Semi-Classical Electrodynamics and the Casimir Effect
Abstract
:1. Introduction
2. The Ninham, Parsegian and Weiss Semi-Classical Derivation of Lifshitz Theory
3. A High-Temperature Semi-Classical Application: The Drude-Plasma Controversy
4. Another Intriguing Semi-Classical Story: Casimir Interaction Energy across a Plasma
5. Semi-Classical Derivation of Resonance Interaction between Exited State Atom Pair
6. Discussions and Future Outlooks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Casimir, H.B.G. On the attraction between two perfectly conducting plates. Proc. Kon. Ned. Akad. Wetensch. B 1948, 51, 793–795. Available online: https://dwc.knaw.nl/DL/publications/PU00018547.pdf (accessed on 15 January 2024).
- Casimir, H.B.G.; Polder, D. The influence of retardation on the London–van der Waals forces. Phys. Rev. 1948, 73, 360–372. [Google Scholar] [CrossRef]
- Young, T. An essay on the cohesion of fluids. Phil. Trans. R. Soc. Lond. 1805, 95, 65–87. [Google Scholar] [CrossRef]
- Craik, A.D.D. Thomas Young on fluid mechanics. J. Eng. Math. 2010, 67, 95–113. [Google Scholar] [CrossRef]
- Challis, J. On capillary attraction and the molecular forces of fluids. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1836, 8, 89–96. [Google Scholar] [CrossRef]
- Capillary Action. In Encyclopedia Britannica: Dictionary of Arts, Sciences, and General Literature. Volume V; Adam and Charles Black: Edinburgh, UK, 1876; pp. 56–71. Available online: https://digital.nls.uk/encyclopaedia-britannica/archive/193322694 (accessed on 15 January 2023).
- Capillary Action. In Encyclopedia Britannica: Dictionary of Arts, Sciences, and General Literature. Volume XI; University Press: Cambridge, UK, 1910; pp. 256–275. Available online: https://archive.org/details/encyclopaediabrit05chisrich/page/256/ (accessed on 15 January 2023).
- Boscovich, P.R.J.; Societatis Jesu. Theoria Philosophiæ Naturalis. Venetiis: Vienna, Austria, 1563. English translation: Boscovich, R.J.; Societatis Jesu. A Theory of Natural Philosophy; The M.I.T. Press: Cambridge, MA, USA, 1966. Available online: https://archive.org/details/theoryofnaturalp0000rugg (accessed on 15 January 2024).
- Van der Waals, J.D. Over de Continuiteit van den Gas- en Vloeistoftoestand; Boekdrukkerij van A.W. Sijthoff: Leiden, The Netherlands, 1873. [Google Scholar] [CrossRef]
- Van der Waals, J.D. On the Continuity of the Gaseous and Liquid States; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Derjaguin, B.V.; Abrikosova, I.I.; Lifshitz, E.M. Direct measurement of molecular attraction between solids separated by a narrow gap. Quart. Rev. Chem. Soc. 1956, 10, 295–329. [Google Scholar] [CrossRef]
- Lebedew, P. Ueber die mechanische Wirkung der Wellen auf ruhende Resonatoren. I. Electromagnetische Wellen. Ann. Phys. 1894, 288, 621–640. [Google Scholar] [CrossRef]
- London, F. Zur Theorie und Systematik der Molekularkräfte. Z. Phys. 1930, 63, 245–279. [Google Scholar] [CrossRef]
- Lifshitz, E.M. The theory of molecular attractive forces between solids. Sov. Phys. JETP 1956, 2, 73–83. Available online: http://jetp.ras.ru/cgi-bin/e/index/e/2/1/p73?a=list (accessed on 15 January 2024).
- Tabor, D.; Winterton, W.H.S. The direct measurement of normal and retarded van der Waals forces. Proc. Roy. Soc. Lond. A Math. Phys. Sci. 1969, 312, 435. [Google Scholar] [CrossRef]
- Israelachvili, J.N.; Tabor, D. The measurement of van der Waals dispersion forces in the range 1.5 to 130 nm. Proc. R. Soc. Lond. A Math. Phys. Sci. 1972, 331, 19–38. [Google Scholar] [CrossRef]
- White, L.R.; Israelachvili, J.N.; Ninham, B.W. Dispersion interaction of crossed mica cylinders: A reanalysis of the Israelachvili–Tabor experiments. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Cond. Phases 1976, 72, 2526–2536. [Google Scholar] [CrossRef]
- Tabor, D.; Winterton, R. Surface forces: Direct measurement of normal and retarded van der Waals forces. Nature 1968, 219, 1120–1121. [Google Scholar] [CrossRef]
- Dzyaloshinskii, I.E.; Lifshitz, E.M.; Pitaevskii, L.P. The general theory of van der Waals forces. Adv. Phys. 1961, 10, 165–209. [Google Scholar] [CrossRef]
- Parsegian, V.A.; Ninham, B.W. Application of the Lifshitz theory to the calculation of van der Waals forces across thin lipid films. Nature 1969, 224, 1197–1198. [Google Scholar] [CrossRef]
- Ninham, B.W.; Parsegian, V.A.; Weiss, G.H. On the macroscopic theory of temperature-dependent van der Waals forces. J. Stat. Phys. 1970, 2, 323–328. [Google Scholar] [CrossRef]
- Ninham, B.W.; Parsegian, V.A. van der Waals forces: Special characteristics in lipid-water systems and a general method of calculation based on the Lifshitz theory. Biophys. J. 1970, 10, 646–663. [Google Scholar] [CrossRef] [PubMed]
- Mahanty, J.; Ninham, B.W. Dispersion Forces; Academic Press Inc. Ltd.: London, UK, 1976. [Google Scholar]
- Richmond, P.; Ninham, B.W. A note on the extension of the Lifshitz theory of van der Waals forces to magnetic media. J. Phys. C Solid State Phys. 1971, 4, 1988–1993. [Google Scholar] [CrossRef]
- Richmond, P.; Davies, B.; Ninham, B.W. van der Waals attraction between conducting molecules. Phys. Lett. A 1972, 39, 301–302. [Google Scholar] [CrossRef]
- Davies, B.; Ninham, B.W.; Richmond, P. van der Waals forces between thin cylinders: New features due to conduction processes. J. Chem. Phys. 2003, 58, 744–750. [Google Scholar] [CrossRef]
- Richmond, P.; Ninham, B.W. Calculations, using Lifshitz theory, of the height vs. thickness for vertical liquid helium films. Solid State Commun. 1971, 9, 1045–1047. [Google Scholar] [CrossRef]
- Richmond, P.; Ninham, B.W.; Ottewill, R.H. A theoretical study of hydrocarbon adsorption on water surfaces using Lifshitz theory. J. Coll. Interf. Sci. 1973, 45, 69–80. [Google Scholar] [CrossRef]
- Anderson, C.H.; Sabisky, E.S. Phonon interference in thin films of liquid helium. Phys. Rev. Lett. 1970, 24, 1049–1052. [Google Scholar] [CrossRef]
- Ninham, B.W.; Lo Nostro, P. Molecular Forces and Self Assembly in Colloid, Nano Sciences and Biology; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- Ninham, B.W.; Brevik, I.; Boström, M. Equivalence of electromagnetic fluctuation and nuclear (Yukawa) forces: The π0 meson, its mass and lifetime. Substantia 2022, 7, 7–14. [Google Scholar] [CrossRef]
- Ninham, B.W.; Pask, C. Observations on the the possible electromagnetic nature of nucleon interactions and pions. Australian National University: Canberra, Australia, 1969; Unpublished. [Google Scholar]
- Boström, M.; Longdell, J.J.; Mitchell, D.J.; Ninham, B.W. Resonance interaction between one excited and one ground state atom. Eur. Phys. J. D At. Mol. Opt. Plasma Phys. 2003, 22, 47–52. [Google Scholar] [CrossRef]
- Van Kampen, N.G.; Nijboer, B.R.A.; Schram, K. On the macroscopic theory of Van der Waals forces. Phys. Lett. A 1968, 26, 307–308. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics; John Wiley & Sons, Inc.: New York, NY, USA, 1975; Available online: https://archive.org/details/ClassicalElectrodynamics2nd (accessed on 15 January 2024).
- Boström, M.; Sernelius, B.E. Thermal effects on the Casimir force in the 0.1–5 μm range. Phys. Rev. Lett. 2000, 84, 4757. [Google Scholar] [CrossRef]
- Sernelius, B.E. Fundamentals of van der Waals and Casimir Interactions; Springer Nature Switzerland AG: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Bordag, M.; Geyer, B.; Klimchitskaya, G.L.; Mostepanenko, V.M. Casimir force at both nonzero temperature and finite conductivity. Phys. Rev. Lett. 2000, 85, 503–506. [Google Scholar] [CrossRef]
- Lamoreaux, S.K. Demonstration of the Casimir force in the 0.6 to 6 μm range. Phys. Rev. Lett. 1997, 78, 5–8. [Google Scholar] [CrossRef]
- Sushkov, A.O.; Kim, W.J.; Dalvit, D.A.R.; Lamoreaux, S.K. Observation of the thermal Casimir force. Nat. Phys. 2011, 7, 230–233. [Google Scholar] [CrossRef]
- Harris, B.W.; Chen, F.; Mohideen, U. Precision measurement of the Casimir force using gold surfaces. Phys. Rev. A 2000, 62, 052109. [Google Scholar] [CrossRef]
- Decca, R.S.; López, D.; Fischbach, E.; Krause, D.E. Measurement of the Casimir force between dissimilar metals. Phys. Rev. Lett. 2003, 91, 050402. [Google Scholar] [CrossRef] [PubMed]
- Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. The Casimir force between real materials: Experiment and theory. Rev. Mod. Phys. 2009, 81, 1827–1885. [Google Scholar] [CrossRef]
- Chang, C.-C.; Banishev, A.A.; Castillo-Garza, R.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Gradient of the Casimir force between Au surfaces of a sphere and a plate measured using an atomic force microscope in a frequency-shift technique. Phys. Rev. B 2012, 85, 165443. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. The Casimir effect in graphene systems: Experiment and theory. Int. J. Mod. Phys. A 2022, 37, 2241003. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mostepanenko, V.M. Casimir effect invalidates the Drude model for transverse electric evanescent waves. Physics 2023, 5, 952–967. [Google Scholar] [CrossRef]
- Bordag, M.; Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Advances in the Casimir Effect; Oxford Science Publications: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Milton, K.A. The Casimir Effect: Physical Manifestations of Zero-Point Energy; World Scientific Co. Ltd.: Singapore, 2001. [Google Scholar] [CrossRef]
- Sernelius, B.E. Surface Modes in Physics; John Wiley-VCH Verlag Berlin GmbH: Berlin, Germany, 2005. [Google Scholar] [CrossRef]
- Buhmann, S.Y. Dispersion Forces I: Macroscopic Quantum Electrodynamics and Ground-State Casimir, Casimir–Polder and Van Der Waals Forces; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Buhmann, S.Y. Dispersion Forces II: Many-Body Effects, Excited Atoms, Finite Temperature and Quantum Friction; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Ninham, B.W.; Boström, M. Screened Casimir force at finite temperatures: A possible role in nuclear interactions. Phys. Rev. A 2003, 67, 030701. [Google Scholar] [CrossRef]
- Casimir, H.B.G. Introductory remarks on quantum electrodynamics. Physica 1953, 19, 846–849. [Google Scholar] [CrossRef]
- Boyer, T.H. Quantum electromagnetic zero-Point energy of a conducting spherical shell and the Casimir model for a charged particle. Phys. Rev. 1968, 174, 1764–1776. [Google Scholar] [CrossRef]
- Ninham, B.W.; Daicic, J. Lifshitz theory of Casimir forces at finite temperature. Phys. Rev. A 1998, 57, 1870–1880. [Google Scholar] [CrossRef]
- Ninham, B.W.; Boström, M.; Persson, C.; Brevik, I.; Buhmann, S.Y.; Sernelius, B.E. Casimir forces in a plasma: Possible connections to Yukawa potentials. Eur. Phys. J. D 2014, 68, 328. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics; Elsevier Ltd./Butterworth–Heinemann: Oxford, UK, 1999. [Google Scholar] [CrossRef]
- Ninham, B.W.; Powell, C.J.; Swanson, N. Plasmon Damping in Metals. Phys. Rev. 1966, 145, 209–217. [Google Scholar] [CrossRef]
- McLachlan, A.D. Resonance transfer of molecular excitation energy. Molec. Phys. 1964, 8, 409–423. [Google Scholar] [CrossRef]
- Avery, J.S. Resonance energy transfer and spontaneous photon emission. Proc. Phys. Soc. 1966, 88, 1–8. [Google Scholar] [CrossRef]
- Power, E.A.; Thirunamachandran, T. Dispersion forces between molecules with one or both molecules excited. Phys. Rev. A 1995, 51, 3660–3666. [Google Scholar] [CrossRef] [PubMed]
- Andrews, D.L.; Sherborne, B.S. Resonant excitation transfer: A quantum electrodynamical study. J. Chem. Phys. 1987, 86, 4011–4017. [Google Scholar] [CrossRef]
- Andrews, D.; Curutchet, C.; Scholes, G. Resonance energy transfer: Beyond the limits. Laser Photon. Rev. 2011, 5, 114–123. [Google Scholar] [CrossRef]
- Wennerström, H.; Daicic, J.; Ninham, B.W. Temperature dependence of atom-atom interactions. Phys. Rev. A 1999, 60, 2581–2584. [Google Scholar] [CrossRef]
- Barash, Y.S.; Ginzburg, V.L. Electromagnetic fluctuations and molecular forces in condensed matter. In The Dielectric Function of Condensed Systems; Keldysh, L.V., Kirzhnitz, D.A., Maradudin, A.A., Eds.; Elsevier: Amsterdam, The Netherlands, 1989; pp. 389–457. [Google Scholar] [CrossRef]
- Elbaum, M.; Schick, M. Application of the theory of dispersion forces to the surface melting of ice. Phys. Rev. Lett. 1991, 66, 1713–1716. [Google Scholar] [CrossRef] [PubMed]
- Elbaum, M.; Lipson, S.; Dash, J. Optical study of surface melting on ice. J. Cryst. Growth 1993, 129, 491–505. [Google Scholar] [CrossRef]
- Wilen, L.A.; Wettlaufer, J.S.; Elbaum, M.; Schick, M. Dispersion-force effects in interfacial premelting of ice. Phys. Rev. B 1995, 52, 12426–12433. [Google Scholar] [CrossRef] [PubMed]
- Wettlaufer, J.S. Impurity effects in the premelting of ice. Phys. Rev. Lett. 1999, 82, 2516–2519. [Google Scholar] [CrossRef]
- Parsons, D.F.; Ninham, B.W. Ab initio molar volumes and Gaussian radii. J. Phys. Chem. A 2009, 113, 1141–1150. [Google Scholar] [CrossRef]
- Parsegian, V.A. Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists; Cambridge University Press: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Parsons, D.F.; Ninham, B.W. Nonelectrostatic ionic forces between dissimilar surfaces: A mechanism for colloid separation. J. Phys. Chem. C 2012, 116, 7782–7792. [Google Scholar] [CrossRef]
- Duignan, T.T.; Parsons, D.F.; Ninham, B.W. A continuum model of solvation energies including electrostatic, dispersion, and cavity contributions. J. Phys. Chem. B 2013, 117, 9421–9429. [Google Scholar] [CrossRef] [PubMed]
- Parsons, D.F.; Salis, A. The impact of the competitive adsorption of ions at surface sites on surface free energies and surface forces. J. Chem. Phys. 2015, 142, 134707. [Google Scholar] [CrossRef] [PubMed]
- Thiyam, P.; Fiedler, J.; Buhmann, S.Y.; Persson, C.; Brevik, I.; Boström, M.; Parsons, D.F. Ice Particles sink below the water surface due to a balance of salt, van der Waals, and buoyancy forces. J. Phys. Chem. C 2018, 122, 15311–15317. [Google Scholar] [CrossRef]
- Wilen, L.A.; Dash, J.G. Frost heave dynamics at a single crystal interface. Phys. Rev. Lett. 1995, 74, 5076–5079. [Google Scholar] [CrossRef]
- Dash, J.G.; Fu, H.; Wettlaufer, J.S. The premelting of ice and its environmental consequences. Rep. Prog. Phys. 1995, 58, 115–167. [Google Scholar] [CrossRef]
- Dash, J.G.; Wettlaufer, J.S. The surface physics of ice in thunderstorms. Can. J. Phys. 2003, 81, 201–207. [Google Scholar] [CrossRef]
- Wettlaufer, J.S. Surface phase transitions in ice: From fundamental interactions to applications. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019, 377, 20180261. [Google Scholar] [CrossRef]
- Boxe, C.S.; Hand, K.P.; Nealson, K.H.; Yung, Y.L.; Yen, A.S.; Saiz-Lopez, A. Adsorbed water and thin liquid films on Mars. Int. J. Astrobiol. 2012, 11, 169–175. [Google Scholar] [CrossRef]
- De Pater, I.; Lissauer, J.J. Planetary Sciences; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar] [CrossRef]
- Catling, D.C.; Kasting, J.F. Atmospheric Evolution on Inhabited and Lifeless Worlds; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar] [CrossRef]
- Schenk, P.M.; Clark, R.N.; Howett, C.J.A.; Verbiscer, A.J.; Waite, J.H. (Eds.) Enceladus and the Icy Moons of Saturn; The University of Arizona Press: Tucson, AZ, USA, 2018; Available online: https://www.jstor.org/stable/j.ctv65sw2b (accessed on 15 January 2024).
- Elbaum, M.; Schick, M. On the failure of water to freeze from its surface. J. Phys. France 1991, 1, 1665–1668. [Google Scholar] [CrossRef]
- Fiedler, J.; Boström, M.; Persson, C.; Brevik, I.H.; Corkery, R.W.; Buhmann, S.Y.; Parsons, D.F. Full-spectrum high resolution modeling of the dielectric function of water. J. Phys. Chem. B 2020, 124, 3103–3113. [Google Scholar] [CrossRef]
- Luengo-Marquez, J.; Izquierdo-Ruiz, F.; MacDowell, L.G. Intermolecular forces at ice and water interfaces: Premelting, surface freezing, and regelation. J. Chem. Phys. 2022, 157, 044704. [Google Scholar] [CrossRef]
- Boström, M.; Esteso, V.; Fiedler, J.; Brevik, I.; Buhmann, S.Y.; Persson, C.; Carretero-Palacios, S.; Parsons, D.F.; Corkery, R.W. Self-preserving ice layers on CO2 clathrate particles: Implications for Enceladus, Pluto and similar ocean worlds. Astron. Astrophys. 2021, 650, A54. [Google Scholar] [CrossRef]
- Boström, M.; Li, Y.; Brevik, I.; Persson, C.; Carretero-Palacios, S.; Malyi, O.I. van der Waals induced ice growth on partially melted ice nuclei in mist and fog. Phys. Chem. Chem. Phys. 2023, 25, 32709–32714. [Google Scholar] [CrossRef] [PubMed]
- Luengo-Márquez, J.; MacDowell, L.G. Lifshitz theory of wetting films at three phase coexistence: The case of ice nucleation on Silver Iodide (AgI). J. Coll. Interf. Sci. 2021, 590, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Ninham, B.W.; Yaminsky, V. Ion binding and ion specificity: The Hofmeister effect and Onsager and Lifshitz theories. Langmuir 1997, 13, 2097–2108. [Google Scholar] [CrossRef]
- Dou, M.; Lou, F.; Boström, M.; Brevik, I.; Persson, C. Casimir quantum levitation tuned by means of material properties and geometries. Phys. Rev. B 2014, 89, 201407. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boström, M.; Gholamhosseinian, A.; Pal, S.; Li, Y.; Brevik, I. Semi-Classical Electrodynamics and the Casimir Effect. Physics 2024, 6, 456-467. https://doi.org/10.3390/physics6010030
Boström M, Gholamhosseinian A, Pal S, Li Y, Brevik I. Semi-Classical Electrodynamics and the Casimir Effect. Physics. 2024; 6(1):456-467. https://doi.org/10.3390/physics6010030
Chicago/Turabian StyleBoström, Mathias, Ayda Gholamhosseinian, Subhojit Pal, Yang Li, and Iver Brevik. 2024. "Semi-Classical Electrodynamics and the Casimir Effect" Physics 6, no. 1: 456-467. https://doi.org/10.3390/physics6010030
APA StyleBoström, M., Gholamhosseinian, A., Pal, S., Li, Y., & Brevik, I. (2024). Semi-Classical Electrodynamics and the Casimir Effect. Physics, 6(1), 456-467. https://doi.org/10.3390/physics6010030