New Advances in Quantum Geometry
1. Introduction
2. Scope and Aims of the Project
Funding
Conflicts of Interest
References
- Ashtekar, A. Exploring quantum geometry created by quantum matter. Physics 2022, 4, 1384–1402. [Google Scholar] [CrossRef]
- Haghani, Z.; Harko, T. Effects of quantum metric fluctuations on the cosmological evolution in Friedmann-Lemaitre-Robertson-Walker geometries. Physics 2021, 3, 689–714. [Google Scholar] [CrossRef]
- Gadbail, G.N.; Mandal, S.; Sahoo, P.K. Parametrization of deceleration parameter in f (Q) gravity. Physics 2022, 4, 1403–1412. [Google Scholar] [CrossRef]
- Sofuoğlu, D.; Tiwari, R.K.; Abebe, A.; Alfedeel, A.H.A.; Hassan, E.I. The cosmology of a non-minimally coupled f (R, T) gravitation. Physics 2022, 4, 1348–1358. [Google Scholar] [CrossRef]
- Lu, J.-A. Cosmology of a polynomial model for de Sitter gauge theory sourced by a fluid. Physics 2022, 4, 1168–1179. [Google Scholar] [CrossRef]
- Brahma, S.; Brandenberger, R.; Laliberte, S. BFSS matrix model cosmology: Progress and challenges. Physics 2023, 5, 1–10. [Google Scholar] [CrossRef]
- Albuquerque, S.; Bezerra, V.B.; Lobo, I.P.; Macedo, G.; Morais, P.H.; Rodrigues, E.; Santos, L.C.N.; Varão, G. Quantum configuration and phase spaces: Finsler and Hamilton geometries. Physics 2023, 5, 90–115. [Google Scholar] [CrossRef]
- Schürmann, T. On momentum operators given by Killing vectors whose integral curves are geodesics. Physics 2022, 4, 1440–1452. [Google Scholar] [CrossRef]
- Rastegin, A.E. On Majorization uncertainty relations in the presence of a minimal length. Physics 2022, 4, 1413–1425. [Google Scholar] [CrossRef]
- Lobos, N.J.L.S.; Pantig, R.C. Generalized extended uncertainty principle black holes: Shadow and lensing in the macro- and microscopic realms. Physics 2022, 4, 1318–1330. [Google Scholar] [CrossRef]
- Singh, T.P. Why do elementary particles have such strange mass ratios?—The importance of quantum gravity at low energies. Physics 2022, 4, 948–969. [Google Scholar] [CrossRef]
- Liang, S.-D.; Lake, M.J. An introduction to noncommutative physics. Physics 2023, 5, 436–460. [Google Scholar] [CrossRef]
- Vyas, R.P.; Joshi, M.J. The Barbero–Immirzi parameter: An enigmatic parameter of loop quantum gravity. Physics 2022, 4, 1094–1116. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, S.-D.; Harko, T.; Lake, M.J. New Advances in Quantum Geometry. Physics 2023, 5, 688-689. https://doi.org/10.3390/physics5030045
Liang S-D, Harko T, Lake MJ. New Advances in Quantum Geometry. Physics. 2023; 5(3):688-689. https://doi.org/10.3390/physics5030045
Chicago/Turabian StyleLiang, Shi-Dong, Tiberiu Harko, and Matthew J. Lake. 2023. "New Advances in Quantum Geometry" Physics 5, no. 3: 688-689. https://doi.org/10.3390/physics5030045
APA StyleLiang, S. -D., Harko, T., & Lake, M. J. (2023). New Advances in Quantum Geometry. Physics, 5(3), 688-689. https://doi.org/10.3390/physics5030045