The Influence of Bounding Plates on Species Separation in a Vertical Thermogravitational Column
Abstract
:1. Introduction
2. Mathematical Formulation
3. Analytical Solution of the Unicellular Flow
3.1. Analytical Solution of the Thermal and Dynamic Field in the TGC
3.2. Analytical Solution of the Mass Fraction Field in the TGC
- Zero mass flux on one of the vertical walls, .
- Mass flow through any horizontal section is zero once the stationary states have reached:
- Each component in the TGC is assumed to be conserved, .
4. Comparisons between Analytical and Numerical Calculations
4.1. Dimensional Nnumerical Simulation
4.2. Consideration of the Characteristics of the Walls on the Temperature Field in a TGC
- Temperature as a function of for in a TGC with and = 0.5 mm.
- b.
- Temperature as a function of for and = 0.5 mm.
4.3. Mass Fraction Field in a TGC
4.3.1. Mass Fraction Field without Consideration of the Walls
4.3.2. Mass Fraction Field with Consideration of the Wall Characteristics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nield, D.A.; Bejan, A. Convection in Porous Media; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Ingham, D.B.; Pop, I. (Eds.) Transport Phenomena in Porous Media; Pergamon/Elsevier Science: Oxford, UK, 1998; pp. 155–178. [Google Scholar] [CrossRef]
- Vadász, P. (Ed.) Emerging Topics in Heat and Mass Transfer in Porous Media; Springer Science+Business Media B.V.: Dodrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Vafai, K. (Ed.) Handbook of Porous Media; Taylor & Francis Group/CRC Press: Boca Raton, FL, USA, 2005; pp. 269–320. [Google Scholar] [CrossRef]
- Köhler, W.; Morozov, K.I. The Soret effect in liquid mixtures—A review. J. Non-Equilib. Thermodyn. 2016, 41, 151–197. [Google Scholar] [CrossRef]
- Furry, W.H.; Jones, R.C.; Onsager, L. On the theory of isotope separation by thermal diffusion. Phys. Rev. 1939, 55, 1083–1095. [Google Scholar] [CrossRef]
- Lorenz, M.; Emery, A. The packed thermal diffusion column. Chem. Eng. Sci. 1959, 11, 16–23. [Google Scholar] [CrossRef]
- Costeseque, P. On Selective Migration of Isotopes and Elements by Thermodiffusion in Aqueous Solutions. Applications of the Thermogravitational Effect in Porous Media; Experimental Observations and Geochemical Consequencies. Ph.D. Thesis, Université Paul Sabatier Toulouse, Toulouse, France, 1982. [Google Scholar]
- Jamet, P.; Fargue, D.; Costesèque, P.; De Marsily, G.; Cernes, A. The thermogravitational effect in porous media: A modelling approach. Transp. Porous Media 1992, 9, 223–240. [Google Scholar] [CrossRef]
- Dutrieux, J.F.; Platten, J.K.; Chavpeyer, G.; Bou-Ali, M.M. On the measurement of positive Soret coefficients. J. Phys. Chem. B 2002, 106, 6104–6114. [Google Scholar] [CrossRef]
- Platten, J.K.; Bou-Ali, M.M.; Dutrieux, J.F. Enhanced molecular separation in inclined thermogravitational columns. J. Phys. Chem. B 2003, 107, 11763–11767. [Google Scholar] [CrossRef]
- Charrier-Mojtabi, M.C.; Elhajjar, B.; Mojtabi, A. Analytical and numerical stability analysis of Soret-driven convection in a horizontal porous layer. Phys. Fluids 2007, 19, 124104. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, A.N.; Rees, D.A.S.; Mojtabi, A. The effect of conducting boundaries on the onset of convection in a porous layer which is heated from Bblow by internal heating. Transp. Porous Media 2017, 117, 189–206. [Google Scholar] [CrossRef] [Green Version]
- Ouattara, B.; Khouzam, A.; Mojtabi, A.; Charrier-Mojtabi, M.C. Analytical and numerical stability analysis of Soret-driven convection in a horizontal porous layer: The effect of conducting bounding plates. Fluid Dyn. Res. 2012, 44, 031415. [Google Scholar] [CrossRef]
- Mojtabi, A.; Rees, D.A.S. The effect of conducting bounding plates on the onset of Horton–Rogers–Lapwood convection. Int. J. Heat Mass Transf. 2011, 54, 293–301. [Google Scholar] [CrossRef] [Green Version]
- Rees, D.A.S.; Mojtabi, A. The effect of conducting boundaries on weakly nonlinear Darcy-Bénard convection. Transp. Porous Media 2011, 88, 45–63. [Google Scholar] [CrossRef]
- Mojtabi, A.; Ouattara, B.; Rees, D.A.S.; Charrier-Mojtabi, M.-C. The effect of conducting bounding horizontal plates on species separation in porous cavity saturated by a binary mixture. Int. J. Heat Mass Transf. 2018, 126, 479–488. [Google Scholar] [CrossRef] [Green Version]
- Legros, J. Double diffusive instabilities and the soret coefficient measurement under microgravity conditions. Acta Astronaut. 1987, 15, 455–461. [Google Scholar] [CrossRef]
- Mojtabi, A. A new process for the determination of the Soret coefficient of a binary mixture under microgravity. Int. J. Therm. Sci. 2019, 149, 106204. [Google Scholar] [CrossRef]
- Šeta, B.; Lapeira, E.; Dubert, D.; Gavaldà, F.; Bou-Ali, M.M.; Ruiz, X. Separation under thermogravitational effects in binary mixtures. Eur. Phys. J. E 2019, 42, 58. [Google Scholar] [CrossRef] [PubMed]
- COMSOL Multiphysics Simulation Software. Available online: https://www.comsol.com/comsol-multiphysics (accessed on 5 January 2022).
D[m2s−1] | α[m2s−1] | [m2s−1] | ||||
---|---|---|---|---|---|---|
2.49 × | 8.6 × | 0.00923 | 1.189 × | 1.029 × | 800.495 | 7.02 × |
C | Ref. [20] | Numerical Results | Analytical Results m | |
---|---|---|---|---|
6 | 0.1964 | 0.1965 | 0.1961 0.1962 | |
6 | 0.1818 | 0.1813 | 0.1809 0.1808 | |
10 | 0.196 | 0.1967 | 0.1958 0.1959 | |
10 | 0.182 | 0.1813 | 0.1806 0.1805 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mojtabi, A.; Costeseque, P.; Ouattara, B.; Charrier-Mojtabi, M.-C.; Rees, D.A.S. The Influence of Bounding Plates on Species Separation in a Vertical Thermogravitational Column. Physics 2022, 4, 51-65. https://doi.org/10.3390/physics4010005
Mojtabi A, Costeseque P, Ouattara B, Charrier-Mojtabi M-C, Rees DAS. The Influence of Bounding Plates on Species Separation in a Vertical Thermogravitational Column. Physics. 2022; 4(1):51-65. https://doi.org/10.3390/physics4010005
Chicago/Turabian StyleMojtabi, Abdelkader, Pierre Costeseque, Bafétigué Ouattara, Marie-Catherine Charrier-Mojtabi, and D. Andrew S. Rees. 2022. "The Influence of Bounding Plates on Species Separation in a Vertical Thermogravitational Column" Physics 4, no. 1: 51-65. https://doi.org/10.3390/physics4010005
APA StyleMojtabi, A., Costeseque, P., Ouattara, B., Charrier-Mojtabi, M. -C., & Rees, D. A. S. (2022). The Influence of Bounding Plates on Species Separation in a Vertical Thermogravitational Column. Physics, 4(1), 51-65. https://doi.org/10.3390/physics4010005