Dynamical Sensitivity of Three-Layer Micro Electromechanical Systems to the Optical Properties of the Intervening Liquid Layer
Abstract
1. Introduction
2. Methods and Materials
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodriguez, A.W.; Capasso, F.; Johnson, S.G. The Casimir effect in microstructured geometries. Nat. Photonics 2011, 5, 211–221. [Google Scholar] [CrossRef]
- Capasso, F.; Munday, J.N.; Iannuzzi, D.; Chan, H.B. Casimir forces and quantum electrodynamical torques: Physics and nanomechanics. IEEE J. Sel. Top. Quant. Electron. 2007, 13, 400–414. [Google Scholar] [CrossRef]
- Bordag, M.; Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Advances in the Casimir Effect; Oxford University Press: Oxford, UK, 2015. [Google Scholar] [CrossRef]
- Decca, R.S.; Lόpez, D.; Fischbach, E.; Klimchitskaya, G.L.; Krause, D.E.; Mostepanenko, V.M. Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions. Ann. Phys. 2005, 318, 37–80. [Google Scholar] [CrossRef]
- Decca, R.S.; López, D.; Fischbach, E.; Klimchitskaya, G.L.; Krause, D.E.; Mostepanenko, V.M. Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates. Phys. Rev. D 2007, 75, 077101. [Google Scholar] [CrossRef]
- Ashourvan, A.; Miri, M.F.R.; Golestanian, R. Noncontact rack and pinion powered by the lateral Casimir force. Phys. Rev. Lett. 2014, 98, 140801. [Google Scholar] [CrossRef] [PubMed]
- Miri, M.F.; Golestanian, R. A frustrated nanomechanical device powered by the lateral Casimir force. Appl. Phys. Lett. 2011, 92, 113103. [Google Scholar] [CrossRef]
- Ashourvan, A.; Miri, M.F.; Golestanian, R. Rectification of the lateral Casimir force in a vibrating noncontact rack and pinion. Phys. Rev. E 2007, 75, 040103. [Google Scholar] [CrossRef]
- DelRio, F.W.; de Boer, M.P.; Knapp, J.A.; Reedy, E.D.; Clews, P.J.; Dunn, M.L. The role of van der Waals forces in adhesion of micromachined surfaces. Nat. Mater. 2005, 4, 629–634. [Google Scholar] [CrossRef]
- Serry, F.M.; Walliserand, D.; Maclay, G.J. The role of the Casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems. J. Appl. Phys. 1998, 84, 2501–2506. [Google Scholar] [CrossRef]
- Serry, F.M.; Walliser, D.; Maclay, G.J. The anharmonic Casimir oscillator (ACO)—The Casimir effect in a model microelectromechanical system. J. Microelectromech. Syst. 1995, 4, 193–205. [Google Scholar] [CrossRef]
- Palasantzas, G.; DeHosson, J.T.M. Phase maps of microelectromechanical switches in the presence of electrostatic and Casimir forces. Phys. Rev. B 2005, 72, 121409. [Google Scholar] [CrossRef]
- Milonni, P.W. The Quantum Vacuum. An Introduction to Quantum Electrodynamics; Academic Press, Inc.: San Diego, CA, USA, 1994. [Google Scholar] [CrossRef]
- Sciama, D.W. The physical significance of the vacuum state of a quantum field. In The Philosophy of Vacuum; Saunders, S., Brown, H.R., Eds.; Clarendon Press/Oxford University Press: Oxford, UK, 1991; pp. 137–158. [Google Scholar] [CrossRef]
- Casimir, H.B.G. On the Attraction between Two Perfectly Conducting Plates. Indag. Math. 1948, 10, 261–263. Available online: https://dwc.knaw.nl/DL/publications/PU00018547.pdf (accessed on 24 October 2023).
- Lifshitz, E.M. The Theory of Molecular Attractive Forces between Solids. Sov. Phys. JETP 1956, 2, 73–83. Available online: http://jetp.ras.ru/cgi-bin/e/index/e/2/1/p73?a=list (accessed on 24 October 2023).
- Ball, P. Feel the force. Nature 2007, 447, 772–774. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.B.; Aksyuk, V.A.; Kleiman, R.N.; Bishop, D.J.; Capasso, F. Quantum mechanical actuation of microelectromechanical systems by the Casimir force. Science 2001, 291, 1941–1944. [Google Scholar] [CrossRef]
- Pawlowski, P.; Zielenkiewicz, P. The quantum Casimir effect may be a universal Force organizing the bilayer structure of the cell membrane. J. Membr. Biol. 2013, 246, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Svetovoy, V.B.; Postnikov, A.; Uvarov, I.; Stepanov, F.; Palasantzas, G. Measuring the dispersion forces near the van der Waals–Casimir transition. Phys. Rev. Appl. 2020, 13, 064057. [Google Scholar] [CrossRef]
- Velichko, E.N.; Klimchitskaya, G.L.; Mostepanenko, V.M. Dispersion forces between metal and dielectric plates separated by a magnetic fluid. Techn. Phys. 2019, 64, 1260–1266. [Google Scholar] [CrossRef]
- Sedighi, M.; Svetovoy, V.B.; Broer, W.H.; Palasantzas, G. Casimir forces from conductive silicon carbide surfaces. Phys. Rev. B 2014, 89, 195440. [Google Scholar] [CrossRef]
- Tajik, F.; Sedighi, M.; Khorrami, M.; Masoudi, A.A.; Palasantzas, G. Chaotic behavior in Casimir oscillators: A case study for phase-change materials. Phys. Rev. E 2017, 96, 042215. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tajik, F.; Sedighi, M.; Babamahdi, Z.; Masoudi, A.A.; Waalkense, H.; Palasantzas, G. Sensitivity of chaotic behavior to low optical frequencies of a double-beam torsional actuator. Chaos 2019, 29, 093126. [Google Scholar] [CrossRef]
- Tajik, F.; Palasantzas, G. Sensitivity of actuation dynamics of Casimir oscillators on finite temperature with topological insulator materials: Response of repulsive vs attractive interactions. Phys. Lett. A 2023, 481, 129032. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Pulsating Casimir force. J. Phys. A 2007, 40, F841–F847. [Google Scholar] [CrossRef]
- van Oss, C.J.; Chaudhury, M.K.; Good, R.J. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem. Rev. 1988, 88, 927–941. [Google Scholar] [CrossRef]
- Munday, J.N.; Capasso, F. Precision measurement of the Casimir-Lifshitz force in a fluid. Phys. Rev. A 2007, 75, 0601062(R). [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mohideen, U.; Nepomnyashchaya, E.K.; Velichko, E.N. Effect of agglomeration of magnetic nanoparticles on the Casimir pressure through a ferrofluid. Phys. Rev. B 2019, 99, 045433. [Google Scholar] [CrossRef]
- Goubault, C.; Jop, P.; Fermigier, M.; Baudry, J.; Bertrand, E.; Bibette, J. Flexible magnetic filaments as micromechanical sensors. Phys. Rev. Lett. 2003, 91, 260802. [Google Scholar] [CrossRef]
- Pekas, N.; Porter, M.D.; Tondra, M.; Popple, A.; Jander, A. Giant magnetoresistance monitoring of magnetic picodroplets in an integrated microfluidic system. Appl. Phys. Lett. 2004, 85, 4783–4785. [Google Scholar] [CrossRef]
- Inglis, D.W.; Riehn, R.; Austin, R.H.; Sturm, J.C. Continuous microfluidic immunomagnetic cell separation. Appl. Phys. Lett. 2004, 85, 5093–5095. [Google Scholar] [CrossRef]
- Nishat, S.; Jafry, A.T.; Martinez, A.W.; Awan, F.R. Paper-based microfluidics: Simplified fabrication and assay methods. Sens. Actuators B Chem. 2021, 336, 129681. [Google Scholar] [CrossRef]
- Philip, J.; Laskar, J.M. Optical properties and applications of ferrofluids. J. Nanofluids 2012, 1, 3–20. [Google Scholar] [CrossRef]
- Mao, L.; Elborai, S.; He, X.; Zahn, M.; Koser, H. Direct observation of closed-loop ferrohydrodynamic pumping under traveling magnetic fields. Phys. Rev. B 2011, 84, 104431. [Google Scholar] [CrossRef]
- Lin, W.; Miao, Y.; Zhang, H.; Liu, B.; Liu, Y.; Song, B. Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects. Appl. Phys. Lett. 2013, 103, 151101. [Google Scholar] [CrossRef]
- Saga, N.; Nakamura, T. Elucidation of propulsive force of microrobot using magnetic fluid. J. Appl. Phys. 2002, 91, 7003–7005. [Google Scholar] [CrossRef]
- Fannin, P.C.; Marin, C.N.; Malaescu, I.; Stefu, N. Microwave dielectric properties of magnetite colloidal particles in magnetic fluids. J. Phys. Condens. Matter 2007, 19, 036104. [Google Scholar] [CrossRef]
- Qi, H.; Zhang, X.; Jiang, M.; Wang, Q.; Li, D. A method to determine optical properties of kerosene using transmission spectrum. Optik 2016, 127, 8899–8906. [Google Scholar] [CrossRef]
- Svetovoy, V.B.; Van Zwol, P.J.; Palasantzas, G.; De Hosson, J.T.M. Optical properties of gold films and the Casimir force. Phys. Rev. B 2008, 77, 035439. [Google Scholar] [CrossRef]
- Garcıa, R.; Perez, R. Dynamic atomic force microscopy methods. Surf. Sci. Rep. 2002, 47, 197–301. [Google Scholar] [CrossRef]
- Vinogradova, V.O. Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir 1995, 11, 2213–2220. [Google Scholar] [CrossRef]
- Vinogradova, O.I.; Yakubov, G.E. Dynamic effects on force measurements. 2. Lubrication and the atomic force microscope. Langmuir 2003, 19, 1227–1234. [Google Scholar] [CrossRef]
- Vinogradova, O.I.; Yakubov, G.E. Surface roughness and hydrodynamic boundary conditions. Phys. Rev. E 2006, 73, 045302. [Google Scholar] [CrossRef] [PubMed]
- Neto, C.; Evans, D.R.; Bonaccurso, E.; Butt, H.J.; Craig, V.S.J. Boundary slip in Newtonian liquids: A review of experimental studies. Rep. Prog. Phys. 2005, 68, 2859–2897. [Google Scholar] [CrossRef]
- Bonaccurso, E.; Butt, H.J.; Craig, V.S.J. Surface roughness and hydrodynamic boundary slip of a Newtonian fluid in a completely wetting system. Phys. Rev. Lett. 2003, 90, 144501. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Attard, P.; Neto, C. Reliable measurements of interfacial slip by colloid probe atomic force microscopy. II. Hydrodynamic force measurements. Langmuir 2011, 27, 6712–6719. [Google Scholar] [CrossRef] [PubMed]
- Granick, S.; Zhu, Y.; Lee, H. Slippery questions about complex fluids flowing past solids. Nat. Mater. 2003, 2, 221–227. [Google Scholar] [CrossRef]
- Siria, A.; Drezet, A.; Marchi, F.; Comin, F.; Huant, S.; Chevrier, J. Viscous cavity damping of a microlever in a simple fluid. J. Phys. Rev. Lett. 2009, 102, 254503. [Google Scholar] [CrossRef]
- Maali, A.; Bhushan, B. Slip-length measurement of confined air flow using dynamic atomic force microscopy. Phys. Rev. E 2008, 78, 027302. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Bhushan, B.; Maali, A. Slip length measurement of confined air flow on three smooth surfaces. Langmuir 2013, 29, 4298–4302. [Google Scholar] [CrossRef] [PubMed][Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tajik, F.; Palasantzas, G. Dynamical Sensitivity of Three-Layer Micro Electromechanical Systems to the Optical Properties of the Intervening Liquid Layer. Physics 2023, 5, 1081-1093. https://doi.org/10.3390/physics5040070
Tajik F, Palasantzas G. Dynamical Sensitivity of Three-Layer Micro Electromechanical Systems to the Optical Properties of the Intervening Liquid Layer. Physics. 2023; 5(4):1081-1093. https://doi.org/10.3390/physics5040070
Chicago/Turabian StyleTajik, Fatemeh, and George Palasantzas. 2023. "Dynamical Sensitivity of Three-Layer Micro Electromechanical Systems to the Optical Properties of the Intervening Liquid Layer" Physics 5, no. 4: 1081-1093. https://doi.org/10.3390/physics5040070
APA StyleTajik, F., & Palasantzas, G. (2023). Dynamical Sensitivity of Three-Layer Micro Electromechanical Systems to the Optical Properties of the Intervening Liquid Layer. Physics, 5(4), 1081-1093. https://doi.org/10.3390/physics5040070