, O.; Hahn, I.S.; Kang, W.; Kim, D.; Kim, G.; Kim, H.J.; Kim, Y.D.; Lee, C.; et al. Growth and development of pure Li2MoO4 crystals for rare event experiment at CUP. J. Instrum. 2020, 15, C07035. [Google Scholar] [CrossRef]
- Kim, H.L.; Jeon, J.A.; Kim, I.; Kim, S.R.; Kim, H.J.; Kim, Y.H.; Kwon, D.H.; Lee, M.K.; So, J.H. Compact phonon-scintillation detection system for rare event searches at low temperatures. Nucl. Instrum. Methods Phys. Res. A 2020, 954, 162107. [Google Scholar] [CrossRef]
- Kim, H.L.; Kim, H.J.; Kim, I.; Kim, S.R.; Kim, Y.D.; Kim, Y.H.; Kwon, D.H.; Jeon, J.A.; Lee, M.H.; Lee, M.K.; et al. Li2MoO4 Phonon–Scintillation Detection Systems with MMC Readout. J. Low Temp. Phys. 2020, 199, 1082. [Google Scholar] [CrossRef]
- Chen, P.; Jiang, L.; Chen, Y.; Chen, H.; Xue, M.; Zhang, Y.; Xu, Z. Bridgman growth and luminescence properties of Li2MoO4 single crystal. Mater. Lett. 2018, 215, 225–228. [Google Scholar] [CrossRef]
- Chen, P.; Wei, R.; Jiang, L.; Yang, S.; Chen, Y.; Wang, Z.; Yu, H.; Chen, H. Crystal defects of Li2MoO4 scintillators grown by Bridgman method. J. Cryst. Growth 2018, 500, 80–84. [Google Scholar] [CrossRef]
- Scintillating Bolometer Crystal Growth and Purification for NeutriNoless Double Beta Decay Experiments. Available online: https://www.sbir.gov/sbirsearch/detail/1645701 (accessed on 30 June 2021).
- Johnston, J. Applications of Low Temperature Bolometers to Reactor Neutrinos and Neutrinoless Double Beta Decay. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2021. [Google Scholar]
- Hizhnyi, Y.; Borysyuk, V.; Chornii, V.; Nedilko, S.; Tesel’ko, P.O.; Dubovik, O.; Maksymchuk, P.; Tupitsyna, I.; Yakubovskaya, A.; Androulidaki, M.; et al. Role of native and impurity defects in optical absorption and luminescence of Li2MoO4 scintillation crystals. J. Alloys Compd. 2021, 867, 159148. [Google Scholar] [CrossRef]
- Barinova, O.; Sadovskiy, A.; Ermochenkov, I.; Kirsanova, S.; Sukhanova, E.; Kostikov, V.; Belov, S.; Mozhevitina, E.; Khomyakov, A.; Kuchuk, Z.; et al. Li2MoO4 crystal growth from solution activated by low-frequency vibrations. J. Cryst. Growth 2017, 457, 151–157. [Google Scholar] [CrossRef]
- Spassky, D.A.; Nagirnyi, V.; Savon, A.E.; Kamenskikh, I.A.; Barinova, O.P.; Kirsanova, S.V.; Grigorieva, V.D.; Ivannikova, N.V.; Shlegel, V.N.; Aleksanyan, E.; et al. Low temperature luminescence and charge carrier trapping in a cryogenic scintillator Li2MoO4. J. Lumin. 2015, 166, 195–202. [Google Scholar] [CrossRef]
- Grigorieva, V.D.; Shlegel, V.N.; Borovlev, Y.A.; Ryaduna, A.A.; Bekker, T.B. Bolometric molybdate crystals grown by low-thermal-gradient Czochralski technique. J. Cryst. Growth 2019, 523, 125144. [Google Scholar] [CrossRef]
- Grigorieva, V.D.; Shlegel, V.N.; Borovlev, Y.A.; Bekker, T.B.; Barabash, A.S.; Konovalov, S.I.; Umatov, V.I.; Borovkov, V.I.; Meshkov, O.I. Li2100deplMoO4 crystals grown by low-thermal-gradient Czochralski technique. J. Cryst. Growth 2020, 552, 125913. [Google Scholar] [CrossRef]
- Wang, G.; Chang, C.L.; Yefremenko, V.; Ding, J.; Novosad, V.; Bucci, C.; Canonica, L.; Gorla, P.; Nagorny, S.S.; Pagliarone, C.; et al. CUPID: CUORE (Cryogenic Underground Observatory for Rare Events) Upgrade with Particle IDentification. arXiv 2015, arXiv:physics.ins-det/1504.03599. [Google Scholar]
- Wang, G.; Chang, C.L.; Yefremenko, V.; Ding, J.; Novosad, V.; Bucci, C.; Canonica, L.; Gorla, P.; Nagorny, S.S.; Pagliarone, C.; et al. R&D towards CUPID (CUORE Upgrade with Particle IDentification). arXiv 2015, arXiv:physics.ins-det/1504.03612. [Google Scholar]
- Schmidt, B. First data from the CUPID-Mo neutrinoless double beta decay experiment. J. Phys. Conf. Ser. 2020, 1468, 012129. [Google Scholar] [CrossRef]
- Poda, D.V. Performance of the CUPID-Mo double-beta decay bolometric experiment. In Proceedings of the XXIX International (online) Conference on Neutrino Physics and Astrophysics (Neutrino 2020), Minneapolis, MI, USA, 22 June–2 July 2020. [Google Scholar]
- Huang, R.; Armengaud, E.; Augier, C.; Barabash, A.S.; Bellini, F.; Benato, G.; Benoît, A.; Beretta, M.; Bergé, L.; Billard, J.; et al. Pulse shape discrimination in CUPID-Mo using principal component analysis. J. Instrum. 2021, 16, P03032. [Google Scholar] [CrossRef]
- Zolotarova, A. The CROSS experiment: Search for 0ν2β decay with surface sensitive bolometers. J. Phys. Conf. Ser. 2020, 1468, 012147. [Google Scholar] [CrossRef]
- Zolotarova, A. First results of CROSS underground measurements with massive bolometers. In Proceedings of the XXIX International (Online) Conference on Neutrino Physics and Astrophysics (Neutrino 2020), Minneapolis, MI, USA, 22 June–2 July 2020. [Google Scholar]
- Belli, P.; Bernabei, R.; Cerulli, R.; Danevich, F.A.; d’Angelo, A.; Goriletsky, V.I.; Grinyov, B.V.; Incicchitti, A.; Kobychev, V.V.; Laubenstein, M.; et al. 7Li solar axions: Preliminary results and feasibility studies. Nucl. Phys. A 2008, 806, 388–397. [Google Scholar] [CrossRef]
- Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kobychev, V.V.; Laubenstein, M.; Polischuk, O.G.; Tretyak, V.I. Search for 7Li solar axions using resonant absorption in LiF crystal: Final results. Phys. Lett. B 2012, 711, 41–45. [Google Scholar] [CrossRef]
- Khalife, H. CROSS and CUPID-Mo: Future Strategies and New Results in Bolometric Search for 0νββ. Ph.D. Thesis, Université Paris-Saclay, Saint-Aubin, France, 2021. [Google Scholar]
- Huang, R.G.; Benato, G.; Caravaca, J.; Kolomensky, Y.G.; Land, B.J.; Gann, G.O.; Schmidt, B. Characterization of light production and transport in tellurium dioxide crystals. J. Instrum. 2019, 14, P10032. [Google Scholar] [CrossRef] [Green Version]
- Battistelli, E.S.; Bellini, F.; Bucci, C.; Calvo, M.; Cardani, L.; Casali, N.; Castellano, M.G.; Colantoni, I.; Coppolecchia, A.; Cosmelli, C.; et al. CALDER: Neutrinoless double-beta decay identification in TeO2 bolometers with kinetic inductance detectors. Eur. Phys. J. C 2015, 75, 353. [Google Scholar] [CrossRef] [Green Version]
- Spasskii, D.A.; Kolobanov, V.N.; Mikhaĭlin, V.V.; Berezovskaya, L.Y.; Ivleva, L.I.; Voronina, I.S. Luminescence peculiarities and optical properties of MgMoO4 and MgMoO4:Yb crystals. Opt. Spectrosc. 2009, 106, 556–563. [Google Scholar] [CrossRef]
- Pandey, I.R.; Kim, H.J.; Kim, Y.D. Growth and characterization of Na2Mo2O7 crystal scintillators for rare event searches. J. Cryst. Crowth 2017, 480, 62–66. [Google Scholar] [CrossRef]
- Minowa, M.; Itakura, K.; Moriyama, S.; Ootani, W. Measurement of the property of cooled lead molybdate as a scintillator. Nucl. Instrum. Methods Phys. Res. A 1992, 320, 500–503. [Google Scholar] [CrossRef]
- Gonzalez-Mestres, L. Low temperature scintillation and particle detection. In Proceedings of the IV International Workshop on Low Temperature Detectors for Neutrinos and Dark Matter (LTD-4), Oxford, UK, 4–7 September 1991; Booth, N.E., Salmon, G.L., Eds.; pp. 471–479. [Google Scholar]
- Nagorny, S.; Pattavina, L.; Kosmyna, M.B.; Nazarenko, B.P.; Nisi, S.; Pagnanini, L.; Pirro, S.; Schäffner, K.; Shekhovtsov, A.N. archPbMoO4 scintillating bolometer as detector to searches for the neutrinoless double beta decay of 100Mo. J. Phys. Conf. Ser. 2017, 841, 012025. [Google Scholar] [CrossRef]
- Pattavina, L.; Nagorny, S.; Nisi, S.; Pagnanini, L.; Pessina, G.; Pirro, S.; Rusconi, C.; Schäffner, K.; Shlegel, V.N.; Zhdankov, V.N. Production and characterisation of a PbMoO4 cryogenic detector from archaeological Pb. Eur. Phys. J. A 2020, 56, 38. [Google Scholar] [CrossRef]
- Mikhailik, V.B.; Kraus, H. Development of techniques for characterisation of scintillation materials for cryogenic application. Rad. Meas. 2013, 49, 7–12. [Google Scholar] [CrossRef]
- Beeman, J.W.; Danevich, F.A.; Degoda, V.Y.; Galashov, E.N.; Giuliani, A.; Kobychev, V.V.; Mancuso, M.; Marnieros, S.; Nones, C.; Olivieri, E.; et al. A next-generation neutrinoless double beta decay experiment based on ZnMoO4 scintillating bolometers. Phys. Lett. B 2012, 710, 318. [Google Scholar] [CrossRef] [Green Version]
- Tenconi, M. LUMINEU: A Pilot Scintillating Bolometer Experiment for Neutrinoless Double Beta Decay Search. Phys. Procedia 2015, 61, 782–786. [Google Scholar] [CrossRef] [Green Version]
- Danevich, F.A.; Bergé, L.; Boiko, R.S.; Chapellier, M.; Chernyak, D.M.; Coron, N.; Devoyon, L.; Drillien, A.A.; Dumoulin, L.; Enss, C.; et al. Status of LUMINEU program to search for neutrinoless double beta decay of 100Mo with cryogenic ZnMoO4 scintillating bolometers. AIP Conf. Proc. 2015, 1686, 020007. [Google Scholar]
- Armengaud, E.; Arnaud, Q.; Augier, C.; Benoît, A.; Benoît, A.; Bergé, L.; Boiko, B.S.; Bergmann, T.; Blümer, J.; Broniatowski, A.; et al. LUMINEU: A search for neutrinoless double beta decay based on ZnMoO4 scintillating bolometers. J. Phys. Conf. Ser. 2016, 718, 062008. [Google Scholar] [CrossRef] [Green Version]
- Gironi, L.; Arnaboldi, C.; Beeman, J.W.; Cremonesi, O.; Danevich, F.A.; Degoda, V.Y.; Ivleva, L.I.; Nagornaya, L.L.; Pavan, M.; Pessina, G.; et al. Performance of ZnMoO4 crystal as cryogenic scintillating bolometer to search for double beta decay of molybdenum. J. Instrum. 2010, 5, P11007. [Google Scholar] [CrossRef] [Green Version]
- Beeman, J.W.; Bellini, F.; Brofferio, C.; Cardani, L.; Casali, N.; Cremonesi, O.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; Gorello, E.; et al. Performances of a large mass ZnMoO4 scintillating bolometer for a next generation 0νDBD experiment. Eur. Phys. J. C 2012, 72, 2142. [Google Scholar] [CrossRef] [Green Version]
- Mancuso, M.; Chernyak, D.M.; Danevich, F.A.; Dumoulin, L.; Giachero, A.; Giuliani, A.; Godfrin, H.; Gotti, C.; Ivanov, I.M.; Maino, M.; et al. An aboveground pulse-tube-based bolometric test facility for the validation of the LUMINEU ZnMoO4 crystals. J. Low Temp. Phys. 2014, 176, 571. [Google Scholar] [CrossRef] [Green Version]
- Poda, D.V. Scintillating bolometers based on ZnMoO4 and Zn100MoO4 crystals to search for 0ν2β decay of 100Mo (LUMINEU project): First tests at the Modane Underground Laboratory. Nucl. Part. Phys. Proc. 2016, 273-275, 1801–1806. [Google Scholar] [CrossRef] [Green Version]
- Armengaud, E.; Arnaud, Q.; Augier, C.; Benoît, A.; Benoît, A.; Bergé, L.; Boiko, R.S.; Bergmann, T.; Blümer, J.; Broniatowski, A.; et al. Development and underground test of radiopure ZnMoO4 scintillating bolometers for the LUMINEU 0ν2β project. J. Instrum. 2015, 10, P05007. [Google Scholar] [CrossRef] [Green Version]
- Chernyak, D.M.; Danevich, F.A.; Degoda, V.Y.; Giuliani, A.; Ivanov, I.M.; Kogut, Y.P.; Kraus, H.; Kropivyansky, B.N.; Makarov, E.P.; Mancuso, M.; et al. Effect of tungsten doping on ZnMoO4 scintillating bolometer performance. Opt. Mat. 2015, 49, 67. [Google Scholar] [CrossRef]
- Poda, D.V.; Armengaud, E.; Arnaud, Q.; Augier, C.; Barabash, A.S.; Benoît, A.; Benoît, A.; Bergé, L.; Boiko, R.S.; Bergmann, T.; et al. Radiopure ZnMoO4 scintillating bolometers for the LUMINEU double-beta experiment. AIP Conf. Proc. 2015, 1672, 040003. [Google Scholar]
- Belli, P.; Cerulli, R.; Danevich, F.A.; Grinyov, B.V.; Incicchitti, A.; Kobychev, V.V.; Laubenstein, M.; Nagorny, S.S.; Tolmachev, A.V.; Tretyak, V.I.; et al. Intrinsic radioactivity of a Li6Eu(BO3)3 crystal and α decays of Eu. Nucl. Instrum. Methods Phys. Res. A 2007, 572, 734–738. [Google Scholar] [CrossRef]
- Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Dai, C.J.; Danevich, F.A.; d’Angelo, A.; Incicchitti, A.; Kobychev, V.V.; Nagorny, S.S.; et al. Search for α decay of natural Europium. Nucl. Phys. A 2007, 789, 15–29. [Google Scholar] [CrossRef]
- Casali, N.; Nagorny, S.S.; Orio, F.; Pattavina, L.; Beeman, J.W.; Bellini, F.; Cardani, L.; Dafinei, I.; Di Domizio, S.; Di Vacri, M.L.; et al. Discovery of the 151Eu α decay. J. Phys. G 2014, 41, 075101. [Google Scholar] [CrossRef] [Green Version]
- Pattavina, L. Li-containing scintillating bolometers for low background physics. EPJ Web Conf. 2014, 65, 02003. [Google Scholar] [CrossRef]
- Czirr, J.B.; MacGillivray, G.M.; MacGillivray, R.R.; Seddon, P.J. Performance and characteristics of a new scintillator. Nucl. Instrum. Math. A 1999, 424, 15–19. [Google Scholar] [CrossRef]
- Torres Ferrández, L.C. Bolómetros Centelleadores para Búsqueda de Materia Oscura. Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, 2008. [Google Scholar]
- Cerdeño, D.G.; Cuesta, C.; Fornasa, M.; García, E.; Ginestra, C.; Huh, J.H.; Martínez, M.; Ortigoza, Y.; Peiró, M.; Puimedón, J.; et al. Complementarity of dark matter direct detection: The role of bolometric targets. J. Cosmol. Astropart. Phys. 2013, 7, 028. [Google Scholar]
- De Bellefon, A.; Berkes, I.; Bobin, C.; Broszkiewicz, D.; Chambon, B.; Chapellier, M.; Chardin, G.; Charvin, P.; Chazal, V.; Coron, N.; et al. Dark matter search with a low temperature sapphire bolometer. Astropart. Phys. 1996, 6, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Cebrián, S.; Coron, N.; Dambier, G.; García, E.; González, D.; Irastorza, I.G.; Leblanc, J.; de Marcillac, P.; Morales, A.; Morales, J.; et al. Performances and prospects of the “ROSEBUD” dark matter search experiment. Astropart. Phys. 1999, 10, 361–368. [Google Scholar] [CrossRef]
- Cebrián, S.; Coron, N.; Dambier, G.; García, E.; González, D.; Irastorza, I.G.; Leblanc, J.; de Marcillac, P.; Morales, A.; Morales, J.; et al. Status of the ROSEBUD Dark Matter search experiment. Nucl. Instrum. Methods Phys. Res. A 2000, 444, 315–318. [Google Scholar] [CrossRef]
- Cebrián, S.; Coron, N.; Dambier, G.; García, E.; González, D.; Irastorza, I.G.; Leblanc, J.; de Marcillac, P.; Morales, A.; Morales, J.; et al. Performances and prospects of the “ROSEBUD” dark matter search experiment. In Proceedings of the Third International Workshop on The Identification of Dark Matter, York, UK, 18–22 September 2000. [Google Scholar]
- Bravin, M.; Bruckmayer, M.; Bucci, C.; Cooper, S.; Giordano, S.; Von Feilitzsch, F.; Höhne, J.; Jochum, J.; Jörgens, V.; Keeling, R.; et al. The CRESST dark matter search. Astropart. Phys. 1999, 12, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Angloher, G.; Bruckmayer, M.; Bucci, C.; Bühler, M.; Cooper, S.; Cozzini, C.; DiStefano, P.; Von Feilitzsch, F.; Frank, T.; Hauff, D.; et al. Limits on WIMP dark matter using sapphire cryogenic detectors. Astropart. Phys. 2002, 18, 43–55. [Google Scholar] [CrossRef]
- Amaré, J.; Beltrán, B.; Cebrián, S.; García, E.; Gómez, H.; Irastorza, I.G.; Luzón, G.; Martínez, M.; Morales, J.; de Solórzano, A.O.; et al. Light yield of undoped sapphire at low temperature under particle excitation. Appl. Phys. Lett. 2005, 87, 264102. [Google Scholar] [CrossRef]
- Amaré, J.; Beltrán, B.; Carmona, J.M.; Cebrián, S.; Coron, N.; Dambier, G.; García, E.; Irastorza, I.G.; Gómez, H.; Leblanc, J.; et al. Recent developments on scintillating bolometers for WIMP searches: ROSEBUD status. J. Phys. Conf. Ser. 2006, 39, 133–135. [Google Scholar] [CrossRef]
- Ortigoza, Y.; Coron, N.; Cuesta, C.; García, E.; Ginestra, C.; Gironnet, J.; De Marcillac, P.; Martínez, M.; Pobes, C.; Puimedón, J.; et al. Energy partition in sapphire and BGO scintillating bolometers. Astropart. Phys. 2011, 34, 603–607. [Google Scholar] [CrossRef] [Green Version]
- Ortigoza, Y.; Torres, L.; Coron, N.; Cuesta, C.; García, E.; Ginestra, C.; Gironnet, J.; de Marcillac, P.; Martínez, M.; de Solórzano, A.O.; et al. Light Relative Efficiency Factors for ions in BGO and Al2O3 at 20 mK. Astropart. Phys. 2013, 50-52, 11–17. [Google Scholar] [CrossRef]
- Di Stefano, P.C.F.; Coron, N.; De Marcillac, P.; Dujardin, C.; Luca, M.; Petricca, F.; Proebst, F.; Vanzetto, S.; Verdier, M.A. The SciCryo Project and Cryogenic Scintillation of Al2O3 for Dark Matter. J. Low Temp. Phys. 2008, 151, 902–907. [Google Scholar] [CrossRef] [Green Version]
- Luca, M. Sapphire Scintilation Tests for Cryogenic Detectors in the EDELWEISS Dark Matter Search. Ph.D. Thesis, Université Claude Bernard Lyon-I, Lyon, France, 2007. [Google Scholar]
- Coron, N.; García, E.; Gironnet, J.; Leblanc, J.; de Marcillac, P.; Martínez, M.; Ortigoza, Y.; de Solórzano, A.O.; Pobes, C.; Puimedón, J.; et al. A BGO scintillating bolometer as dark matter detector prototype. Opt. Mat. 2009, 31, 1393–1397. [Google Scholar] [CrossRef]
- Coron, N.; Gironnet, J.; Leblanc, J.; de Marcillac, P.; Redon, T.; García, E.; Martínez, M.; Ortigoza, Y.; de Solórzano, A.O.; Pobes, C.; et al. Sapphire, BGO and LiF scintillating bolometers developed for dark matter experiments. PoS 2009, idm2008, 007. [Google Scholar]
- Coron, N.; Cuesta, C.; García, E.; Gironnet, J.; Leblanc, J.; de Marcillac, P.; Martínez, M.; Ortigoza, Y.; de Solórzano, A.O.; Pobes, C.; et al. BGO scintillating bolometer: Its application in dark matter experiments. J. Phys. Conf. Ser. 2010, 203, 012038. [Google Scholar] [CrossRef]
- Coron, N.; García, E.; Gironnet, J.; Leblanc, J.; de Marcillac, P.; Martínez, M.; Ortigoza, Y.; de Solórzano, A.O.; Pobes, C.; Puimedón, J.; et al. Our short experience at IAS and within ROSEBUD with radioactive contaminations in scintillating bolometers: Uses and needs. In Proceedings of the 1st International Workshop on Radiopure Scintillators for EURECA (RPSCINT-2008), Kyiv, Ukraine, 9–10 September 2008. [Google Scholar]
- Cardani, L.; Di Domizio, S.; Gironi, L. A BGO scintillating bolometer for γ and α spectroscopy. J. Instrum. 2012, 7, P10022. [Google Scholar] [CrossRef]
- Coron, N.; Cuesta, C.; García, E.; Ginestra, C.; Gironnet, J.; de Marcillac, P.; Martínez, M.; Ortigoza, Y.; Pobes, C.; Puimedón, J.; et al. Measurement of the L/K electron capture ratio of the 207Bi decay to the 1633 keV level of 207Pb with a BGO scintillating bolometer. Eur. Phys. J. A 2012, 48, 89. [Google Scholar] [CrossRef]
- Derbin, A.V.; Gironi, L.; Nagorny, S.S.; Pattavina, L.; Beeman, J.W.; Bellini, F.; Biassoni, M.; Capelli, S.; Clemenza, M.; Drachnev, I.S.; et al. Search for axioelectric effect of solar axions using BGO scintillating bolometer. Eur. Phys. J. C 2014, 74, 3035. [Google Scholar] [CrossRef] [Green Version]
- Borovlev, Y.A.; Ivannikova, N.V.; Shlegel, V.N.; Vasiliev, Y.V.; Gusev, V.A. Progress in growth of large sized BGO crystals by the low-thermal-gradient Czochralski technique. J. Cryst. Growth 2001, 229, 305. [Google Scholar] [CrossRef]
- Abdelhameed, A.H.; Angloher, G.; Bauer, P.; Bento, A.; Bertoldo, E.; Breier, R.; Bucci, C.; Canonica, L.; D’Addabbo, A.; Di Lorenzo, S.; et al. Cryogenic characterization of a LiAlO2 crystal and new results on spin-dependent dark matter interactions with ordinary matter. Eur. Phys. J. C 2020, 80, 834. [Google Scholar] [CrossRef]
- Dafinei, I.; Diemoz, M.; Longo, E.; Peter, A.; Földvári, I. Growth of pure and doped TeO2 crystals for scintillating bolometers. Nucl. Instrum. Methods Phys. Res. A 2005, 554, 195–200. [Google Scholar] [CrossRef]
- Coron, N.; Dambier, G.; Leblanc, J.; de Marcillac, P.; Moalic, J.P.; Leblanc, E. Study of the low temperature properties of some scintillating crystals with high performance optical bolometers. In Proceedings of the 10th International Workshop on Low Temperature Detectors (LTD-10), Genoa, Italy, 7–11 July 2003. [Google Scholar]
- Casali, N.; Vignati, M.; Beeman, J.W.; Bellini, F.; Cardani, L.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; Gironi, L.; Nagorny, S.; et al. TeO2 bolometers with Cherenkov signal tagging: Towards next-generation neutrinoless double-beta decay experiments. Eur. Phys. J. C 2015, 75, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pattavina, L.; Casali, N.; Dumoulin, L.; Giuliani, A.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Nagorny, S.S.; Nones, C.; Olivieri, E.; et al. Background Suppression in Massive TeO2 Bolometers with Neganov-Luke Amplified Light Detectors. J. Low Temp. Phys. 2016, 184, 286–291. [Google Scholar] [CrossRef] [Green Version]
- Pattavina, L.; Laubenstein, M.; Nagorny, S.S.; Nisi, S.; Pagnanini, L.; Pirro, S.; Rusconi, C.; Schäffner, K. An innovative technique for the investigation of the 4-fold forbidden beta-decay of 50V. Eur. Phys. J. A 2018, 54, 79. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, Y.; Yanagida, T.; Yokota, Y.; Chani, V.; Kochurikhin, V.V.; Yoshikawa, A. Comparative study of optical and scintillation properties of YVO4, (Lu0.5Y0.5)VO4, and LuVO4 single crystals. Nucl. Instrum. Methods Phys. Res. A 2011, 635, 53–56. [Google Scholar] [CrossRef]
- Voloshina, O.V.; Baumer, V.N.; Bondar, V.G.; Kurtsev, D.A.; Gorbacheva, T.E.; Zenya, I.M.; Zhukov, A.V.; Sidletskiy, O.T. Growth and scintillation properties of gadolinium and yttrium orthovanadate crystals. Nucl. Instrum. Methods Phys. Res. A 2012, 664, 299–303. [Google Scholar] [CrossRef]
- Danevich, F.A.; Hult, M.; Kasperovych, D.V.; Klavdiienko, V.R.; Lutter, G.; Marissens, G.; Polischuk, O.G.; Tretyak, V.I. Decay scheme of 50V. Phys. Rev. C 2020, 102, 024319. [Google Scholar] [CrossRef]
- Arnold, R.; Augier, C.; Baker, J.; Barabash, A.; Blum, D.; Brudanin, V.; Caffrey, A.J.; Campagne, J.E.; Caurier, E.; Dassie, D.; et al. Double beta decay of 96Zr. Nucl. Phys. A 1999, 658, 299–312. [Google Scholar] [CrossRef]
- Argyriades, J.; Arnold, R.; Augier, C.; Baker, J.; Barabash, A.S.; Basharina-Freshville, A.; Bongrand, M.; Broudin-Bay, G.; Brudanin, V.; Caffrey, A.J.; et al. Measurement of the two neutrino double beta decay half-life of Zr-96 with the NEMO-3 detector. Nucl. Phys. A. 2010, 847, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Tretyak, V.I. Beta decays in investigations and searches for rare effects. In Proceedings of the International Workshop MEDEX 2017, Prague, Czech Republic, 29 May–2 July 2017. [Google Scholar]
- Leder, A.; Danevich, F.; Tretyak, V.I.; Giuliani, A.; de Marcillac, P.; Novati, V.; Olivieri, E.; Poda, D.; Nones, C.; Zolotarova, A.; et al. Measurement of Quenched Axial Vector Coupling Constant in In-115 Beta Decay and its Impact on Future 0νββ Searches. In Proceedings of the XXVIII International Conference on Neutrino Physics and Astrophysics (Neutrino 2018), Heidelberg, Germany, 4–9 June 2018. [Google Scholar]
- Beeman, J.W.; Bellini, F.; Cardani, L.; Casali, N.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; Gironi, L.; Giuliani, A.; Nagorny, S.; et al. Performances of a large mass ZnSe bolometer to search for rare events. J. Instrum. 2013, 8, P05021. [Google Scholar] [CrossRef] [Green Version]
- Dafinei, I. The LUCIFER project and production issues for crystals needed in rare events physics experiments. J. Cryst. Growth 2014, 393, 13–17. [Google Scholar] [CrossRef]
- Cardani, L. ZnSe and ZnMoO4 Scintillating Bolometers to Search for 0νDBD. Ph.D. Thesis, University of Rome, Rome, Italy, 2014. [Google Scholar]
- Azzolini, O.; Barrera, M.T.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Canonica, L.; Capelli, S.; et al. First result on the neutrinoless double-β decay of 82Se with CUPID-0. Phys. Rev. Lett. 2018, 120, 232502. [Google Scholar] [CrossRef] [Green Version]
- Azzolini, O.; Barrera, M.T.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Bossio, E.; Brofferio, C.; Bucci, C.; Canonica, L.; et al. Analysis of cryogenic calorimeters with light and heat read-out for double beta decay searches. Eur. Phys. J. C 2018, 78, 734. [Google Scholar] [CrossRef] [Green Version]
- Beretta, M.; Cardani, L.; Casali, N.; Gironi, L.; Pagnanini, L.; Bellini, F.; Brofferio, C.; Chiesa, D.; Capelli, S.; Di Domizio, S.; et al. Resolution enhancement with light/heat decorrelation in CUPID-0 bolometric detector. J. Instrum. 2019, 14, P08017. [Google Scholar] [CrossRef] [Green Version]
- Azzolini, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; Carniti, P.; et al. Background model of the CUPID-0 experiment. Eur. Phys. J. C 2019, 79, 583. [Google Scholar] [CrossRef]
- Azzolini, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; Celi, E.; et al. Search for Neutrino-less Double Beta Decay of 64Zn and 70Zn with CUPID-0. Eur. Phys. J. C 2020, 80, 702. [Google Scholar] [CrossRef]
- Beeman, J.W.; Bellini, F.; Benetti, P.; Cardani, L.; Casali, N.; Chiesa, D.; Clemenza, M.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; et al. Current Status and Future Perspectives of the LUCIFER Experiment. Adv. High Energy Phys. 2013, 2013, 237973. [Google Scholar] [CrossRef]
- Azzolini, O.; Barrera, M.T.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Bossio, E.; Brofferio, C.; Bucci, C.; Canonica, L.; et al. Search of the neutrino-less double beta decay of 82Se into the excited states of 82Kr with CUPID-0. Eur. Phys. J. C 2018, 78, 888. [Google Scholar] [CrossRef] [Green Version]
- Nagorny, S.; Cardani, L.; Casali, N.; Dafinei, I.; Pagnanini, L.; Pattavina, L.; Pirro, S.; Schäffner, K. Quenching factor for alpha particles in ZnSe scintillating bolometers. IOP Conf. Ser. Mat. Sci. Eng. 2017, 169, 012011. [Google Scholar] [CrossRef] [Green Version]
- Silva, B.C.; de Oliveira, R.; Ribeiro, G.M.; Cury, L.A.; Leal, A.S.; Nagorny, S.; Krambrock, K. Characterization of high-purity 82Se-enriched ZnSe for double-beta decay bolometer/scintillation detectors. J. Appl. Phys. 2018, 123, 085704. [Google Scholar] [CrossRef]
- Der Mateosian, E.; Goldhaber, M. Limits for lepton-conserving and lepton-nonconserving double beta decay in Ca48. Phys. Rev. 1966, 146, 810–815. [Google Scholar] [CrossRef]
- You, K.; Zhu, Y.; Lu, J.; Sun, H.; Tian, W.; Zhao, W.; Zheng, Z.; Ye, M.; Ching, C.; Ho, T.; et al. A search for neutrinoless double β decay of 48Ca. Phys. Lett. B 1991, 265, 53–56. [Google Scholar] [CrossRef]
- Belli, P.; Bernabei, R.; Dai, C.J.; Grianti, F.; He, H.L.; Ignesti, G.; Incicchitti, A.; Kuang, H.H.; Ma, J.M.; Montecchia, F.; et al. New limits on spin-dependent coupled WIMP and on 2β processes in 40Ca and 46Ca by using low radioactive CaF2(Eu) crystal scintillators. Nucl. Phys. B 1999, 563, 97–106. [Google Scholar] [CrossRef]
- Ogawa, I.; Hazama, R.; Miyawaki, H.; Shiomi, S.; Suzuki, N.; Ishikawa, Y.; Kunitomi, G.; Tanaka, Y.; Itamura, M.; Matsuoka, K.; et al. Search for neutrino-less double beta decay of 48Ca by CaF2 scintillator. Nucl. Phys. A 2004, 730, 215–223. [Google Scholar] [CrossRef]
- Umehara, S.; Kishimoto, T.; Ogawa, I.; Miyawaki, H.; Matsuoka, K.; Kishimoto, K.; Katsuki, A.; Sakai, H.; Yokoyama, D.; Mukaida, K.; et al. Neutrino-less double-β decay of 48Ca studied by CaF2(Eu) scintillators. Phys. Rev. C 2008, 78, 058501. [Google Scholar] [CrossRef] [Green Version]
- Umehara, S.; Kishimoto, T.; Nomachi, M.; Ajimura, S.; Takemoto, Y.; Chan, W.M.; Takihira, K.; Matsuoka, K.; Nakatani, N.; Trang, V.T.T.; et al. Neutrino-less double beta decay of 48Ca studied by CaF2(pure) scintillators. J. Phys. Conf. Ser. 2020, 1342, 012049. [Google Scholar] [CrossRef]
- Ajimura, S.; Chan, W.M.; Ichimura, K.; Ishikawa, T.; Kanagawa, K.; Khai, B.T.; Kishimoto, T.; Kino, H.; Maeda, T.; Matsuoka, K.; et al. Low background measurement in CANDLES-III for studying the neutrinoless double beta decay of 48Ca. Phys. Rev. D 2021, 103, 092008. [Google Scholar] [CrossRef]
- Bacci, C.; Belli, P.; Bernabei, R.; Dai, C.J.; Di Nicolantonio, W.; Ding, L.K.; Gaillard-Lecanu, E.; Gerbier, G.; Giraud-Heraud, Y.; Kuang, H.H.; et al. Dark matter search with calcium fluoride crystals. Astropart. Phys. 1994, 2, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Cerdeño, D.G.; Marcos, C.; Peiró, M.; Fornasa, M.; Cuesta, C.; García, E.; Ginestra, C.; Martínez, M.; Ortigoza, Y.; Puimedón, J.; et al. Scintillating bolometers: A key for determining WIMP parameters. Int. J. Mod. Phys. A 2014, 29, 1443009. [Google Scholar] [CrossRef] [Green Version]
- Tetsuno, K.; Ajimura, S.; Akutagawa, K.; Batpurev, T.; Chan, W.M.; Fushimi, K.; Hazama, R.; Iida, T.; Ikeyama, Y.; Khai, B.T.; et al. Status of 48Ca double beta decay search and its future prospect in CANDLES. J. Phys. Conf. Ser. 2020, 1468, 012132. [Google Scholar] [CrossRef]
- Li, X.; Kwon, D.H.; Tetsuno, K.; Kim, I.; Kim, H.L.; Lee, H.J.; Yoshida, S.; Kim, Y.H.; Lee, M.K.; Umehara, S.; et al. Study of a large CaF2(Eu) scintillating bolometer for neutrinoless double beta decay. J. Phys. Conf. Ser. 2020, 1468, 012116. [Google Scholar] [CrossRef]
- Li, X.; Tetsuno, K.; Kim, H.L.; Kim, I.; Kim, Y.H.; Kishimoto, T.; Kwon, D.H.; Lee, H.J.; Lee, M.K.; Umehara, S.; et al. Development of scintillating bolometer with large undoped and Eu-doped CaF2 crystals for neutrino less double beta decay of 48Ca. In Proceedings of the XXIX International (Online) Conference on Neutrino Physics and Astrophysics (Neutrino 2020), Minneapolis, MI, USA, 22 June–2 July 2020. [Google Scholar]
- Smith, P.F.; Homer, G.J.; Read, S.F.J.; White, D.J.; Lewin, J.D. Tests on low temperature calorimetric detectors for dark matter experiments. Phys. Lett. B 1990, 245, 265. [Google Scholar] [CrossRef]
- Minowa, M.; Sakamoto, M.; Ito, Y.; Watanabe, T.; Ootani, W.; Ootuka, Y. Cryogenic thermal detector with LiF absorber for direct dark matter search experiment. Nucl. Instrum. Methods Phys. Res. A 1993, 327, 612–614. [Google Scholar] [CrossRef]
- De Marcillac, P.; Coron, N.; Leblanc, J.; Bobin, C.; Berkes, I.; De Jesus, M.; Hadjout, J.P.; Gonzalez-Mestres, L.; Zhou, J.W. Characterization of a 2 g LiF bolometer. Nucl. Instrum. Methods Phys. Res. A 1993, 337, 95–100. [Google Scholar] [CrossRef]
- Calleja, A.; Coron, N.; García, E.; Gironnet, J.; Leblanc, J.; de Marcillac, P.; Martínez, M.; Ortigoza, Y.; de Solórzano, A.O.; Pobes, C.; et al. Recent performance of scintillating bolometers developed for dark matter searches. J. Low Temp. Phys. 2008, 151, 848–853. [Google Scholar] [CrossRef]
- Ginestra, C.; Coron, N.; García, E.; de Marcillac, P.; Martínez, M.; Ortigoza, Y.; Redon, T.; Torres, L. Characterization of a SrF2 scintillating bolometer. J. Low Temp. Phys. 2012, 167, 973–978. [Google Scholar] [CrossRef]
- Wang, M.Z.; Yue, Q.; Deng, J.R.; Lai, W.P.; Li, H.B.; Li, J.; Liu, Y.; Qi, B.J.; Ruan, X.C.; Tang, C.H.; et al. Nuclear recoil measurement in CsI(Tl) crystal for Cold Dark Matter detection. Phys. Lett. B 2002, 536, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.Y.; Cho, I.S.; Choi, D.H.; Choi, J.M.; Hahn, I.S.; Hwang, M.J.; Jang, H.K.; Jain, R.K.; Kang, U.K.; Kim, H.J.; et al. Study of the internal background of CsI(Tl) crystal detectors for dark matter search. Nucl. Instrum. Methods Phys. Res. A 2003, 500, 337–344. [Google Scholar] [CrossRef]
- Lee, H.S.; Bhang, H.; Choi, J.H.; Hahn, I.S.; He, D.; Hwang, M.J.; Kim, H.J.; Kim, S.C.; Kim, S.K.; Kim, S.Y.; et al. First limit on WIMP cross section with low background CsI(Tl) crystal detector. Phys. Lett. B 2006, 633, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.S.; Bhang, H.C.; Choi, J.H.; Dao, H.; Hahn, I.S.; Hwang, M.J.; Jung, S.W.; Kang, W.G.; Kim, D.W.; Kim, H.J.; et al. Limits on interactions between weakly interactingmMassive particles and nucleons obtained with CsI(Tl) crystal detectors. Phys. Rev. Lett. 2007, 99, 091301. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Bhang, H.; Hahn, I.S.; Hwang, M.J.; Kim, H.J.; Kim, S.C.; Kim, S.K.; Kim, S.Y.; Kim, T.Y.; Kim, Y.D.; et al. Development of low-background CsI(Tl) crystals for WIMP search. Nucl. Instrum. Methods Phys. Res. A 2007, 571, 644–650. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, H.S.; Bhang, H.C.; Choi, J.H.; Dao, H.; Hahn, I.S.; Hwang, M.J.; Jung, S.W.; Kang, W.G.; Kim, D.W.; et al. Development of low background CsI(Tl) crystals and search for WIMP. IEEE Trans. Nucl. Sci. 2008, 55, 1420–1424. [Google Scholar] [CrossRef]
- Kim, S.C.; Bhang, H.; Choi, J.H.; Kang, W.G.; Kim, B.H.; Kim, H.J.; Kim, K.W.; Kim, S.K.; Kim, Y.D.; Lee, J.; et al. New limits on interactions between weakly interacting massive particles and nucleons obtained with CsI(Tl) crystal detectors. Phys. Rev. D 2012, 108, 181301. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.S.; Bhang, H.; Choi, J.H.; Choi, S.; Hahn, I.S.; Jeon, E.J.; Joo, H.W.; Kang, W.G.; Kim, B.H.; Kim, G.B.; et al. Search for low-mass dark matter with CsI(Tl) crystal detectors. Phys. Rev. D 2014, 90, 052006. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Kim, G.B.; Seong, I.S.; Kim, B.H.; Kim, J.H.; Li, J.; Park, J.W.; Lee, J.K.; Kim, K.W.; Bhang, H.; et al. Measurement of the quenching and channeling effects in a CsI crystal used for a WIMP search. Nucl. Instrum. Methods Phys. Res. A 2015, 782, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y.S.; Park, H.K.; Bhang, H.; Choi, J.H.; Choi, S.; Hahn, I.S.; Jeon, E.J.; Joo, H.W.; Kang, W.G.; Kim, B.H.; et al. Search for solar axions with CsI(Tl) crystal detectors. J. High Energy Phys. 2016, 2016, 11. [Google Scholar] [CrossRef] [Green Version]
- Angloher, G.; Dafinei, I.; Gektin, A.; Gironi, L.; Gotti, C.; Gütlein, A.; Hauff, D.; Maino, M.; Nagorny, S.S.; Nisi, S.; et al. A CsI low-temperature detector for dark matter search. Astropart. Phys. 2016, 84, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Derenzo, S.; Essig, R.; Massari, A.; Soto, A.; Yu, T.T. Direct detection of sub-GeV dark matter with scintillating targets. Phys. Rev. D 2017, 96, 016026. [Google Scholar] [CrossRef] [Green Version]
- Nadeau, P.; Clark, M.; Di Stefano, P.C.F.; Lanfranchi, J.C.; Roth, S.; von Sivers, M.; Yavin, I. Sensitivity of alkali halide scintillating calorimeters with particle identification to investigate the DAMA dark matter detection claim. Astropart. Phys. 2015, 67, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Saint-Gobain Scintillation Crystal Materials. Available online: https://www.crystals.saint-gobain.com/products/crystal-scintillation-materials (accessed on 30 June 2021).
- Clark, M.; Nadeau, P.; Hills, S.; Dujardin, C.; Di Stefano, P.C.F. Particle detection at cryogenic temperatures with undoped CsI. Nucl. Instrum. Methods Phys. Res. A 2018, 901, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.; Nadeau, P.; Di Stefano, P.C.F.; Lanfranchi, J.C.; Roth, S.; Von Sivers, M.; Yavin, I. Sensitivity of sodium iodide cryogenic scintillation-phonon detectors to WIMP signals. J. Phys. Conf. Ser. 2016, 718, 042015. [Google Scholar] [CrossRef] [Green Version]
- Coron, N.; Cuesta, C.; García, E.; Ginestra, C.; Girard, T.A.; de Marcillac, P.; Martínez, M.; Ortigoza, Y.; de Solórzano, A.O.; Pobes, C.; et al. Study of parylene-coated NaI(Tl) at low temperatures for bolometric applications. Astropart. Phys. 2013, 47, 31–37. [Google Scholar] [CrossRef]
- Angloher, G.; Carniti, P.; Cassina, L.; Gironi, L.; Gotti, C.; Gütlein, A.; Hauff, D.; Maino, M.; Nagorny, S.S.; Pagnanini, L.; et al. The COSINUS project: Perspectives of a NaI scintillating calorimeter for dark matter search. Eur. Phys. J. C 2016, 76, 441. [Google Scholar] [CrossRef]
- Angloher, G.; Carniti, P.; Cassina, L.; Gironi, L.; Gotti, C.; Gütlein, A.; Maino, M.; Mancuso, M.; Pagnanini, L.; Pessina, G.; et al. Results from the first cryogenic NaI detector for the COSINUS project. J. Instrum. 2017, 12, P11007. [Google Scholar] [CrossRef]
Application | Elements of Interest | Most Promising Isotopes | Ref. |
---|---|---|---|
Rare decay | Ce, Nd, Sm, Eu, Gd, Dy, | Nd, Sm, Eu, | [29] |
Ho, Er, Tm, Yb, Lu, Hf, | Gd, Hf, W, | ||
Ta, W, Re, Os, Ir, Pt, Au, | Os, Pt, Bi | ||
Hg, Tl, Pb, Bi, Th, U | |||
Rare decay | K, Ca, V, Rb, Zr, Cd, In, | V, Cd, In | [29,30,31,32] |
Te, La, Lu, Ta, Re | (4-fold-forbidden decay) | ||
Double- decay | Ar, Ca, Cr, Fe, Ni, Zn, Ge, | Ca, Ge, Se, Zr, | [33,34,35,36,37] |
Se, Kr, Sr, Zr, Mo, Ru, Pd, | Mo, Pd, Cd, Sn, | ||
Cd, Sn, Te, Xe, Ba, Ce, Nd, | Te, Xe, Nd | ||
Sm, Gd, Dy, Er, Yb, Hf, W, | |||
Os, Pt, Hg, Th, U | |||
Dark matter (WIMP ) | low/high atomic mass | Li, B, F, Na, Al, Ge, | [38,39,40,41] |
(low-/high-mass WIMP) | Cd, I, Gd, Bi | ||
(spin-dependent interactions) | |||
Solar axions | Li, Fe, Kr, Tm | Li, Fe, Kr, Tm | [42,43,44,45,46] |
(resonant absorption) | |||
Solar and supernova ’s | Se, Mo, In, Cd, Nd, Gd | Se, Mo, In, Cd, | [3,47,48,49,50] |
(charge-current interactions) | Nd, Gd | ||
Coherent elastic -nucleus | high atomic mass | isotopically enriched | [51,52,53,54,55,56] |
scattering | (neutral-current interactions) | ||
Neutron detection | Li, B, Gd/low atomic mass | Li, B, Gd | [57,58,59,60,61] |
in rare-event searches | (neutron capture/scattering) |
Sensor | Absorber | Area | Noise | NTL | Ref. (Project) |
---|---|---|---|---|---|
(cm) | (eV RMS) | Gain | |||
NTD Ge | Ge | 2 | 31–130 | [275,307,308] (LUCIFER) | |
Ge | 5 | 9–10 | [74,309] (ROSEBUD) | ||
Ge | 10 | n/a | [310] | ||
Ge | 13 | 18–34 | [74,309,311] (ROSEBUD) | ||
Ge | 15 | 32–70 | [75,312] (LUCIFER, CUPID-0) | ||
Ge | 15 | 30–85 | [74,259,308,313,314] (LUMINEU, CUPID-Mo) | ||
Ge | 15 | 20 | [301] (CUPID R&D) | ||
Ge | 15 | 8–17 | 10–11 | [303,308,313,315] (LUMINEU) | |
Ge | 20 | 37–120 | [308,316,317,318] (LUCIFER) | ||
Ge | 34 | 97 | [310,319] | ||
Si | 4 | ∼5 | ∼100 | [320,321] | |
TES W | AlO + Si | 4 | 6–27 | [272,322,323] (CRESST) | |
AlO + Si | 13 | 4–23 | [324,325,326] (CRESST) | ||
AlO + Si | 16 | 11 | [272] (CRESST) | ||
Si | 4 | 8–14 | [327] (CRESST) | ||
Si | 9 | 14–15 | [327,328] (CRESST) | ||
Si (beaker) | 63 | 6–8 | [293,326] (CRESST) | ||
QETs W | Si | 1 | 3 | [329] | |
Si | 46 | 4 | [330] (CPD) | ||
TES IrAu | Si | 4 | 4–8 | 6–9 | [225,302,331,332,333,334] (CRESST) |
TES IrPt | Si | 20 | 70 | [335] (CUPID R&D) | |
KID Al | Si | 4 | 82 | [336] (CALDER) | |
KID AlTiAl | Si | 4 | 26 | [337] (CALDER) | |
Si | 25 | 34 | [338] (CALDER) | ||
MMC AuEr | Ge | 20 | n/a | [339] (AMoRE) | |
Si | 2 | n/a | 4 | [340] (AMoRE) | |
MMC ErAg | Si | 20 | n/a | [341] (LUMINEU) |
Crystal | Growth | Section | ||||
---|---|---|---|---|---|---|
(nm) | (keV/MeV) | (ph/MeV) | ||||
CaWO | Cz | 420 (8 K) [261] | 6.0–24 | 2000–8100 | 0.10–0.12 | Section 3.1.1 |
(45–52 ) | (15,400–17,500) | ibid. | ||||
CdWO | Cz, LTG Cz | 420 (8 K) [261] | 14–31 | 5400–12,000 | 0.18–0.19 | Section 3.1.2 |
LiWO(Mo) | Cz, LTG Cz | 530 (8 K) [352] | 0.40 | 170 | 0.26 | Section 3.1.3 |
NaWO | LTG Cz | 540 (77 K) [353] | 12 | 5200 | 0.20 | Section 3.1.4 |
PbWO | Cz | 420 (4.2 K) [354] | 1.8 | 600 | 0.20 | Section 3.1.5 |
ZnWO | Cz, LTG Cz | 490 (9 K) [261] | 13–19 | 5100–9500 | 0.15–0.23 | Section 3.1.6 |
CaMoO | Cz | 540 (8 K) [261] | 1.9–4.8 | 800–2100 | 0.13–0.22 | Section 3.2.1 |
CdMoO | BS | 550 (5 K) [355] | 2.6 | 1200 | 0.16 | Section 3.2.2 |
LiMoO | Cz, LTG Cz, BS | 590 (8 K) [311] | 0.55–1.0 | 300–500 | 0.17–0.23 | Section 3.2.3 |
(1.2–1.4 ) | (600–700) | ibid. | ||||
LiMg(MoO) | LTG Cz | 585 (8 K) [356] | 1.3 | 610 | 0.22 | Section 3.2.4 |
LiZn(MoO) | LTG Cz | 630 (10 K) [357] | n/a | n/a | n/a | Section 3.2.5 |
MgMoO | Cz | 520 (9 K) [358] | n/a | n/a | n/a | Section 3.2.6 |
NaMoO | Cz, LTG Cz | 650 (4.2 K) [359] | 0.58–1.6 | 300–840 | 0.16–0.40 | Section 3.2.7 |
PbMoO | Cz, LTG Cz | 520 (10 K) [360] | 5.2–12 | 2200–5000 | 0.18–0.23 | Section 3.2.8 |
SrMoO | Cz | 520 (11 K) [361] | ∼1–3 | 400–1300 | ∼0.26 | Section 3.2.9 |
ZnMoO | Cz, LTG Cz | 520 (1.4 K) [362] | 1.0–1.5 | 400–600 | 0.13-0.19 | Section 3.2.10 |
(1.8–2.1 ) | (800–900) | ibid. | ||||
LiEu(BO) | Cz | 613 (4.2 K) [363] | 6.6 | 3200 | 0.08 | Section 3.3.1 |
LiGd(BO) | Cz | 312 (90 K) [364] | 0.26 | 65 | 0.23 | Section 3.3.2 |
AlO(Ti), pure | Ve, Ky, Cz | 420 (9 K) [365] | 2.5–14 | 850–4700 | 0.09–0.36 | Section 3.4.1 |
BiGeO | Cz, LTG Cz, BS | 480 (9 K) [261] | 7.0–28 | 2700–11,000 | 0.17–0.18 | Section 3.4.2 |
LiAlO | Cz | 340 (300 K) [366] | 1.2 | 300 | 0.52 | Section 3.4.3 |
TeO | BS, Cz | 500 (<15 K) [271] | ∼0.04 | ∼20 | n/a | Section 3.4.4 |
YVO | Cz | 450 (80 K) [367] | 59 | 21,000 | 0.20 | Section 3.4.5 |
ZrO | 420 (85 K) [368] | ∼2 | ∼700 | ∼0.2 | Section 3.4.6 | |
LiInSe | BS | 730 (173 K) [265] | 14 | 8200 | 0.55 | Section 3.5.1 |
ZnSe | BS | 640 (9 K) [261] | 0.7–7.5 | 360–3900 | 2.6–4.6 | Section 3.5.2 |
CaF(Eu) | Cz, BS | 425 (15 K) [369] | 14 | 4800 | 0.14–0.19 | Section 3.6.1 |
LiF | Cz, BS | 365 (9 K) [370] | 0.21–0.38 | 60–110 | 0.30 | Section 3.6.2 |
SrF | Cz, BS | 365 (4.2 K) [371] | 2.9 | 850 | 0.26 | Section 3.6.3 |
CsI | Ky, Cz, BS | 340 (10 K) [264] | 49–81 | 13,000–22,000 | ∼0.5 | Section 3.7.1 |
NaI | Ky, Cz, BS | 300 (10 K) [372] | 37 (130 ) | 9000 (32,000) | ∼0.2 e | Section 3.7.2 |
Cryogenic Scintillator | LD | Ref. | |||||
---|---|---|---|---|---|---|---|
Material | Mass (g) | Size (mm) | Size (mm) | Material | (keV/MeV) | ||
CdWO | 140 | 30 × 30 × 20 | ⊘66 × 1 | Ge + SiO | 6 | 0.18 | [296] |
(Cz) | 210 (×4) | 30 × 30 × 30 | ⊘66 × 1 | Ge + SiO | n/a | n.a | [413] |
400 | ⊘40 × 40 | ⊘40 × 0.5 | AlO + Si | 15 | 0.18 | [415,416] | |
430 | 30 × 30 × 60 | ⊘35 × 0.3 | Ge | n/a | 0.18 | [413] | |
430 | ⊘40 × 43 | ⊘44 × 0.2 | Ge + SiO | 14 | 0.17 | [410] | |
510 | ⊘40 × 50 | ⊘36 × 1 | Ge + SiO | 18 | 0.19 | [413] | |
(LTG Cz) | 8 | 20 × 10 × 5 | 30 × 30 × 0.4 | Si | 27 | n/a | [415] |
CdWO | 35 | 28 × 27 × 6 | ⊘44 × 0.2 | Ge + SiO | 31 | 0.18 | [346] |
(LTG Cz) | 580 (×2) | ⊘45 × 47 | ⊘44 × 0.2 | Ge + SiO | 25–27 | 0.18 | [417] |
Cryogenic Scintillator | Ge LD | Ref. | |||||
---|---|---|---|---|---|---|---|
Material | Mass (g) | Size (mm) | Size (mm) | Coating | (keV/MeV) | ||
LiMoO | 1.3 | ⊘25 × 0.9 | ⊘66 × 1 | SiO | ∼0.4 | ∼0.3 | [266] |
(Cz) | 33 | ⊘22 × 33 | ⊘36 × 1 | 0.43 | 0.22 | [474] | |
14 | 28 × 27 × 6 | ⊘44 × 0.2 | 0.91 | 0.24 | [479] | ||
160 | ⊘40 × 40 | ⊘44 × 0.2 | 0.97 | 0.23 | [478,479] | ||
(LTG Cz) | 150 | ⊘40 × 40 | ⊘40 × 0.05 | 0.68 | 0.23 | [74,311] | |
240 | ⊘50 × 40 | ⊘45 × 0.3 | 0.99 | 0.20 | [74] | ||
240 | ⊘50 × 40 | ⊘25 × 0.03 | 0.12 | 0.17 | ibid. | ||
LiMoO | 200 | ⊘44 × 45 | ⊘45 × 0.3 | 0.78 | 0.19 | [74] | |
(LTG Cz) | 210 (×2) | ⊘44 × 45 | ⊘44 × 0.2 | SiO | 0.73–0.74 | 0.24–0.26 | [345] |
200 (×2) | ⊘44 × 45 | ⊘44 × 0.2 | SiO | 0.38–0.41 | 0.24–0.27 | ibid. | |
210 (×20) | ⊘44 × 45 | ⊘44 × 0.2 | SiO | 0.55–0.96 e | 0.20 | [259,498] | |
(1.17–1.44 ) | ibid. | ||||||
280 | 45 × 45 × 45 | ⊘44 × 0.2 | SiO | 0.64 | 0.20 | [69] | |
280 (×3) | 45 × 45 × 45 | ⊘44 × 0.2 | SiO | 0.25 (0.50 ) | 0.17 | [283] | |
0.55 (1.10 ) | ibid. | ||||||
LiMoO | 280 | 45 × 45 × 45 | ⊘44 × 0.2 | SiO | 0.33 | 0.21 | [501] |
(LTG Cz) |
Cryogenic Scintillator | Ge LD | Ref. | |||||
---|---|---|---|---|---|---|---|
Material | Mass (g) | Size (mm) | Size (mm) | Coating | (keV/MeV) | ||
ZnMoO | 20 | ⊘25 × 11 | ⊘36 × 1 | SiO | 1.1 | ∼0.15 | [101,518] |
(Cz) | |||||||
(LTG Cz) | 5.1 | 15 × 15 × 5 | 15 × 15 × 0.5 | 2.1 | ∼0.15 | [275,514] | |
24 | ⊘16 × 28 | 15 × 15 × 0.3 | 1.8 | 0.19 | [275] | ||
28 | ⊘19 × 22 | ⊘36 × 1 | SiO | 1.1 | 0.18 | [344] | |
30 | 29 × 18 × 13 | ⊘36 × 1 | SiO | 0.78 | 0.18 | ibid. | |
55 | ⊘20 × 40 | ⊘50 × 0.3 | 0.98 | 0.15 | [362] | ||
55 | ⊘20 × 40 | ⊘50 × 0.3 | 1.3 | [523] | |||
55 | ⊘20 × 40 | ⊘50 × 0.3 | 1.1 | ibid. | |||
150 | ⊘35 × 40 | ⊘50 × 0.3 | 0.96 | 0.16 | [362] | ||
310 | (irregular) | ⊘50 × 0.3 | n/a | 0.15 | [522] | ||
330 | (irregular) | ⊘50 × 0.3 | 1.5 | 0.17 | [519] | ||
330 | ⊘50 × 40 | ⊘50 × 0.3 | 0.15–0.17 | [74,522] | |||
ZnMoO | 60 (×2) | (irregular) | ⊘50 × 0.3 | 1.0 | [318] | ||
(LTG Cz) | 380 (×2) | ⊘60 × 40 | ⊘45 × 0.2 | SiO | 1.2–1.3 | 0.13-0.17 | [74] |
TeO | LD | Refs. | ||||||
---|---|---|---|---|---|---|---|---|
Mass | Size | Size | Material | Sensor | Noise | |||
(g) | (mm) | (mm) | (eV) | (eV/MeV) | ||||
6.0 | 10 × 10 × 10 | 20 × 20 × 0.6 | Si | NTD Ge | ∼28 | ∼5 | 4.7 | [321] |
23 | 20 × 20 × 10 | 20 × 20 × 0.5 | Si | TES IrAu | 8 | 30 | 3.6 | [334] |
26 | 13 × 15 × 21 | ⊘25 × 0.05 | Ge | NTD Ge | 16 | 50 | 2.4 | [267,315] |
120 | 30 × 24 × 28 | ⊘66 × 1 | Ge + SiO | NTD Ge | 97 | 75 | 1.4 | [319] |
290 | ⊘40 × 40 | ⊘40 × 0.5 | AlO + Si | TES W | 23 | 48 | 3.7 | [325] |
440 | 36 × 38 × 52 | ⊘44 × 0.2 | Ge | NTD Ge | 35 | 58 | 2.7 | [299] |
440 | 36 × 38 × 52 | ⊘44 × 0.2 | Ge + SiO | NTD Ge | 25 | 61 | 3.5 | [299] |
750 | 50 × 50 × 50 | ⊘50 × 0.3 | Ge | NTD Ge | 72 | 45 | n/a | [555] |
750 | 50 × 50 × 50 | ⊘44 × 0.2 | Ge | NTD Ge | 19 | 35 | 2.6 | [556] |
780 | 51 × 51 × 51 | ⊘44 × 0.2 | Ge + SiO | NTD Ge | 10 | 26 | 3.2 | [269] |
780 | 51 × 51 × 51 | ⊘44 × 0.2 | Ge + SiO | NTD Ge | 20 | 58 | 3.6 | [301] |
Cryogenic Scintillator | Ge LD | Ref. | |||||
---|---|---|---|---|---|---|---|
Material | Mass (g) | Size (mm) | Size (mm) | Coating | (keV/MeV) | ||
ZnSe | 38 | ⊘20 × 21 | ⊘66 × 1 | SiO | 1.3 | 4.4 | [347] |
(BS) | 120 | ⊘41 × 17 | ⊘36 × 1 | SiO | 7.5 | 4.2 | ibid. |
340 | ⊘40 × 50 | ⊘66 × 1 | SiO | 4.6 | 3.0 | ibid. | |
430 | ⊘44 × 49 | ⊘50 × 0.3 | SiO | 6.4 | 4.6 | [565,573] | |
430 | ⊘44 × 49 | ⊘50 × 0.3 | SiO | 3.2 | 0.69 | [575] | |
460 | ⊘45 × 55 | ⊘50 × 0.3 | SiO | ∼2.6 | 3.4 | [566] | |
460 | ⊘45 × 55 | ⊘50 × 0.3 | SiO | ∼2.6 | 2.6 | ibid. | |
460 | ⊘45 × 55 | ⊘50 × 0.3 | SiO | 6.1 | 3.0 | ibid. | |
490 (×12) | ⊘48 × 52 | ⊘50 × 0.3 | SiO | 4.4 | n/a | [567] | |
(110–560) | (0.7–6.3) | n/a | ibid. | ||||
ZnSe | 440 (×3) | ⊘44 × 55 | ⊘44 × 0.2 | SiO | 3.3–5.2 | 2.7 | [312] |
(BS) | 430 (×24) | ⊘44 × 54 | ⊘44 × 0.2 | SiO | n/a | n/a | [75] |
(0.17–0.48) | n/a | n/a | ibid. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poda, D. Scintillation in Low-Temperature Particle Detectors. Physics 2021, 3, 473-535. https://doi.org/10.3390/physics3030032
Poda D. Scintillation in Low-Temperature Particle Detectors. Physics. 2021; 3(3):473-535. https://doi.org/10.3390/physics3030032
Chicago/Turabian StylePoda, Denys. 2021. "Scintillation in Low-Temperature Particle Detectors" Physics 3, no. 3: 473-535. https://doi.org/10.3390/physics3030032
APA StylePoda, D. (2021). Scintillation in Low-Temperature Particle Detectors. Physics, 3(3), 473-535. https://doi.org/10.3390/physics3030032