Two New Methods in Stochastic Electrodynamics for Analyzing the Simple Harmonic Oscillator and Possible Extension to Hydrogen
Abstract
:1. Introduction
2. Calculating Analytic SHO Probability Density Functions from Initial General Expression
2.1. Direct Integration Method for Analytic Expression of SHO Probability Density,
2.2. Examples of Other Analytic SHO Probability Density Functions That Can Similarly Be Deduced
3. A PDE Approach for Deducing the SHO Probability Density Function
4. Concluding Remarks
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ODE | ordinary differential equation |
PDE | partial differential equation |
QED | quantum electrodynamics |
QM | quantum mechanics |
SED | stochastic electrodynamics |
SHO | simple harmonic oscillator |
1D | one-dimensional |
3D | three-dimensional |
References
- Teitelboim, C. Splitting of the maxwell tensor: Radiation reaction without advanced fields. Phys. Rev. D 1970, 1, 1572–1582. [Google Scholar] [CrossRef]
- Teitelboim, C.; Villarroel, D.; van Weert, C.G. Classical electrodynamics of retarded fields and point particles. Riv. Nuovo C 1980, 3, 1. [Google Scholar] [CrossRef]
- Boyer, T.H. General connection between random electrodynamics and quantum electrodynamics for free electromagnetic fields and for dipole oscillator systems. Phys. Rev. D 1975, 11, 809–830. [Google Scholar] [CrossRef]
- De la Peña, L.; Cetto, A.M. The Quantum Dice. An Introduction to Stochastic Electrodynamics; Kluwer Academic Publishers/Springer Science+Business Media B.V.: Dordrecht, The Netherlands, 1996. [Google Scholar] [CrossRef]
- Boyer, T.H. Stochastic electrodynamics: The closest classical approximation to quantum theory. Atoms 2019, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Boyer, T.H. Random electrodynamics: The theory of classical electrodynamics with classical electromagnetic zero–point radiation. Phys. Rev. D 1975, 11, 790–808. [Google Scholar] [CrossRef]
- Cole, D.C. Reviewing and extending some recent work on stochastic electrodynamics. In Essays on Formal Aspects of Electromagnetic Theory; Lakhtakia, A., Ed.; World Scientific: Singapore, 1993; pp. 501–532. [Google Scholar] [CrossRef]
- Boyer, T.H. The classical vacuum. Sci. Am. 1985, 253, 70–78. [Google Scholar] [CrossRef]
- Boyer, T.H. Scaling symmetry and thermodynamic equilibrium for classical electromagnetic radiation. Found. Phys. 1989, 19, 1371–1383. [Google Scholar] [CrossRef]
- Cole, D.C. Classical electrodynamic systems interacting with classical electromagnetic random radiation. Found. Phys. 1990, 20, 225–240. [Google Scholar] [CrossRef]
- Marshall, T.W. Statistical electrodynamics. Proc. Camb. Philos. Soc. 1965, 61, 537–546. [Google Scholar] [CrossRef]
- Boyer, T.H. Derivation of the blackbody radiation spectrum without quantum assumptions. Phys. Rev. 1969, 182, 1374–1383. [Google Scholar] [CrossRef]
- Cole, D.C. Derivation of the classical electromagnetic zero–point radiation spectrum via a classical thermodynamic operation involving van der Waals forces. Phys. Rev. A 1990, 42, 1847–1862. [Google Scholar] [CrossRef]
- Cole, D.C. Entropy and other thermodynamic properties of classical electromagnetic thermal radiation. Phys. Rev. A 1990, 42, 7006–7024. [Google Scholar] [CrossRef]
- Cole, D.C. Reinvestigation of the thermodynamics of blackbody radiation via classical physics. Phys. Rev. A 1992, 45, 8471–8489. [Google Scholar] [CrossRef]
- Bohm, D. Quantum Theory; Prentice–Hall, Inc.: Englewood Cliffs, NJ, USA, 1951. [Google Scholar]
- Cole, D.C. Energy considerations of classical electromagnetic zero-point radiation and a specific probability calculation in stochastic electrodynamics. Atoms 2019, 7, 50. [Google Scholar] [CrossRef] [Green Version]
- Cole, D.C. Probability calculations within stochastic electrodynamics. Front. Phys. 2020, 8, 127. [Google Scholar] [CrossRef]
- Cole, D.C. Thermodynamics of blackbody radiation via classical physics for arbitrarily shaped cavities with perfectly conducting walls. Found. Phys. 2000, 30, 1849–1867. [Google Scholar] [CrossRef]
- Planck, M. The Theory of Heat Radiation; P. Blakiston’s Son & Co.: Philadelphia, PA, USA, 1814; Available online: https://www.gutenberg.org/files/40030/40030-pdf.pdf (accessed on 12 January 2023).
- Einstein, A.; Hopf, L. Über einen Satz der Wahrscheinlichkeitsrechnung und seine Anwendung in der Strahlungstheorie. Ann. Phys. 1910, 338, 1096–1104. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A.; Hopf, L. Statistische Untersuchung der Bewegung eines Resonators in einem Strahlungsfeld. Ann. Phys. 1910, 338, 1105–1115. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A.; Hopf, L. On a Theorem of the Probability Calculus and its Application in the Theory of Radiation. In The Collected Papers of Albert Einstein. Volume 3: The Swiss Years: Writings 1909–1911; Klein, M.J., Kox, A.J., Renn, J., Schulman, R., Eds.; Princeton University Press: Princeton, NJ, USA, 1994; pp. 211–219. Available online: https://einsteinpapers.press.princeton.edu/vol3-trans/225 (accessed on 12 January 2023).
- Einstein, A.; Hopf, L. Statistical Investigation of Resonators’s Motion in a Radiation Field. In The Collected Papers of Albert Einstein. Volume 3: The Swiss Years: Writings 1909–1911; Klein, M.J., Kox, A.J., Renn, J., Schulman, R., Eds.; Princeton University Press: Princeton, NJ, USA, 1994; pp. 220–230. Available online: https://einsteinpapers.press.princeton.edu/vol3-trans/234 (accessed on 12 January 2023).
- Cole, D.C.; Zou, Y. Quantum mechanical ground state of hydrogen obtained from classical electrodynamics. Phys. Lett. A 2003, 317, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Nieuwenhuizen, T.M.; Liska, M.T.P. Simulation of the hydrogen ground state in stochastic electrodynamics. Phys. Scr. 2015, 2015, 014006. [Google Scholar] [CrossRef] [Green Version]
- Nieuwenhuizen, T.M.; Liska, M.T.P. Simulation of the hydrogen ground state in stochastic electrodynamics-2: Inclusion of relativistic corrections. Found. Phys. 2015, 45, 1190–1202. [Google Scholar] [CrossRef] [Green Version]
- Feynman, R.P.; Hibbs, A.R. Quantum Mechanics and Path Integrals; McGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Feynman, R.P. Space-time qpproach to Non-relativistic quantum mechanics. Rev. Mod. Phys. 1948, 20, 367–387. [Google Scholar] [CrossRef] [Green Version]
- Duru, I.H.; Kleinert, H. Solution of the path integral for the H atom. Phys. Lett. B 1979, 84, 185–188. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cole, D.C. Two New Methods in Stochastic Electrodynamics for Analyzing the Simple Harmonic Oscillator and Possible Extension to Hydrogen. Physics 2023, 5, 229-246. https://doi.org/10.3390/physics5010018
Cole DC. Two New Methods in Stochastic Electrodynamics for Analyzing the Simple Harmonic Oscillator and Possible Extension to Hydrogen. Physics. 2023; 5(1):229-246. https://doi.org/10.3390/physics5010018
Chicago/Turabian StyleCole, Daniel C. 2023. "Two New Methods in Stochastic Electrodynamics for Analyzing the Simple Harmonic Oscillator and Possible Extension to Hydrogen" Physics 5, no. 1: 229-246. https://doi.org/10.3390/physics5010018
APA StyleCole, D. C. (2023). Two New Methods in Stochastic Electrodynamics for Analyzing the Simple Harmonic Oscillator and Possible Extension to Hydrogen. Physics, 5(1), 229-246. https://doi.org/10.3390/physics5010018