On Majorization Uncertainty Relations in the Presence of a Minimal Length
Abstract
:1. Introduction
2. Preliminaries
2.1. The Generalized Uncertainty Principle
2.2. On Majorization Uncertainty Relations
3. Main Results
3.1. The Case of Ordinary Commutation Relation
3.2. The Case of Modified Commutation Relation
3.3. Discussion
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Solution of the Eigenvalue Problem
References
- Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar] [CrossRef]
- Garay, L.J. Quantum gravity and minimum length. Int. J. Mod. Phys. A 1995, 10, 145–165. [Google Scholar] [CrossRef] [Green Version]
- Hossenfelder, S. Minimal length scale scenarios for quantum gravity. Living Rev. Relativ. 2013, 16, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amelino-Camelia, G.; Ellis, J.; Mavromatos, N.E.; Nanopoulos, D.V.; Sarkar, S. Tests of quantum gravity from observations of γ-ray bursts. Nature 1998, 393, 763–765. [Google Scholar] [CrossRef] [Green Version]
- Jacob, U.; Piran, T. Neutrinos from gamma-ray bursts as a tool to explore quantum-gravity-induced Lorentz violation. Nature Phys. 2007, 3, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Pikovski, I.; Vanner, M.R.; Aspelmeyer, M.; Kim, M.; Brukner, Č. Probing Planck-scale physics with quantum optics. Nature Phys. 2012, 8, 393–397. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Is a tabletop search for Planck scale signals feasible? Phys. Rev. D 2012, 86, 124040. [Google Scholar] [CrossRef] [Green Version]
- Marin, F.; Marino, F.; Bonaldi, M.; Cerdonio, M.; Conti, L.; Falferi, P.; Mezzena, R.; Ortolan, A.; Prodi, G.A.; Taffarello, L.; et al. Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables. Nature Phys. 2013, 9, 71–73. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Vagenas, E. Universality of quantum gravity corrections. Phys. Rev. Lett. 2008, 101, 221301. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.F.; Khalil, M.M.; Vagenas, E.C. Minimal length in quantum gravity and gravitational measurements. EPL (Europhys. Lett.) 2015, 112, 20005. [Google Scholar] [CrossRef]
- Bousso, K.; Halpern, I.; Koeller, J. Mass bounds for compact spherically symmetric objects in generalized gravity theories. Phys. Rev. D 2016, 94, 064047. [Google Scholar] [CrossRef] [Green Version]
- Howl, R.; Hackermüller, L.; Bruschi, D.E.; Fuentes, I. Gravity in the quantum lab. Adv. Phys. X 2018, 3, 1383184. [Google Scholar] [CrossRef] [Green Version]
- Kempf, A.; Mangano, G.; Mann, R.B. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 1995, 52, 1108–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedram, P. New approach to nonperturbative quantum mechanics with minimal length uncertainty. Phys. Rev. D 2012, 85, 024016. [Google Scholar] [CrossRef] [Green Version]
- Bosso, P. Rigorous Hamiltonian and Lagrangian analysis of classical and quantum theories with minimal length. Phys. Rev. D 2018, 97, 126010. [Google Scholar] [CrossRef] [Green Version]
- Chung, W.S.; Hassanabadi, H. A new higher order GUP: One dimensional quantum system. Eur. Phys. J. C 2019, 79, 213. [Google Scholar] [CrossRef] [Green Version]
- Bosso, P.; Luciano, G.G. Generalized uncertainty principle: From the harmonic oscillator to a QFT toy model. Eur. Phys. J. C 2021, 81, 982. [Google Scholar] [CrossRef]
- Kim, M.S.; Hwang, M.-R.; Jung, E.; Park, D.K. Rényi and von Neumann entropies of thermal state in generalized uncertainty principle-corrected harmonic oscillator. Mod. Phys. Lett. A 2021, 36, 2150250. [Google Scholar] [CrossRef]
- Iorio, A.; Pais, P.; Elmashad, I.A.; Ali, A.F.; Faizal, M.; Abou-Salem, L.I. Generalized Dirac structure beyond the linear regime in graphene. Int. J. Mod. Phys. D 2018, 27, 1850080. [Google Scholar] [CrossRef] [Green Version]
- Heisenberg, W. Über den anschaulichen inhalt der quanten theoretischen kinematik und mechanik. Z. Phys. 1927, 43, 172–198. [Google Scholar] [CrossRef]
- Kennard, E.H. Zur quantenmechanik einfacher bewegungstypen. Z. Phys. 1927, 44, 326–352. [Google Scholar] [CrossRef]
- Robertson, H.P. The uncertainty principle. Phys. Rev. 1929, 34, 163–164. [Google Scholar] [CrossRef]
- Hirschman, I.I. A note on entropy. Amer. J. Math. 1957, 79, 152–156. [Google Scholar] [CrossRef]
- Beckner, W. Inequalities in Fourier analysis. Ann. Math. 1975, 102, 159–182. [Google Scholar] [CrossRef]
- Białynicki-Birula, I.; Mycielski, J. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 1975, 44, 129–132. [Google Scholar] [CrossRef]
- Deutsch, D. Uncertainty in quantum measurements. Phys. Rev. Lett. 1983, 50, 631–633. [Google Scholar] [CrossRef]
- Maassen, H.; Uffink, J.B.M. Generalized entropic uncertainty relations. Phys. Rev. Lett. 1988, 60, 1103–1106. [Google Scholar] [CrossRef] [PubMed]
- Wehner, S.; Winter, A. Entropic uncertainty relations—A survey. New J. Phys. 2010, 12, 025009. [Google Scholar] [CrossRef]
- Białynicki-Birula, I.; Rudnicki, Ł. Entropic uncertainty relations in quantum physics. In Statistical Complexity; Sen, K.D., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 1–34. [Google Scholar] [CrossRef] [Green Version]
- Coles, P.J.; Berta, M.; Tomamichel, M.; Wehner, S. Entropic uncertainty relations and their applications. Rev. Mod. Phys. 2017, 89, 015002. [Google Scholar] [CrossRef]
- Toscano, F.; Tasca, D.S.; Rudnicki, Ł.; Walborn, S.P. Uncertainty relations for coarse-grained measurements: An overview. Entropy 2018, 20, 454. [Google Scholar] [CrossRef] [Green Version]
- Hertz, A.; Cerf, N.J. Continuous-variable entropic uncertainty relations. J. Phys. A Math. Theor. 2019, 52, 173001. [Google Scholar] [CrossRef] [Green Version]
- Partovi, M.H. Majorization formulation of uncertainty in quantum mechanics. Phys. Rev. A 2011, 84, 052117. [Google Scholar] [CrossRef] [Green Version]
- Puchała, Z.; Rudnicki, Ł.; Życzkowski, K. Majorization entropic uncertainty relations. J. Phys. A Math. Theor. 2013, 46, 272002. [Google Scholar] [CrossRef]
- Friedland, S.; Gheorghiu, V.; Gour, G. Universal uncertainty relations. Phys. Rev. Lett. 2013, 111, 230401. [Google Scholar] [CrossRef] [Green Version]
- Rudnicki, Ł.; Puchała, Z.; Życzkowski, K. Strong majorization entropic uncertainty relations. Phys. Rev. A 2014, 89, 052115. [Google Scholar] [CrossRef] [Green Version]
- Rastegin, A.E.; Życzkowski, K. Majorization entropic uncertainty relations for quantum operations. J. Phys. A Math. Theor. 2016, 49, 355301. [Google Scholar] [CrossRef] [Green Version]
- Amati, D.; Ciafaloni, M.; Veneziano, G. Can spacetime be probed below the string size? Phys. Lett. B 1989, 216, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Scardigli, F. Generalized uncertainty principle in quantum gravity from micro-black hole gedanken experiment. Phys. Lett. B 1999, 452, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Bambi, C. A revision of the generalized uncertainty principle. Class. Quantum Grav. 2008, 25, 105003. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Diab, A.M. A review of the generalized uncertainty principle. Rep. Prog. Phys. 2015, 78, 126001. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.F.; Elmashad, I.; Mureika, J. Universality of minimal length. Phys. Lett. B 2022, 831, 137182. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Cosmological models and the large numbers hypothesis. Proc. R. Soc. Lond. A 1974, 338, 439–446. [Google Scholar]
- Abdelkhalek, K.; Chemissany, W.; Fiedler, L.; Mangano, G.; Schwonnek, R. Optimal uncertainty relations in a modified Heisenberg algebra. Phys. Rev. D 2016, 94, 123505. [Google Scholar] [CrossRef] [Green Version]
- Rastegin, A.E. On entropic uncertainty relations in the presence of a minimal length. Ann. Phys. 2017, 382, 170–180. [Google Scholar] [CrossRef] [Green Version]
- Hsu, L.-Y.; Kawamoto, S.; Wen, W.-Y. Entropic uncertainty relation based on generalized uncertainty principle. Mod. Phys. Lett. A 2017, 32, 1750145. [Google Scholar] [CrossRef] [Green Version]
- Srinivas, M.D. Optimal entropic uncertainty relation for successive measurements in quantum information theory. Pramana J. Phys. 2003, 60, 1137–1152. [Google Scholar] [CrossRef] [Green Version]
- Distler, J.; Paban, S. Uncertainties in successive measurements. Phys. Rev. A 2013, 87, 062112. [Google Scholar] [CrossRef] [Green Version]
- Rastegin, A.E. Entropic uncertainty relations for successive measurements of canonically conjugate observables. Ann. Phys. 2016, 528, 835–844. [Google Scholar] [CrossRef]
- Rastegin, A.E. Entropic uncertainty relations for successive measurements in the presence of a minimal length. Entropy 2018, 20, 354. [Google Scholar] [CrossRef] [Green Version]
- Bosso, P.; Petruzziello, L.; Wagner, F. The minimal length is physical. Phys. Lett. B 2022, 834, 137415. [Google Scholar] [CrossRef]
- Bhatia, R. Matrix Analysis; Springer: New York, NY, USA, 1997. [Google Scholar] [CrossRef]
- Partovi, M.H. Correlative capacity of composite quantum states. Phys. Rev. Lett. 2009, 103, 230502. [Google Scholar] [CrossRef] [Green Version]
- Rastegin, A.E.; Shemet, A.M. Flavor-mass majorization uncertainty relations and their links to the mixing matrix. Mod. Phys. Lett. A 2021, 36, 2150211. [Google Scholar] [CrossRef]
- Rényi, A. On Measures of Entropy and Information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability (Berkeley/Los Angeles, CA, USA, June 20–July 30, 1960). Volume 1: Contributions to the Theory of Statistics; Neyman, J., Ed.; University of California Press: Berkeley/Los Angeles, CA, USA, 1961; pp. 547–561. Available online: https://projecteuclid.org/proceedings/berkeley-symposium-on-mathematical-statistics-and-probability/proceedings-of-thefourth-berkeley-symposium-on-mathematical-statistics-and-probability-volume-1-contributions-to-the-theory-of-statistics/toc/bsmsp/1200512153 (accessed on 25 November 2022).
- Nairz, O.; Arndt, M.; Zeilinger, A. Experimental verification of the Heisenberg uncertainty principle for fullerene molecules. Phys. Rev. A 2002, 65, 032109. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rastegin, A.E. On Majorization Uncertainty Relations in the Presence of a Minimal Length. Physics 2022, 4, 1413-1425. https://doi.org/10.3390/physics4040091
Rastegin AE. On Majorization Uncertainty Relations in the Presence of a Minimal Length. Physics. 2022; 4(4):1413-1425. https://doi.org/10.3390/physics4040091
Chicago/Turabian StyleRastegin, Alexey E. 2022. "On Majorization Uncertainty Relations in the Presence of a Minimal Length" Physics 4, no. 4: 1413-1425. https://doi.org/10.3390/physics4040091
APA StyleRastegin, A. E. (2022). On Majorization Uncertainty Relations in the Presence of a Minimal Length. Physics, 4(4), 1413-1425. https://doi.org/10.3390/physics4040091