General Inverse Problem Solution for Two-Level Systems and Its Application to Charge Transfer
Abstract
:1. Introduction
2. Spin in a Variable Magnetic Field: Solving the Inverse Problem
3. Finding (Engineering) the Field That Produces the Desired Observable Evolution
4. The Inverse Problem for a General Two-Level System
5. Inverse Charge-Transfer Problem: Controlling the Charge Dynamics
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
References
- Migliore, A.; Polizzi, N.F.; Therien, M.J.; Beratan, D.N. Biochemistry and Theory of Proton-Coupled Electron Transfer. Chem. Rev. 2014, 114, 3381–3465. [Google Scholar] [CrossRef] [PubMed]
- Scholes, G.D.; Fleming, G.R.; Chen, L.X.; Aspuru-Guzik, A.; Buchleitner, A.; Coker, D.F.; Engel, G.S.; van Grondelle, R.; Ishizaki, A.; Jonas, D.M.; et al. Using Coherence to Enhance Function in Chemical and Biophysical Systems. Nature 2017, 543, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Brinks, D.; Hildner, R.; van Dijk, E.M.; Stefani, F.D.; Nieder, J.B.; Hernando, J.; van Hulst, N.F. Ultrafast Dynamics of Single Molecules. Chem. Soc. Rev. 2014, 43, 2476–2491. [Google Scholar] [CrossRef] [PubMed]
- Rozzi, C.A.; Falke, S.M.; Spallanzani, N.; Rubio, A.; Molinari, E.; Brida, D.; Maiuri, M.; Cerullo, G.; Schramm, H.; Christoffers, J.; et al. Quantum Coherence Controls the Charge Separation in a Prototypical Artificial Light-Harvesting System. Nat. Commun. 2013, 4, 1602. [Google Scholar] [CrossRef] [PubMed]
- Phelan, B.T.; Zhang, J.; Huang, G.J.; Wu, Y.L.; Zarea, M.; Young, R.M.; Wasielewski, M.R. Quantum Coherence Enhances Electron Transfer Rates to Two Equivalent Electron Acceptors. J. Am. Chem. Soc. 2019, 141, 12236–12239. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.; Zhang, P.P.; Tiwari, V.; Chen, L.; Thorwart, M.; Miller, R.J.D.; Duan, H.G. Unraveling Quantum Coherences Mediating Primary Charge Transfer Processes in Photosystem Ii Reaction Center. Sci. Adv. 2024, 10, eadk1312. [Google Scholar] [CrossRef]
- Rather, S.R.; Scholes, G.D. From Fundamental Theories to Quantum Coherences in Electron Transfer. J. Am. Chem. Soc. 2019, 141, 708–722. [Google Scholar] [CrossRef]
- Migliore, A.; Messina, A. Controlling the Charge-Transfer Dynamics of Two-Level Systems around Avoided Crossings. J. Chem. Phys. 2024, 160, 084112. [Google Scholar] [CrossRef]
- Jin, J.; Wang, S.; Zhou, J.; Zhang, W.-M.; Yan, Y. Manipulating Quantum Coherence of Charge States in Interacting Double-Dot Aharonov–Bohm Interferometers. New J. Phys. 2018, 20, 043043. [Google Scholar] [CrossRef]
- Li, Y.-C.; Chen, X. Shortcut to Adiabatic Population Transfer in Quantum Three-Level Systems: Effective Two-Level Problems and Feasible Counterdiabatic Driving. Phys. Rev. A 2016, 94, 063411. [Google Scholar] [CrossRef]
- Ban, Y.; Chen, X.; Platero, G. Fast Long-Range Charge Transfer in Quantum Dot Arrays. Nanotechnology 2018, 29, 505201. [Google Scholar] [CrossRef]
- Ness, G.; Shkedrov, C.; Florshaim, Y.; Sagi, Y. Realistic Shortcuts to Adiabaticity in Optical Transfer. New J. Phys. 2018, 20, 095002. [Google Scholar] [CrossRef]
- Chandra, S.; Sciortino, A.; Das, S.; Ahmed, F.; Jana, A.; Roy, J.; Li, D.; Liljeström, V.; Jiang, H.; Johansson, L.S.; et al. Gold Au(I) Clusters with Ligand-Derived Atomic Steric Locking: Multifunctional Optoelectrical Properties and Quantum Coherence. Adv. Opt. Mater. 2023, 11, 2202649. [Google Scholar] [CrossRef]
- Baydin, A.; Tay, F.; Fan, J.C.; Manjappa, M.; Gao, W.L.; Kono, J. Carbon Nanotube Devices for Quantum Technology. Materials 2022, 15, 1535. [Google Scholar] [CrossRef] [PubMed]
- Dolde, F.; Jakobi, I.; Naydenov, B.; Zhao, N.; Pezzagna, S.; Trautmann, C.; Meijer, J.; Neumann, P.; Jelezko, F.; Wrachtrup, J. Room-Temperature Entanglement between Single Defect Spins in Diamond. Nat. Phys. 2013, 9, 139–143. [Google Scholar] [CrossRef]
- Popp, W.; Polkehn, M.; Binder, R.; Burghardt, I. Coherent Charge Transfer Exciton Formation in Regioregular P3ht: A Quantum Dynamical Study. J. Phys. Chem. Lett. 2019, 10, 3326–3332. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Q.; Kelkar, H.; Martin-Cano, D.; Rattenbacher, D.; Shkarin, A.; Utikal, T.; Gotzinger, S.; Sandoghdar, V. Turning a Molecule into a Coherent Two-Level Quantum System. Nat. Phys. 2019, 15, 483–489. [Google Scholar] [CrossRef]
- Wang, L.K.; Bai, D.; Xia, Y.P.; Ho, W. Electrical Manipulation of Quantum Coherence in a Two-Level Molecular System. Phys. Rev. Lett. 2023, 130, 096201. [Google Scholar] [CrossRef]
- Ivakhnenko, O.V.; Shevchenko, S.N.; Nori, F. Nonadiabatic Landau–Zener–Stückelberg–Majorana Transitions, Dynamics, and Interference. Phys. Rep. 2023, 995, 1–89. [Google Scholar] [CrossRef]
- Cheng, B.; Deng, X.-H.; Gu, X.; He, Y.; Hu, G.C.; Huang, P.H.; Li, J.; Lin, B.-C.; Lu, D.W.; Lu, Y.; et al. Noisy Intermediate-Scale Quantum Computers. Front. Phys. 2023, 18, 21308. [Google Scholar] [CrossRef]
- Migliore, A.; Messina, A. Quantum Optics Parity Effect on Generalized Noon States and Its Implications for Quantum Metrology. Ann. Phys. 2022, 534, 2200304. [Google Scholar] [CrossRef]
- Acín, A.; Bloch, I.; Buhrman, H.; Calarco, T.; Eichler, C.; Eisert, J.; Esteve, D.; Gisin, N.; Glaser, S.J.; Jelezko, F.; et al. The Quantum Technologies Roadmap: A European Community View. New J. Phys. 2018, 20, 080201. [Google Scholar] [CrossRef]
- Dong, D.; Petersen, I.R. Quantum Control Theory and Applications: A Survey. IET Control. Theory Appl. 2010, 4, 2651–2671. [Google Scholar] [CrossRef]
- Dell’Anno, F.; De Siena, S.; Illuminati, F. Multiphoton Quantum Optics and Quantum State Engineering. Phys. Rep. 2006, 428, 53–168. [Google Scholar] [CrossRef]
- Costanzo, L.S.; Coelho, A.S.; Pellegrino, D.; Mendes, M.S.; Acioli, L.; Cassemiro, K.N.; Felinto, D.; Zavatta, A.; Bellini, M. Zero-Area Single-Photon Pulses. Phys. Rev. Lett. 2016, 116, 023602. [Google Scholar] [CrossRef]
- Jafarizadeh, M.A.; Naghdi, F.; Bazrafkan, M.R. Time Optimal Control of Two-Level Quantum Systems. Phys. Lett. A 2020, 384, 126743. [Google Scholar] [CrossRef]
- Feng, T.; Xu, Q.; Zhou, L.; Luo, M.; Zhang, W.; Zhou, X. Quantum Information Transfer between a Two-Level and a Four-Level Quantum Systems. Photonics Res. 2022, 10, 2854–2865. [Google Scholar] [CrossRef]
- Migliore, A.; Napoli, A.; Messina, A. The Physical Origin of a Photon-Number Parity Effect in Cavity Quantum Electrodynamics. Results Phys. 2021, 30, 104690. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, X.; Wang, J.; Jing, J. Quantum Metrology of Phase for Accelerated Two-Level Atom Coupled with Electromagnetic Field with and without Boundar. Quantum Inf. Process. 2018, 17, 54. [Google Scholar] [CrossRef]
- Shevchenko, S.N.; Kiyko, A.S.; Omelyanchouk, A.N.; Krech, W. Dynamic Behavior of Josephson-Junction Qubits: Crossover between Rabi Oscillations and Landau-Zener Transitions. Low Temp. Phys. 2005, 31, 569–576. [Google Scholar] [CrossRef]
- Masuda, S.; Tan, K.Y.; Nakahara, M. Theoretical Study on Spin-Selective Coherent Electron Transfer in a Quantum Dot Array. Universe 2020, 6, 2. [Google Scholar] [CrossRef]
- Koch, C.P.; Boscain, U.; Calarco, T.; Dirr, G.; Filipp, S.; Glaser, S.J.; Kosloff, R.; Montangero, S.; Schulte-Herbruggen, T.; Sugny, D.; et al. Quantum Optimal Control in Quantum Technologies. Strategic Report on Current Status, Visions and Goals for Research in Europe. EPJ Quantum Technol. 2022, 9, 19. [Google Scholar] [CrossRef]
- Chiavazzo, S.; Søndberg Sørensen, A.; Kyriienko, O.; Dellantonio, L. Quantum Manipulation of a Two-Level Mechanical System. Quantum 2023, 7, 943. [Google Scholar] [CrossRef]
- McArdle, S.; Endo, S.; Aspuru-Guzik, A.; Benjamin, S.; Yuan, X. Quantum Computational Chemistry. Rev. Mod. Phys. 2020, 92, 015003. [Google Scholar] [CrossRef]
- Chen, X.; Lizuain, I.; Ruschhaupt, A.; Guéry-Odelin, D.; Muga, J.G. Shortcut to Adiabatic Passage in Two- and Three-Level Atoms. Phys. Rev. Lett. 2010, 105, 123003. [Google Scholar] [CrossRef]
- Paudel, H.P.; Syamlal, M.; Crawford, S.E.; Lee, Y.-L.; Shugayev, R.A.; Lu, P.; Ohodnicki, P.R.; Mollot, D.; Duan, Y. Quantum Computing and Simulations for Energy Applications: Review and Perspective. ACS Eng. Au 2022, 2, 151–196. [Google Scholar] [CrossRef]
- Pezze, L.; Smerzi, A.; Oberthaler, M.K.; Schmied, R.; Treutlein, P. Quantum Metrology with Nonclassical States of Atomic Ensembles. Rev. Mod. Phys. 2018, 90, 035005. [Google Scholar] [CrossRef]
- Migliore, A.; Naaman, R.; Beratan, D.N. Sensing of Molecules Using Quantum Dynamics. Proc. Natl. Acad. Sci. USA 2015, 112, E2419–E2428. [Google Scholar] [CrossRef]
- Chu, Y.; Liu, Y.; Liu, H.; Cai, J. Quantum Sensing with a Single-Qubit Pseudo-Hermitian System. Phys. Rev. Lett. 2020, 124, 020501. [Google Scholar] [CrossRef]
- Ghaemi-Dizicheh, H.; Ramezani, H. Non-Hermitian Floquet-Free Analytically Solvable Time-Dependent Systems. Opt. Mater. Express 2023, 13, 678–686. [Google Scholar] [CrossRef]
- Hönigl-Decrinis, T.; Shaikhaidarov, R.; de Graaf, S.E.; Antonov, V.N.; Astafiev, O.V. Two-Level System as a Quantum Sensor for Absolute Calibration of Power. Phys. Rev. Appl. 2020, 13, 024066. [Google Scholar] [CrossRef]
- Bouchiat, V.; Vion, D.; Joyez, P.; Esteve, D.; Devoret, M.H. Quantum Coherence with a Single Cooper Pair. Phys. Scr. 1998, T76, 165–170. [Google Scholar] [CrossRef]
- Khivrich, I.; Ilani, S. Atomic-Like Charge Qubit in a Carbon Nanotube Enabling Electric and Magnetic Field Nano-Sensing. Nat. Commun. 2020, 11, 2299. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.J.; Zifer, T.; Wong, B.M.; Krafcik, K.L.; Léonard, F.; Vance, A.L. Color Detection Using Chromophore-Nanotube Hybrid Devices. Nano Lett. 2009, 9, 1028–1033. [Google Scholar] [CrossRef] [PubMed]
- Wubs, M.; Keiji, S.; Kohler, S.; Kayanuma, Y.; Hänggi, P. Landau–Zener Transitions in Qubits Controlled by Electromagnetic Fields. New J. Phys. 2005, 7, 218. [Google Scholar] [CrossRef]
- Peyraut, F.; Holweck, F.; Guerin, S. Quantum Control by Few-Cycles Pulses: The Two-Level Problem. Entropy 2023, 25, 212. [Google Scholar] [CrossRef]
- Menchon-Enrich, R.; Benseny, A.; Ahufinger, V.; Greentree, A.D.; Busch, T.; Mompart, J. Spatial Adiabatic Passage: A Review of Recent Progress. Rep. Prog. Phys. 2016, 79, 074401. [Google Scholar] [CrossRef]
- Suzuki, T.; Nakazato, H.; Grimaudo, R.; Messina, A. Analytic Estimation of Transition between Instantaneous Eigenstates of Quantum Two-Level System. Sci. Rep. 2018, 8, 17433. [Google Scholar] [CrossRef]
- Grimaudo, R.; Vitanov, N.V.; Messina, A. Coupling-Assisted Landau–Majorana–Stuckelberg–Zener Transition in a System of Two Interacting Spin Qubits. Phys. Rev. B 2019, 99, 174416. [Google Scholar] [CrossRef]
- Vitanov, N.V.; Shore, B.W. Stimulated Raman Adiabatic Passage in a Two-State System. Phys. Rev. A 2006, 73, 053402. [Google Scholar] [CrossRef]
- Lakshmibala, S.; Balakrishnan, V. Nonclassical Effects and Dynamics of Quantum Observables; Springer Nature Switzerland AG: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Garanin, D.A.; Schilling, R. Inverse Problem for the Landau–Zener Effect. Europhys. Lett. 2002, 59, 7–13. [Google Scholar] [CrossRef]
- Shevchenko, S.N.; Ashhab, S.; Nori, F. Landau–Zener–Stückelberg Interferometry. Phys. Rep. 2010, 492, 1–30. [Google Scholar] [CrossRef]
- Dattagupta, S. Two-Level Systems in Quantum Chemistry and Physics. Resonance 2021, 26, 1677–1703. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, C.; Diu, B.; Laloë, F. Quantum Mechanics; Hermann: Paris, France, 1977; Volume I. [Google Scholar]
- Barnes, E.; Das Sarma, S. Analytically Solvable Driven Time-Dependent Two-Level Quantum Systems. Phys. Rev. Lett. 2012, 109, 060401. [Google Scholar] [CrossRef] [PubMed]
- Barnes, E. Analytically Solvable Two-Level Quantum Systems and Landau-Zener Interferometry. Phys. Rev. A 2013, 88, 013818. [Google Scholar] [CrossRef]
- Economou, S.E.; Barnes, E. Analytical Approach to Swift Nonleaky Entangling Gates in Superconducting Qubits. Phys. Rev. B 2015, 91, 161405. [Google Scholar] [CrossRef]
- Messina, A.; Nakazato, H. Analytically Solvable Hamiltonians for Quantum Two-Level Systems and Their Dynamics. J. Phys. A Math. Theor. 2014, 47, 445302. [Google Scholar] [CrossRef]
- Nakazato, H.; Sergi, A.; Migliore, A.; Messina, A. Invariant-Parameterized Exact Evolution Operator for Su(2) Systems with Time-Dependent Hamiltonian. Entropy 2023, 25, 96. [Google Scholar] [CrossRef]
- He, Z.-C.; Wu, Y.-X.; Xue, Z.-Y. Exact Quantum Dynamics for Two-Level Systems with Time-Dependent Driving. arXiv 2022, arXiv:2211.03342. [Google Scholar] [CrossRef]
- Zhang, Q.; Hänggi, P.; Gong, J. Nonlinear Landau–Zener Processes in a Periodic Driving Field. New J. Phys. 2008, 10, 073008. [Google Scholar] [CrossRef]
- Nyisomeh, I.F.; Diffo, G.T.; Ateuafack, M.E.; Fai, L.C. Landau–Zener Transitions in Coupled Qubits: Effects of Coloured Noise. Phys. E 2020, 116, 113744. [Google Scholar] [CrossRef]
- Abari, N.E.; Rakhubovsky, A.A.; Filip, R. Thermally-Induced Qubit Coherence in Quantum Electromechanics. New J. Phys. 2022, 24, 113006. [Google Scholar] [CrossRef]
- Mohamed, A.B.A.; Rmili, H.; Omri, M.; Abdel-Aty, A.H. Two-Qubit Quantum Nonlocality Dynamics Induced by Interacting of Two Coupled Superconducting Flux Qubits with a Resonator under Intrinsic Decoherence. Alex. Eng. J. 2023, 77, 239–246. [Google Scholar] [CrossRef]
- Antao, T.V.C.; Peres, N.M.R. Two-Level Systems Coupled to Graphene Plasmons: A Lindblad Equation Approach. Int. J. Mod. Phys. B 2021, 35, 2130007. [Google Scholar] [CrossRef]
- Grimaudo, R.; Messina, A.; Nakazato, H.; Sergi, A.; Valenti, D. Characterization of Quantum and Classical Critical Points for an Integrable Two-Qubit Spin-Boson Model. Symmetry 2023, 15, 2174. [Google Scholar] [CrossRef]
- Grimaudo, R.; Valenti, D.; Sergi, A.; Messina, A. Superradiant Quantum Phase Transition for an Exactly Solvable Two-Qubit Spin-Boson Model. Entropy 2023, 25, 187. [Google Scholar] [CrossRef] [PubMed]
- Grimaudo, R.; Messina, A.; Sergi, A.; Vitanov, N.V.; Filippov, S.N. Two-Qubit Entanglement Generation through Nonhermitian Hamiltonians Induced by Repeated Measurements on an Ancilla. Entropy 2020, 22, 1184. [Google Scholar] [CrossRef]
- Cong, S.; Gao, M.Y.; Cao, G.; Guo, G.C.; Guo, G.P. Ultrafast Manipulation of a Double Quantum-Dot Charge Qubit Using Lyapunov-Based Control Method. IEEE J. Quantum Elect. 2015, 51, 8100108. [Google Scholar] [CrossRef]
- Li, K.Z.; Xu, G.F. Robust Population Transfer of Spin States by Geometric Formalism. Phys. Rev. A 2022, 105, 052433. [Google Scholar] [CrossRef]
- Belousov, Y.; Man’ko, V.I.; Migliore, A.; Sergi, A.; Messina, A. Symmetry-Induced Emergence of a Pseudo-Qutrit in the Dipolar Coupling of Two Qubits. Entropy 2022, 24, 223. [Google Scholar] [CrossRef]
- Castaldo, D.; Rosa, M.; Corni, S. Quantum Optimal Control with Quantum Computers: A Hybrid Algorithm Featuring Machine Learning Optimization. Phys. Rev. A 2021, 103, 022613. [Google Scholar] [CrossRef]
- Puri, S.; Andersen, C.K.; Grimsmo, A.L.; Blais, A. Quantum Annealing with All-to-All Connected Nonlinear Oscillators. Nat. Commun. 2017, 8, 15785. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, H.; Burkard, G.; Petta, J.R.; Lu, H.; Gossard, A.C. Coherent Adiabatic Spin Control in the Presence of Charge Noise Using Tailored Pulses. Phys. Rev. Lett. 2013, 110, 086804. [Google Scholar] [CrossRef] [PubMed]
- Forster, F.; Petersen, G.; Manus, S.; Hanggi, P.; Schuh, D.; Wegscheider, W.; Kohler, S.; Ludwig, S. Characterization of Qubit Dephasing by Landau-Zener-Stückelberg-Majorana Interferometry. Phys. Rev. Lett. 2014, 112, 116803. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, C.; Tu, T.; Jiang, H.-W.; Guo, G.-P.; Guo, G.-C. Quantum Simulation of the Kibble-Zurek Mechanism Using a Semiconductor Electron Charge Qubit. Phys. Rev. A 2014, 89, 022337. [Google Scholar] [CrossRef]
- Cao, G.; Li, H.O.; Tu, T.; Wang, L.; Zhou, C.; Xiao, M.; Guo, G.C.; Jiang, H.W.; Guo, G.P. Ultrafast Universal Quantum Control of a Quantum-Dot Charge Qubit Using Landau-Zener-Stückelberg Interference. Nat. Commun. 2013, 4, 1401. [Google Scholar] [CrossRef]
- Foroozandeh, M.; Adams, R.W.; Meharry, N.J.; Jeannerat, D.; Nilsson, M.; Morris, G.A. Ultrahigh-Resolution NMR Spectroscopy. Angew. Chem. Int. Ed. Engl. 2014, 53, 6990–6992. [Google Scholar] [CrossRef]
- Uken, D.A.; Sergi, A. Quantum Dynamics of a Plasmonic Metamolecule with a Time-Dependent Driving. Theor. Chem. Acc. 2015, 134, 141. [Google Scholar] [CrossRef]
- Bernatska, j.; Messina, A. Reconstruction of Hamiltonians from Given Time Evolutions. Phys. Scr. 2012, 85, 015001. [Google Scholar] [CrossRef]
- Sinitsyn, N.A.; Yuzbashyan, E.A.; Chernyak, V.Y.; Patra, A.; Sun, C. Integrable Time-Dependent Quantum Hamiltonians. Phys. Rev. Lett. 2018, 120, 190402. [Google Scholar] [CrossRef]
- Palao, J.P.; Kosloff, R. Optimal Control Theory for Unitary Transformations. Phys. Rev. A 2003, 68, 062308. [Google Scholar] [CrossRef]
- Rodriguez-Vega, M.; Carlander, E.; Bahri, A.; Lin, Z.-X.; Sinitsyn, N.A.; Fiete, G.A. Real-Time Simulation of Light-Driven Spin Chains on Quantum Computers. Phys. Rev. Res. 2022, 4, 013196. [Google Scholar] [CrossRef]
- Cao, N.P.; Xie, J.; Zhang, A.N.; Hou, S.Y.; Zhang, L.J.; Zeng, B. Neural Networks for Quantum Inverse Problems. New J. Phys. 2022, 24, 063002. [Google Scholar] [CrossRef]
- Rocchetto, A.; Aaronson, S.; Severini, S.; Carvacho, G.; Poderini, D.; Agresti, I.; Bentivegna, M.; Sciarrino, F. Experimental Learning of Quantum States. Sci. Adv. 2019, 5, eaau1946. [Google Scholar] [CrossRef]
- Torrontegui, E.; Martínez-Garaot, S.; Muga, J.G. Hamiltonian Engineering Via Invariants and Dynamical Algebra. Phys. Rev. A 2014, 89, 043408. [Google Scholar] [CrossRef]
- Ran, D.; Zhang, B.; Chen, Y.H.; Shi, Z.C.; Xia, Y.; Ianconescu, R.; Scheuer, J.; Gover, A. Effective Pulse Reverse-Engineering for Strong Field-Matter Interaction. Opt. Lett. 2020, 45, 3597–3600. [Google Scholar] [CrossRef]
- Weissbluth, M. Atoms and Molecules; Academic Press, Inc.: New York, NY, USA, 1978. [Google Scholar] [CrossRef]
- Varshalovich, D.A.; Moskalev, A.N.; Khersonskii, V.K. Quantum Theory of Angular Momentum; World Scientific Publishing: Singapore, 1988. [Google Scholar] [CrossRef]
- Dridi, G.; Liu, K.P.; Guérin, S. Optimal Robust Quantum Control by Inverse Geometric Optimization. Phys. Rev. Lett. 2020, 125, 250403. [Google Scholar] [CrossRef]
- Laforgue, X.; Dridi, G.; Guérin, S. Optimal Quantum Control Robust against Pulse Inhomogeneities: Analytic Solutions. Phys. Rev. A 2022, 106, 052608. [Google Scholar] [CrossRef]
- Vandersypen, L.M.K.; Eriksson, M.A. Quantum Computing with Semiconductor Spins. Phys. Today 2019, 72, 38–45. [Google Scholar] [CrossRef]
- Buscemi, F.; Dall’Arno, M.; Ozawa, M.; Vedra, V. Universal Optimal Quantum Correlator. Int. J. Quantum Inf. 2014, 12, 1560002. [Google Scholar] [CrossRef]
- de Lima Bernardo, B.; Azevedo, S.; Rosas, A. On the Measurability of Quantum Correlation Functions. Ann. Phys. 2015, 356, 336–345. [Google Scholar] [CrossRef]
- Grimaudo, R.; de Castro, A.S.M.; Nakazato, H.; Messina, A. Classes of Exactly Solvable Generalized Semi-Classical Rabi Systems. Ann. Phys. 2018, 530, 1800198. [Google Scholar] [CrossRef]
- Li, W. Invariant-Based Inverse Engineering for Fast Nonadiabatic Geometric Quantum Computation. New J. Phys. 2021, 23, 073039. [Google Scholar] [CrossRef]
- Rubbmark, J.R.; Kash, M.M.; Littman, M.G.; Kleppner, D. Dynamical Effects at Avoided Level Crossings: A Study of the Landau-Zener Effect Using Rydberg Atoms. Phys. Rev. A 1981, 23, 3107–3117. [Google Scholar] [CrossRef]
- Grimaudo, R.; Messina, A.; Nakazato, H. Exactly Solvable Time-Dependent Models of Two Interacting Two-Level Systems. Phys. Rev. A 2016, 94, 022108. [Google Scholar] [CrossRef]
- Földi, P.; Benedict, N.G.; Peeters, F.M. Multilevel Spin Dynamics in Time-Dependent External Magnetic Field. Acta Phys. Hung. B 2006, 26, 47–54. [Google Scholar] [CrossRef]
- Hildner, R.; Brinks, D.; van Hulst, N.F. Femtosecond Coherence and Quantum Control of Single Molecules at Room Temperature. Nat. Phys. 2011, 7, 172–177. [Google Scholar] [CrossRef]
- Kimble, H.J. The Quantum Internet. Nature 2008, 453, 1023–1030. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migliore, A.; Nakazato, H.; Sergi, A.; Messina, A. General Inverse Problem Solution for Two-Level Systems and Its Application to Charge Transfer. Physics 2024, 6, 1171-1190. https://doi.org/10.3390/physics6030072
Migliore A, Nakazato H, Sergi A, Messina A. General Inverse Problem Solution for Two-Level Systems and Its Application to Charge Transfer. Physics. 2024; 6(3):1171-1190. https://doi.org/10.3390/physics6030072
Chicago/Turabian StyleMigliore, Agostino, Hiromichi Nakazato, Alessandro Sergi, and Antonino Messina. 2024. "General Inverse Problem Solution for Two-Level Systems and Its Application to Charge Transfer" Physics 6, no. 3: 1171-1190. https://doi.org/10.3390/physics6030072
APA StyleMigliore, A., Nakazato, H., Sergi, A., & Messina, A. (2024). General Inverse Problem Solution for Two-Level Systems and Its Application to Charge Transfer. Physics, 6(3), 1171-1190. https://doi.org/10.3390/physics6030072