Dynamical Casimir Effect: 55 Years Later
Abstract
:1. Introduction
2. Single-Mirror DCE
2.1. One-Dimensional Models
2.2. Moving Mirrors in Several Dimensions
3. Cavity DCE
3.1. Single-Dimensional (1+1) Models
3.2. Hybrid Cavities
4. Circuit and Waveguide DCE
5. Interaction with Atoms and Detectors
5.1. Dynamical Casimir–Polder Effects
5.2. DCE and Qubits
6. DCE in Time-Dependent Media
7. Various Applications and Connections with the DCE
Entanglement and Decoherence
8. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Moore, G.T. Quantum theory of the electromagnetic field in a variable-length one-dimensional cavity. J. Math. Phys. 1970, 11, 2679–2691. [Google Scholar] [CrossRef]
- Yablonovitch, E. Accelerating reference frame for electromagnetic waves in a rapidly growing plasma: Unruh–Davies–Fulling–DeWitt radiation and the nonadiabatic Casimir effect. Phys. Rev. Lett. 1989, 62, 1742–1745. [Google Scholar] [CrossRef]
- Schwinger, J. Casimir energy for dielectrics. Proc. Nat. Acad. Sci. USA 1992, 89, 4091–4093. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, C.; Persico, F.; Vetri, G. Dicke model and the theory of driven and spontaneous emission. Riv. Nuovo Cim. 1986, 9, 1–85. [Google Scholar] [CrossRef]
- Compagno, G.; Passante, R.; Persico, F. Atom-Field Interactions and Dressed Atoms; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar] [CrossRef]
- Passante, R.; Persico, F. Time-dependent Casimir–Polder forces and partially dressed states. Phys. Lett. A 2003, 312, 319–323. [Google Scholar] [CrossRef]
- Passante, R.; Persico, F.; Rizzuto, L. Spatial correlations of vacuum fluctuations and the Casimir–Polder potential. Phys. Lett. A 2003, 316, 29–32. [Google Scholar] [CrossRef]
- Rizzuto, L.; Passante, R.; Persico, F. Dynamical Casimir–Polder energy between an excited- and a ground-state atom. Phys. Rev. A 2004, 70, 012107. [Google Scholar] [CrossRef]
- Passante, R.; Persico, F.; Rizzuto, L. Vacuum field correlations and three-body Casimir–Polder potential with one excited atom. J. Mod. Opt. 2005, 52, 1957–1964. [Google Scholar] [CrossRef]
- Passante, R.; Persico, F.; Rizzuto, L. Causality, non-locality and three-body Casimir–Polder energy between three ground-state atoms. J. Phys. B 2006, 39, S685–S694. [Google Scholar] [CrossRef]
- Cirone, M.A.; Compagno, G.; Palma, G.M.; Passante, R.; Persico, F. Casimir–Polder potentials as entanglement probe. EPL (Europhys. Lett.) 2007, 78, 30003. [Google Scholar] [CrossRef]
- Passante, R.; Persico, F.; Rizzuto, L. Nonlocal field correlations and dynamical Casimir–Polder forces between one excited- and two ground-state atoms. J. Phys. B 2007, 40, 1863–1874. [Google Scholar] [CrossRef]
- Rizzuto, L.; Passante, R.; Persico, F. Nonlocal properties of dynamical three-body Casimir–Polder forces. Phys. Rev. Lett. 2007, 98, 240404. [Google Scholar] [CrossRef] [PubMed]
- Dodonov, V.V. Nonstationary Casimir effect and analytical solutions for quantum fields in cavities with moving boundaries. In Modern Nonlinear Optics; Evans, M.W., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2001; pp. 309–394. [Google Scholar] [CrossRef]
- Dodonov, V.V. Current status of the dynamical Casimir effect. Phys. Scr. 2010, 82, 038105. [Google Scholar] [CrossRef]
- Dalvit, D.A.R.; Maia Neto, P.A.; Mazzitelli, F.D. Fluctuations, dissipation and the dynamical Casimir effect. In Casimir Physics; Dalvit, D., Milonni, P., Roberts, D., da Rosa, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 419–457. [Google Scholar] [CrossRef]
- Nation, P.D.; Johansson, J.R.; Blencowe, M.P.; Nori, F. Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys. 2012, 84, 1–24. [Google Scholar] [CrossRef]
- Dodonov, V. Fifty years of the Dynamical Casimir Effect. Physics 2020, 2, 67–105. [Google Scholar] [CrossRef]
- DeWitt, B.S. Quantum field theory in curved spacetime. Phys. Rep. 1975, 19, 295–357. [Google Scholar] [CrossRef]
- Fulling, S.A.; Davies, P.C.W. Radiation from a moving mirror in two-dimensional space-time: Conformal anomaly. Proc. R. Soc. Lond. A Math. Phys. Engin. Sci. 1976, 348, 393–414. [Google Scholar] [CrossRef]
- Davies, P.C.W.; Fulling, S.A. Radiation from moving mirrors and from black holes. Proc. R. Soc. Lond. A Math. Phys. Engin. Sci. 1977, 356, 237–257. [Google Scholar] [CrossRef]
- Good, M.R.R.; Linder, E.V.; Wilczek, F. Finite thermal particle creation of Casimir light. Mod. Phys. Lett. A 2020, 35, 2040006. [Google Scholar] [CrossRef]
- Good, M.; Abdikamalov, E. Radiation from an inertial mirror horizon. Universe 2020, 6, 131. [Google Scholar] [CrossRef]
- Good, M.R.R.; Linder, E.V. Light and Airy: A simple solution for relativistic quantum acceleration radiation. Universe 2021, 7, 60. [Google Scholar] [CrossRef]
- Fernández-Silvestre, D.; Good, M.R.R.; Linder, E.V. Upon the horizon’s verge: Thermal particle creation between and approaching horizons. Class. Quant. Grav. 2022, 39, 235008. [Google Scholar] [CrossRef]
- Cao, Y.-S. Vacuum radiation from massive scalar field. Universe 2022, 8, 186. [Google Scholar] [CrossRef]
- Good, M.R.R.; Lapponi, A.; Luongo, O.; Mancini, S. Quantum communication through a partially reflecting accelerating mirror. Phys. Rev. D 2021, 104, 105020. [Google Scholar] [CrossRef]
- Silva, J.D.L.; Braga, A.N.; Rego, A.L.C.; Alves, D.T. Motion induced by asymmetric excitation of the quantum vacuum. Phys. Rev. D 2020, 102, 125019. [Google Scholar] [CrossRef]
- Rego, A.L.C.; Braga, A.N.; Silva, J.D.L.; Alves, D.T. Dynamical Casimir effect enhanced by decreasing the mirror reflectivity. Phys. Rev. D 2022, 105, 025013. [Google Scholar] [CrossRef]
- Gorban, M.J.; Julius, W.D.; Cleaver, G.B. The asymmetric dynamical Casimir effect. Physics 2023, 5, 398–422, Erratum in Physics 2024, 6, 422–425. [Google Scholar] [CrossRef]
- Gorban, M.J.; Julius, W.D.; Radhakrishnan, R.; Cleaver, G.B. Interference phenomena in the asymmetric dynamical Casimir effect for a single δ-δ′ mirror. Phys. Rev. D 2023, 108, 096037. [Google Scholar] [CrossRef]
- Gorban, M.J.; Julius, W.D.; Brown, P.M.; Matulevich, J.A.; Radhakrishnan, R.; Cleaver, G.B. First- and second-order forces in the asymmetric dynamical Casimir effect for a single δ-δ′ mirror. Physics 2024, 6, 760–779. [Google Scholar] [CrossRef]
- Butera, S. Noise and dissipation on a moving mirror induced by the dynamical Casimir emission. J. Phys. Photon. 2023, 5, 045003. [Google Scholar] [CrossRef]
- Kumar, P.; Reyes, I.A.; Wintergerst, J. Relativistic dynamics of moving mirrors in CFT2: Quantum backreaction and black holes. Phys. Rev. D 2024, 109, 065010. [Google Scholar] [CrossRef]
- Lin, K.-N.; Chou, C.-E.; Chen, P. Particle production by a relativistic semitransparent mirror in (1 + 3)D Minkowski spacetime. Phys. Rev. D 2021, 103, 025014. [Google Scholar] [CrossRef]
- Franchino-Viñas, S.A.; Mazzitelli, F.D. Effective action for delta potentials: Spacetime-dependent inhomogeneities and Casimir self-energy. Phys. Rev. D 2021, 103, 065006. [Google Scholar] [CrossRef]
- Kort-Kamp, W.J.M.; Azad, A.K.; Dalvit, D.A.R. Space-time quantum metasurfaces. Phys. Rev. Lett. 2021, 127, 043603. [Google Scholar] [CrossRef]
- Dalvit, D.A.R.; Kort-Kamp, W.J.M. Shaping dynamical Casimir photons. Universe 2021, 7, 189. [Google Scholar] [CrossRef]
- Zhakenuly, A.; Temirkhan, M.; Good, M.R.R.; Chen, P. Quantum power distribution of relativistic acceleration radiation: Classical electrodynamic analogies with perfectly reflecting moving mirrors. Symmetry 2021, 13, 653. [Google Scholar] [CrossRef]
- Ahmadiniaz, N.; Franchino-Viñas, S.A.; Manzo, L.; Mazzitelli, F.D. Local Neumann semitransparent layers: Resummation, pair production, and duality. Phys. Rev. D 2022, 106, 105022. [Google Scholar] [CrossRef]
- Fosco, C.D.; Guntsche, B.C. Quantum dissipative effects for a real scalar field coupled to a time-dependent Dirichlet surface in d+1 dimensions. Phys. Rev. D 2024, 110, 105021. [Google Scholar] [CrossRef]
- Lin, K.-N.; Chen, P. Particle production by a relativistic semitransparent mirror of finite size and thickness. Eur. Phys. J. C 2024, 84, 53. [Google Scholar] [CrossRef]
- Alonso, L.; Matos, G.C.; Impens, F.; Maia Neto, P.A.; de Melo e Souza, R. Multipole approach to the dynamical Casimir effect with finite-size scatterers. Entropy 2024, 26, 251. [Google Scholar] [CrossRef]
- Alves, D.T.; Granhen, E.R.; Alves, J.P.d.S.; Lima, W.A. Relativistic bands in the discrete spectrum of created particles in an oscillating cavity. Phys. Rev. D 2020, 102, 125012. [Google Scholar] [CrossRef]
- Ramos-Prieto, I.; Román-Ancheyta, R.; Récamier, J.; Moya-Cessa, H.M. Exact solution of a non-stationary cavity with one intermode interaction. J. Opt. Soc. Am. B 2021, 38, 2873–2880. [Google Scholar] [CrossRef]
- Trubilko, A.I.; Basharov, A.M. Effective quantum oscillator of a cavity with oscillating parameters. J. Exp. Theor. Phys. 2021, 132, 216–222. [Google Scholar] [CrossRef]
- Ramos-Prieto, I.; Román-Ancheyta, R.; Soto-Eguibar, F.; Récamier, J.; Moya-Cessa, H.M. Temporal factorization of a nonstationary electromagnetic cavity field. Phys. Rev. A 2023, 108, 033720. [Google Scholar] [CrossRef]
- de Oliveira, G.; Céleri, L.C. Thermodynamic entropy production in the dynamical Casimir effect. Phys. Rev. A 2024, 109, 012807. [Google Scholar] [CrossRef]
- Lobanov, I.S.; Trifanov, A.I.; Trifanova, E.S.; Popov, I.Y.; Fedorov, E.; Pravdin, K.V.; Moskalenko, M.A. Photon generation in resonator with time dependent boundary conditions. Nanosyst. Phys. Chem. Math. 2021, 12, 73–80. [Google Scholar] [CrossRef]
- Barbado, L.C.; Báez-Camargo, A.L.; Fuentes, I. Evolution of confined quantum scalar fields in curved spacetime. Part II Spacetimes with moving boundaries in any synchronous gauge. Eur. Phys. J. C 2021, 81, 953. [Google Scholar] [CrossRef]
- Rosanov, N.N. Amplification of the electric area of a pulse during reflections from a moving mirror. Opt. Spectrosc. 2022, 130, 1126–1128. [Google Scholar] [CrossRef]
- Koutserimpas, T.T.; Valagiannopoulos, C. Electromagnetic fields between moving mirrors: Singular waveforms inside Doppler cavities. Opt. Expr. 2023, 31, 5087–5101. [Google Scholar] [CrossRef]
- Mantiñan, M.; Mazzitelli, F.D.; Trombetta, L.G. Stochastic particle creation: From the dynamical Casimir effect to cosmology. Entropy 2023, 25, 151. [Google Scholar] [CrossRef]
- Francica, G. Dynamical Casimir effect and work statistics in fermionic fields. Phys. A Stat. Mech. Appl. 2022, 590, 126686. [Google Scholar] [CrossRef]
- Fosco, C.D.; Hansen, G. Dynamical Casimir effect from fermions in an oscillating bag in 1+1 dimensions. Phys. Rev. D 2022, 105, 016004. [Google Scholar] [CrossRef]
- Fosco, C.D.; Hansen, G. Dynamical Casimir effect for fermions in 2+1 dimensions. Phys. Rev. D 2023, 108, 056005. [Google Scholar] [CrossRef]
- Fosco, C.D.; Hansen, G. Fermionic dynamical Casimir effect: Magnus expansion. Ann. Phys. 2024, 471, 169841. [Google Scholar] [CrossRef]
- Ferreri, A. Quantum vibrational mode in a cavity confining a massless spinor field. Phys. Rev. A 2022, 106, 052204. [Google Scholar] [CrossRef]
- Martín-Caro, A.G.; García-Moreno, G.; Olmedo, J.; Sánchez Velázquez, J.M. Classical and quantum field theory in a box with moving boundaries: A numerical study of the dynamical Casimir effect. Phys. Rev. D 2024, 110, 025007. [Google Scholar] [CrossRef]
- Juárez-Aubry, B.A.; Weder, R. A short review of the Casimir effect with emphasis on dynamical boundary conditions. Supl. Rev. Mex. Fís. 2022, 3, 020714. [Google Scholar] [CrossRef]
- Báez-Camargo, A.L.; Hartley, D.; Käding, C.; Fuentes, I. Dynamical Casimir effect with screened scalar fields. AVS Quant. Sci. 2024, 6, 045001. [Google Scholar] [CrossRef]
- Michel, G. Coupled dynamics of a wave and moving boundary. Compt. Rend. Phys. 2025, 26, 259–270. [Google Scholar] [CrossRef]
- Barzanjeh, S.; Xuereb, A.; Gröblacher, S.; Paternostro, M.; Regal, C.A.; Weig, E.M. Optomechanics for quantum technologies. Nat. Phys. 2022, 18, 15–24. [Google Scholar] [CrossRef]
- Tanaka, S.; Kanki, K. The dynamical Casimir effect in a dissipative optomechanical cavity interacting with photonic crystal. Physics 2020, 2, 34–48. [Google Scholar] [CrossRef]
- Tanaka, S.; Kanki, K. Dissipative dynamical Casimir effect in terms of complex spectral analysis in the symplectic Floquet space. Prog. Theor. Exp. Phys. 2020, 12A107. [Google Scholar] [CrossRef]
- Nian, L.-L.; Lü, J.-T. Heat transfer mediated by the dynamical Casimir effect in an optomechanical system. Phys. Rev. A 2021, 103, 063510. [Google Scholar] [CrossRef]
- Ferreri, A.; Pfeifer, H.; Wilhelm, F.K.; Hofferberth, S.; Bruschi, D.E. Interplay between optomechanics and the dynamical Casimir effect. Phys. Rev. A 2022, 106, 033502. [Google Scholar] [CrossRef]
- Ferreri, A.; Bruschi, D.E.; Wilhelm, F.K.; Nori, F.; Macrì, V. Phonon-photon conversion as mechanism for cooling and coherence transfer. Phys. Rev. Res. 2024, 6, 023320. [Google Scholar] [CrossRef]
- Lin, Z.-J.; Li, N.; Wei, M.-S.; Liao, M.-J.; Liang, Y.-B.; Xu, J.; Yang, Y.-P. Squeezing characteristics of cavity field in dynamic Casimir effect. Phys. Lett. A 2024, 525, 129852. [Google Scholar] [CrossRef]
- Wang, B.; Hu, J.-M.; Macrì, V.; Xiang, Z.-L.; Nori, F. Coherent resonant coupling between atoms and a mechanical oscillator mediated by cavity-vacuum fluctuations. Phys. Rev. Res. 2023, 5, 013075. [Google Scholar] [CrossRef]
- Lan, Z.-L.; Chen, Y.-W.; Cheng, L.-Y.; Chen, L.; Ye, S.-Y.; Zhong, Z.R. Dynamical Casimir effect in a hybrid cavity optomechanical system. Quant. Inf. Proc. 2024, 23, 72. [Google Scholar] [CrossRef]
- Russo, E.; Mercurio, A.; Mauceri, F.; Lo Franco, R.; Nori, F.; Savasta, S.; Macrì, V. Optomechanical two-photon hopping. Phys. Rev. Res. 2023, 5, 013221. [Google Scholar] [CrossRef]
- Armata, F.; Butera, S.; Montalbano, F.; Passante, R.; Rizzuto, L. Field observables near a fluctuating boundary. J. Phys. Conf. Ser. 2023, 2533, 012042. [Google Scholar] [CrossRef]
- Montalbano, F.; Armata, F.; Rizzuto, L.; Passante, R. Spatial correlations of field observables in two half-spaces separated by a movable perfect mirror. Phys. Rev. D 2023, 107, 056007. [Google Scholar] [CrossRef]
- Lara, L.P.; Weder, R.; Castaños-Cervantes, L.O. Membrane-in-the-middle optomechanical system and structural frequencies. J. Phys. A Math. Theor. 2024, 57, 345301. [Google Scholar] [CrossRef]
- Ullah, M.; Mikki, S. Optical nonreciprocity in a multimode cavity optomechanical system controlled by dynamic Casimir force. Adv. Quant. Technol. 2024, 7, 2400007. [Google Scholar] [CrossRef]
- Minganti, F.; Mercurio, A.; Mauceri, F.; Scigliuzzo, M.; Savasta, S.; Savona, V. Phonon pumping by modulating the ultrastrong vacuum. SciPost Phys. 2024, 17, 027. [Google Scholar] [CrossRef]
- Xie, Y.-C.; Butera, S.; Hu, B.-L. Optomechanical backreaction of quantum field processes in dynamical Casimir effect. Compt. Rend. Phys. 2024, 25. in press. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.-H.; Qin, W.; Song, J.; Xia, Y. Exploring the dynamical Casimir effect via resonator frequency modulations. Opt. Expr. 2025, 33, 8095–8111. [Google Scholar] [CrossRef]
- Jiang, T.-H.; Jing, J. Realizing a mechanical dynamical Casimir effect with a low-frequency oscillator. Phys. Rev. A 2025, 111, 022811. [Google Scholar] [CrossRef]
- Wilson, C.M.; Johansson, G.; Pourkabirian, A.; Simoen, M.; Johansson, J.R.; Duty, T.; Nori, F.; Delsing, P. Observation of the dynamical Casimir effect in a superconducting circuit. Nature 2011, 479, 376–379. [Google Scholar] [CrossRef]
- Schneider, B.H.; Bengtsson, A.; Svensson, I.M.; Aref, T.; Johansson, G.; Bylander, J.; Delsing, P.P. Observation of broadband entanglement in microwave radiation from a single time-varying boundary condition. Phys. Rev. Lett. 2020, 124, 140503. [Google Scholar] [CrossRef]
- Zhang, M.; Long, Y.; Zhao, S.; Zhang, X. Einstein–Podolsky–Rosen steering and monogamy relations in controllable dynamical Casimir arrays. Phys. Rev. A 2022, 105, 042435. [Google Scholar] [CrossRef]
- Sun, B.; Long, Y.; Zheng, T.; Zhang, X. Quantum synchronization and controllable Einstein–Podolsky–Rosen steering of a dynamical Casimir waveguide system composed of giant atoms. Phys. Lett. A 2024, 511, 129561. [Google Scholar] [CrossRef]
- Li, R.; Long, Y.; Zhang, X. Quantum manipulation of asymmetric Einstein–Podolsky–Rosen steering in controllable dynamical Casimir arrays. Chin. Phys. B 2025, 34, 020307. [Google Scholar] [CrossRef]
- Chatterjee, R.; Majumdar, A.S. Bell-inequality violation by dynamical Casimir photons in a superconducting microwave circuit. Phys. Rev. A 2022, 106, 042224. [Google Scholar] [CrossRef]
- Vyatkin, E.S.; Poshakinskiy, A.V.; Poddubny, A.N. Resonant parametric photon generation in waveguide-coupled quantum emitter arrays. Phys. Rev. A 2023, 108, 023715. [Google Scholar] [CrossRef]
- Kadijani, S.S.; Del Grosso, N.; Schmidt, T.L.; Farias, M.B. Dynamical Casimir cooling in circuit QED systems. Phys. Rev. B 2024, 109, 245417. [Google Scholar] [CrossRef]
- Ferreri, A.; Bruschi, D.E.; Wilhelm, F.K. Particle creation in left-handed metamaterial transmission lines. Phys. Rev. Res. 2024, 6, 033204. [Google Scholar] [CrossRef]
- Sansó, J.P. L; Del Grosso, N.F.; Lombardo, F.C.; Villar, P.I. Superconducting quantum circuit to simulate the dynamical Casimir effect in a double cavity. Phys. Rev. A 2025, 111, 013714. [Google Scholar] [CrossRef]
- Lo, L.Z.; Fong, P.T.; Law, C.K. Dynamical Casimir effect in resonance fluorescence. Phys. Rev. A 2020, 102, 033703. [Google Scholar] [CrossRef]
- Zhang, J.; Long, Y.; Jin, Z.; Zhang, X.; Zheng, T. Dynamical Casimir effect in a dissipative system. Int. J. Theor. Phys. 2021, 60, 2227–2235. [Google Scholar] [CrossRef]
- Wang, H.; Blencowe, M. Coherently amplifying photon production from vacuum with a dense cloud of accelerating photodetectors. Commun. Phys. 2021, 4, 128. [Google Scholar] [CrossRef]
- Impens, F.; de Melo e Souza, R.; Matos, G.C.; Maia Neto, P.A. Dynamical Casimir effects with atoms: From the emission of photon pairs to geometric phases. EPL (Europhys. Lett.) 2022, 138, 30001. [Google Scholar] [CrossRef]
- Bekenstein, R.; Pikovski, I.; Pichler, H.; Shahmoon, E.; Yelin, S.F.; Lukin, M.D. Quantum metasurfaces with atom arrays. Nat. Phys. 2020, 16, 676–681. [Google Scholar] [CrossRef]
- Tobar, G.; Foo, J.; Qvarfort, S.; Costa, F.; Bekenstein, R.; Zych, M. Quantum metasurfaces as probes of vacuum particle content. arXiv 2025, arXiv:2503.03838. [Google Scholar] [CrossRef]
- Forn-Díaz, P.; Lamata, L.; Rico, E.; Kono, J.; Solano, E. Ultrastrong coupling regimes of light-matter interaction. Rev. Mod. Phys. 2019, 91, 025005. [Google Scholar] [CrossRef]
- Qin, W.; Kockum, A.F.; Muñoz, C.S.; Miranowicz, A.; Nori, F. Quantum amplification and simulation of strong and ultrastrong coupling of light and matter. Phys. Rep. 2024, 1078, 1–59. [Google Scholar] [CrossRef]
- Dolan, B.P.; Hunter-McCabe, A.; Twamley, J. Shaking photons from the vacuum: Acceleration radiation from vibrating atoms. New J. Phys. 2020, 22, 033026. [Google Scholar] [CrossRef]
- Reina, M.; Domina, M.; Ferreri, A.; Fiscelli, G.; Noto, A.; Passante, R.; Rizzuto, L. Collective spontaneous emission of two entangled atoms near an oscillating mirror. Phys. Rev. A 2021, 103, 033710. [Google Scholar] [CrossRef]
- Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Motion-induced radiation due to an atom in the presence of a graphene plane. Universe 2021, 7, 158. [Google Scholar] [CrossRef]
- Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Motion induced excitation and electromagnetic radiation from an atom facing a thin mirror. Phys. Rev. D 2022, 106, 065005. [Google Scholar] [CrossRef]
- Noto, A.; Passante, R.; Rizzuto, L.; Spagnolo, S. Dynamical atom–wall Casimir–Polder effect after a sudden change of the atomic position. J. Phys. Conf. Ser. 2023, 2533, 012041. [Google Scholar] [CrossRef]
- Long, Y.; Wang, W.; Zhang, X.; Yang, H.; Zheng, T. Dynamical Casimir-Polder force on a two-level atom with superposition state in a cavity comprising a dielectric. Sci. Rep. 2020, 10, 11998. [Google Scholar] [CrossRef]
- Jin, Z.; Wang, W.; Long, Y.; Tian, T.; Zhang, X.; Zheng, T. Dynamical Casimir–Polder force between a two-level atom with different initial states and a dissipative cavity. Laser Phys. 2021, 31, 115203. [Google Scholar] [CrossRef]
- Jin, Z.; Tian, T.; Wang, W.; Long, Y.; Zhang, X.; Zheng, T. Dynamical Casimir–Polder force in a semi-infinite rectangle waveguide. Laser Phys. 2022, 32, 025203. [Google Scholar] [CrossRef]
- Guo, X.; Milton, K.A.; Kennedy, G.; Pourtolami, N. Quantum friction in the presence of a perfectly conducting plate. Phys. Rev. A 2023, 107, 062812. [Google Scholar] [CrossRef]
- Passante, R.; Rizzuto, L. Effective Hamiltonians in nonrelativistic quantum electrodynamics. Symmetry 2021, 13, 2375. [Google Scholar] [CrossRef]
- Passante, R.; Rizzuto, L. Nonlocal static and dynamical vacuum field correlations and Casimir–Polder interactions. Entropy 2023, 25, 1424. [Google Scholar] [CrossRef]
- Zeng, X.; Zubairy, M.S. Graphene plasmon excitation with ground-state two-level quantum emitters. Phys. Rev. Lett. 2021, 126, 117401. [Google Scholar] [CrossRef]
- Fernández, A.; Fosco, C.D. Spatial dependence of Casimir friction in graphene. Phys. Rev. D 2023, 108, 116010. [Google Scholar] [CrossRef]
- Dodonov, A.V. Novel scheme for anti-dynamical Casimir effect using nonperiodic ultrastrong modulation. Phys. Lett. A 2020, 384, 126685. [Google Scholar] [CrossRef]
- Dodonov, A.V. Dynamical Casimir effect in cavities with two modes resonantly coupled through a qubit. Phys. Lett. A 2020, 384, 126837. [Google Scholar] [CrossRef]
- de Paula, M.V.S.; Sinesio, W.W.T.; Dodonov, A.V. Ancilla-assisted generation of photons from vacuum via time-modulation of extracavity qubit. Entropy 2023, 25, 901. [Google Scholar] [CrossRef] [PubMed]
- Sainz, I.; García, A.; Klimov, A.B. Effective and efficient resonant transitions in periodically modulated quantum systems. Quantum Rep. 2021, 3, 173–195. [Google Scholar] [CrossRef]
- Agustí, A.; García-Alvarez, L.; Solano, E.; Sabín, C. Qubit motion as a microscopic model for the dynamical Casimir effect. Phys. Rev. A 2021, 103, 062201. [Google Scholar] [CrossRef]
- Mitarai, H.; Hasegawa, Y. Quantum synchronization of qubits via the dynamical Casimir effect. Phys. Rev. A 2024, 110, 043719. [Google Scholar] [CrossRef]
- Akbari, K.; Nori, F.; Hughes, S. Floquet engineering the quantum Rabi model in the ultrastrong coupling regime. Phys. Rev. Lett. 2025, 134, 063602. [Google Scholar] [CrossRef]
- Lang, S.C.; Schützhold, R.; Unruh, W.G. Quantum radiation in dielectric media with dispersion and dissipation. Phys. Rev. D 2020, 102, 125020. [Google Scholar] [CrossRef]
- Galiffi, E.; Tirole, R.; Yin, S.; Li, H.; Vezzoli, S.; Huidobro, P.A.; Silveirinha, M.G.; Sapienza, R.; Alù, A.; Pendry, J. Photonics of time-varying media. Adv. Photon. 2022, 4, 014002. [Google Scholar] [CrossRef]
- Koutserimpas, T.T.; Monticone, F. Time-varying media, dispersion, and the principle of causality. Opt. Mater. Expr. 2024, 14, 1222–1236. [Google Scholar] [CrossRef]
- Pendry, J.B.; Horsley, S.A.R. QED in space-time varying materials. APL Quantum 2024, 1, 020901. [Google Scholar] [CrossRef]
- Pendry, J.; Galiffi, E.; Huidobro, P. Gain in time-dependent media—A new mechanism. J. Opt. Soc. Am. B 2021, 38, 3360–3366. [Google Scholar] [CrossRef]
- Lyubarov, M.; Lumer, Y.; Dikopoltsev, A.; Lustig, E.; Sharabi, Y.; Segev, M. Amplified emission and lasing in photonic time crystals. Science 2022, 377, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Sloan, J.; Rivera, N.; Joannopoulos, J.D.; Soljačić, M. Casimir light in dispersive nanophotonics. Phys. Rev. Lett. 2021, 127, 053603. [Google Scholar] [CrossRef] [PubMed]
- Sloan, J.; Rivera, N.; Joannopoulos, J.D.; Soljačić, M. Controlling two-photon emission from superluminal and accelerating index perturbations. Nat. Phys. 2022, 18, 67–74. [Google Scholar] [CrossRef]
- Vázquez-Lozano, J.E.; Liberal, I. Shaping the quantum vacuum with anisotropic temporal boundaries. Nanophotonics 2023, 12, 539–548. [Google Scholar] [CrossRef]
- Vázquez-Lozano, J.E.; Liberal, I. Incandescent temporal metamaterials. Nat. Commun. 2023, 14, 4606. [Google Scholar] [CrossRef]
- Linowski, T.; Rudnicki, L. Classicality of the Bogoliubov transformations and the dynamical Casimir effect through the reduced state of the field. Acta Phys. Polon. A 2023, 6, S95–S106. [Google Scholar] [CrossRef]
- Goulain, P.; Deimert, C.; Jeannin, M.; Pirotta, S.; Pasek, W.J.; Wasilewski, Z.; Colombelli, R.; Manceau, J.-M. THz ultra-strong light-matter coupling up to 200 K with continuously-graded parabolic quantum wells. Adv. Opt. Mater. 2023, 11, 2202724. [Google Scholar] [CrossRef]
- Silveirinha, M.G. Shaking photons out of a topological material. Phys. Rev. B 2023, 108, 205142. [Google Scholar] [CrossRef]
- Zhou, X.-D.; Wang, S.; Zhang, H.; Zhang, T.-B.; Chen, Y.-H.; Qin, W.; Ning, Y.; Xia, Y. Fast generation of 2N-photon Fock states using shortcuts to adiabaticity and ultrastrong light-matter coupling. Ann. Phys. 2023, 535, 2200348. [Google Scholar] [CrossRef]
- Ganfornina-Andrades, A.; Vázquez-Lozano, J.E.; Liberal, I. Quantum vacuum amplification in time-varying media with arbitrary temporal profiles. Phys. Rev. Res. 2024, 6, 043320. [Google Scholar] [CrossRef]
- Gangaraj, S.A.H.; Hanson, G.W.; Monticone, F. Dynamical Casimir effects: The need for nonlocality in time-varying dispersive nanophotonics. Phys. Rev. A 2024, 110, L041502. [Google Scholar] [CrossRef]
- Mendonça, J.T. Time refraction and spacetime optics. Symmetry 2024, 16, 1548. [Google Scholar] [CrossRef]
- Svidzinsky, A. Time reflection of light from a quantum perspective and vacuum entanglement. Opt. Expr. 2024, 32, 15623. [Google Scholar] [CrossRef]
- Butera, S.; Carusotto, I. Particle creation in the spin modes of a dynamically oscillating two-component Bose–Einstein condensate. Phys. Rev. D 2021, 104, 083503. [Google Scholar] [CrossRef]
- Tettamanti, M.; Parola, A. The Dynamical Casimir Effect in quasi-one-dimensional Bose condensates: The breathing ring. Compt. Rend. Phys. 2024, 25. in press. [Google Scholar] [CrossRef]
- Gong, T.; Corrado, M.R.; Mahbub, A.R.; Shelden, C.; Munday, J.N. Recent progress in engineering the Casimir effect–Applications to nanophotonics, nanomechanics, and chemistry. Nanophotonics 2021, 10, 523–536. [Google Scholar] [CrossRef]
- Woods, L.M.; Krüger, M.; Dodonov, V.V. Perspective on some recent and future developments in Casimir interactions. Appl. Sci. 2021, 11, 293. [Google Scholar] [CrossRef]
- Elizalde, E. Zeta functions and the cosmos—A basic brief review. Universe 2021, 7, 5. [Google Scholar] [CrossRef]
- Schützhold, R. Ultra-cold atoms as quantum simulators for relativistic phenomena. arXiv 2025, arXiv:2501.03785. [Google Scholar] [CrossRef]
- Wilson, J.H.; Sorge, F.; Fulling, S.A. Tidal and nonequilibrium Casimir effects in free fall. Phys. Rev. D 2020, 101, 065007. [Google Scholar] [CrossRef]
- Sorge, F. Falling from rest: Particle creation in a dropped cavity. Symmetry 2021, 13, 1139. [Google Scholar] [CrossRef]
- Ford, L.H. Cosmological particle production: A review. Rep. Prog. Phys. 2021, 84, 116901. [Google Scholar] [CrossRef] [PubMed]
- Isoard, M.; Milazzo, N.; Pavloff, N.; Giraud, O. Bipartite and tripartite entanglement in a Bose–Einstein acoustic black hole. Phys. Rev. A 2021, 104, 063302. [Google Scholar] [CrossRef]
- Steinhauer, J.; Abuzarli, M.; Aladjidi, T.; Bienaimé, T.; Piekarski, C.; Liu, W.; Giacobino, E.; Bramati, A.; Glorieux, Q. Analogue cosmological particle creation in an ultracold quantum fluid of light. Nat. Commun. 2022, 13, 2890. [Google Scholar] [CrossRef] [PubMed]
- Good, M.R.R.; Linder, E.V. Modified Schwarzschild metric from a unitary accelerating mirror analog. New J. Phys. 2021, 23, 043007. [Google Scholar] [CrossRef]
- Good, M.R.R.; Foo, J.; Linder, E.V. Accelerating boundary analog of a Kerr black hole. Class. Quant. Grav. 2021, 38, 085011. [Google Scholar] [CrossRef]
- Fernández-Silvestre, D.; Foo, J.; Good, M.R.R. On the duality of Schwarzschild–de Sitter spacetime and moving mirror. Class. Quant. Grav. 2022, 39, 055006. [Google Scholar] [CrossRef]
- Good, M.R.R.; Linder, E.V. Möbius mirrors. Class. Quant. Grav. 2022, 39, 105003. [Google Scholar] [CrossRef]
- Good, M.R.R.; Linder, E.V. Stopping to reflect: Asymptotic static moving mirrors as quantum analogs of classical radiation. Phys. Lett. B 2023, 845, 138124. [Google Scholar] [CrossRef]
- Good, M.R.R.; Davies, P.C.W. Infrared acceleration radiation. Found. Phys. 2023, 53, 53. [Google Scholar] [CrossRef]
- Ievlev, E.; Good, M.R.R. Larmor temperature, Casimir dynamics, and Planck’s law. Physics 2023, 5, 797–813. [Google Scholar] [CrossRef]
- Lynch, M.H.; Ievlev, E.; Good, M.R.R. Accelerated electron thermometer: Observation of 1D Planck radiation. Prog. Theor. Exp. Phys. 2023, 023D01. [Google Scholar] [CrossRef]
- Sorge, F. Gravitational memory of Casimir effect. Phys. Rev. D 2023, 108, 104003. [Google Scholar] [CrossRef]
- Butera, S.; Carusotto, I. Numerical studies of back reaction effects in an analog model of cosmological preheating. Phys. Rev. Lett. 2023, 130, 241501. [Google Scholar] [CrossRef] [PubMed]
- Leonhardt, U. Cosmological horizons radiate. EPL (Europhys. Lett.) 2021, 135, 10002. [Google Scholar] [CrossRef]
- Leonhardt, U. Wave correlations and quantum noise in cosmology. J. Phys. A Math. Theor. 2023, 56, 024001. [Google Scholar] [CrossRef]
- Landau, Z.; Leonhardt, U. Quantum noise in time-dependent media and cosmic expansion. Phys. Rev. B 2024, 110, 224202. [Google Scholar] [CrossRef]
- Hsiang, J.-T.; Hu, B.-L. Fluctuation-dissipation relation for a quantum Brownian oscillator in a parametrically squeezed thermal field. Ann. Phys. 2021, 433, 168594. [Google Scholar] [CrossRef]
- Hsiang, J.-T.; Hu, B.-L. Foundational issues in dynamical Casimir effect and analogue features in cosmological particle creation. Universe 2024, 10, 418. [Google Scholar] [CrossRef]
- Bukhari, S.M.A.S.; Wang, L.-G. Atom-field dynamics in curved spacetime. Front. Phys. 2024, 19, 54203. [Google Scholar] [CrossRef]
- Mandal, A.; Vega, S.M.; Huo, P. Polarized Fock states and the dynamical Casimir effect in molecular cavity quantum electrodynamics. J. Phys. Chem. Lett. 2020, 11, 9215–9223. [Google Scholar] [CrossRef]
- Moddel, G.; Weerakkody, A.; Doroski, D.; Bartusiak, D. Casimir-cavity-induced conductance changes. Phys. Rev. Res. 2021, 3, L022007. [Google Scholar] [CrossRef]
- Tian, Z.; Wu, L.; Zhang, L.; Jing, J.; Jiangfeng Du, J. Probing Lorentz-invariance-violation-induced nonthermal Unruh effect in quasi-two-dimensional dipolar condensates. Phys. Rev. D 2022, 106, L061701. [Google Scholar] [CrossRef]
- Oelschläger, M.; Reiche, D.; Egerland, C.H.; Busch, K.; Intravaia, F. Electromagnetic viscosity in complex structured environments: From blackbody to quantum friction. Phys. Rev. A 2022, 106, 052205. [Google Scholar] [CrossRef]
- Triana, J.F.; Herrera, F. Ultrafast modulation of vibrational polaritons for controlling the quantum field statistics at mid-infrared frequencies. New J. Phys. 2022, 24, 023008. [Google Scholar] [CrossRef]
- Liberal, I.; Vázquez-Lozano, J.E.; Victor Pacheco-Peña, V. Quantum antireflection temporal coatings: Quantum state frequency shifting and inhibited thermal noise amplification. Laser Photon. Rev. 2023, 2200720. [Google Scholar] [CrossRef]
- Brey, L.; Fertig, H.A. Quantum plasmons in double layer systems. Phys. Rev. B 2024, 109, 045303. [Google Scholar] [CrossRef]
- Todorov, Y.; Dhillon, S.; Mangeney, J. THz quantum gap: Exploring potential approaches for generating and detecting non-classical states of THz light. Nanophotonics 2024, 13, 1681–1691. [Google Scholar] [CrossRef]
- Taya, H. Mutual assistance between the Schwinger mechanism and the dynamical Casimir effect. Phys. Rev. Res. 2020, 2, 023346. [Google Scholar] [CrossRef]
- Schwinger, J. On gauge invariance and vacuum polarization. Phys. Rev. 1951, 82, 664–679. [Google Scholar] [CrossRef]
- Mendonça, J.T. Particle-pair creation by high-harmonic laser fields. Phys. Scr. 2023, 98, 125606. [Google Scholar] [CrossRef]
- Matos, G.C.; de Melo e Souza, R.; Maia Neto, P.A.; Impens, F. Quantum vacuum Sagnac effect. Phys. Rev. Lett. 2021, 127, 270401. [Google Scholar] [CrossRef]
- Del Grosso, N.F.; Lombardo, F.C.; Mazzitelli, F.D.; Villar, P.I. Quantum Otto cycle in a superconducting cavity in the nonadiabatic regime. Phys. Rev. A 2022, 105, 022202. [Google Scholar] [CrossRef]
- Ferreri, A.; Macrì, V.; Wilhelm, F.K.; Nori, F.; Bruschi, D.E. Quantum field heat engine powered by phonon-photon interactions. Phys. Rev. Res. 2023, 5, 043274. [Google Scholar] [CrossRef]
- Del Grosso, N.F.; Lombardo, F.C.; Mazzitelli, F.D.; Villar, P.I. Shortcut to adiabaticity in a cavity with a moving mirror. Phys. Rev. A 2022, 105, 052217. [Google Scholar] [CrossRef]
- Del Grosso, N.F.; Lombardo, F.C.; Mazzitelli, F.D.; Villar, P.I. Fast adiabatic control of an optomechanical cavity. Entropy 2023, 25, 18. [Google Scholar] [CrossRef]
- Del Grosso, N.F.; Lombardo, F.C.; Mazzitelli, F.D.; Villar, P.I. Adiabatic shortcuts completion in quantum field theory: Annihilation of created particles. Entropy 2023, 25, 1249. [Google Scholar] [CrossRef]
- Ancheyta, R.R. Vacuum radiation versus shortcuts to adiabaticity. Phys. Rev. A 2023, 108, 022217. [Google Scholar] [CrossRef]
- Ghenimi, S.E.; Sengouga, A. Boundary stabilization of a vibrating string with variable length. J. Math. Anal. Appl. 2024, 532, 127910. [Google Scholar] [CrossRef]
- Bai, J.; Chai, S. Exact controllability for a one-dimensional degenerate wave equation in domains with moving boundary. Appl. Math. Lett. 2021, 119, 107235. [Google Scholar] [CrossRef]
- Dittrich, J.; Rakhmanov, S.; Matrasulov, D. Dirac particle under dynamical confinement: Fermi acceleration, trembling motion and quantum force. Phys. Lett. A 2024, 503, 129408. [Google Scholar] [CrossRef]
- Rakhmanov, S.; Trunk, C.; Znojil, M.; Matrasulov, D. PT-symmetric dynamical confinement: Fermi acceleration, quantum force and Berry phase. Phys. Rev. A 2024, 109, 053519. [Google Scholar] [CrossRef]
- Rakhmanov, S.; Trunk, C.; Matrasulov, D. Quantum particle under dynamical confinement: From quantum fermi acceleration to high harmonic generation. Phys. Scr. 2024, 99, 075308. [Google Scholar] [CrossRef]
- Akopyan, L.A.; Trunin, D.A. Dynamical Casimir effect in nonlinear vibrating cavities. Phys. Rev. D 2021, 103, 065005. [Google Scholar] [CrossRef]
- Trunin, D.A. Particle creation in nonstationary large N quantum mechanics. Phys. Rev. D 2021, 104, 045001. [Google Scholar] [CrossRef]
- Trunin, D.A. Nonlinear dynamical Casimir effect at weak nonstationarity. Eur. Phys. J. C 2022, 82, 440. [Google Scholar] [CrossRef]
- Dodonov, A.V.; Dodonov, V.V. Dynamical Casimir effect via modulated Kerr or higher-order nonlinearities. Phys. Rev. A 2022, 105, 013709. [Google Scholar] [CrossRef]
- Trunin, D.A. Enhancement of particle creation in nonlinear resonant cavities. Phys. Rev. D 2023, 107, 065004. [Google Scholar] [CrossRef]
- Khusnutdinov, N.; Emelianova, N. The normal Casimir force for lateral moving planes with isotropic conductivities. Physics 2024, 6, 148–163. [Google Scholar] [CrossRef]
- Antezza, M.; Emelianova, N.; Khusnutdinov, N. The normal Casimir–Lifshitz force for laterally moving graphene. Nanotechnology 2024, 35, 235001. [Google Scholar] [CrossRef]
- Farías, M.B.; Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Motion induced radiation and quantum friction for a moving atom. Phys. Rev. A 2019, 100, 036013. [Google Scholar] [CrossRef]
- Dedkov, G.V.; Kyasov, A.A. Nonlocal friction forces in the particle-plate and plate-plate configurations: Nonretarded approximation. Surf. Sci. 2020, 700, 121681. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, Y. Quantum dissipation and friction attributed to plasmons. Mod. Phys. Lett. B 2021, 36, 2150589. [Google Scholar] [CrossRef]
- Brevik, I.; Shapiro, B.; Silveirinha, M.G. Fluctuational electrodynamics in and out of equilibrium. Int. J. Mod. Phys. A 2022, 37, 22410123. [Google Scholar] [CrossRef]
- Reiche, D.; Intravaia, F.; Busch, K. Wading through the void: Exploring quantum friction and nonequilibrium fluctuations. APL Photon. 2022, 7, 030902. [Google Scholar] [CrossRef]
- Wu, K.; Schmidt, T.L.; Farias, M.B. Quantum friction between metals in the hydrodynamic regime. Phys. Rev. A 2022, 106, 012811. [Google Scholar] [CrossRef]
- Dedkov, G.V. Casimir–Lifshitz friction force and kinetics of radiative heat transfer between metal plates in relative motion. JETP Lett. 2023, 117, 952–957. [Google Scholar] [CrossRef]
- Dedkov, G.V. Casimir–Lifshitz frictional heating in a system of parallel metallic plates. Physics 2024, 6, 13–30. [Google Scholar] [CrossRef]
- Fernández, A.; Fosco, C.D. Quantum friction for a scalar model: Spatial dependence and higher orders. Ann. Phys. 2024, 463, 169635. [Google Scholar] [CrossRef]
- Oue, D.; Pendry, J.B.; Silveirinha, M.G. Stable-to-unstable transition in quantum friction. Phys. Rev. Res. 2024, 6, 043074. [Google Scholar] [CrossRef]
- Farías, M.B.; Lombardo, F.C.; Soba, A.; Villar, P.I.; Decca, R.S. Towards detecting traces of non-contact quantum friction in the corrections of the accumulated geometric phase. npj Quantum Inf. 2020, 6, 25. [Google Scholar] [CrossRef]
- Lobanov, I.S.; Nikiforov, D.S.; Popov, I.Y.; Trifanov, A.I.; Trifanova, E.S. Model of time-dependent geometric graph for dynamical Casimir effect. Ind. J. Phys. 2021, 95, 2115–2118. [Google Scholar] [CrossRef]
- Cius, D.; Andrade, F.M.; de Castro, A.S.M.; Moussa, M.H.Y. Enhancement of photon creation through the pseudo-Hermitian dynamical Casimir effect. Phys. A Stat. Mech. Appl. 2022, 593, 126945. [Google Scholar] [CrossRef]
- Al-Ghamdi, M.S.; Berrada, K.; Abdel-Khalek, S.; Eleuch, H. Effect of relativistic motion on superconducting quantum bits under decoherence. Results Phys. 2022, 38, 105402. [Google Scholar] [CrossRef]
- Dolgirev, P.E.; Zong, A.; Michael, M.H.; Curtis, J.B.; Podolsky, D.; Cavalleri, A.; Demler, E. Periodic dynamics in superconductors induced by an impulsive optical quench. Commun. Phys. 2022, 5, 234. [Google Scholar] [CrossRef]
- Li, N.; Lin, Z.-J.; Wei, M.-S.; Liao, M.-J.; Xu, J.-P.; Ke, S.-H.; Ya-Ping Yang, Y.-P. Preparation of squeezed light with low average photon number based on dynamic Casimir effect. Chin. Phys. B 2023, 32, 120301. [Google Scholar] [CrossRef]
- Long, Y.M.; Zhang, X.; Zheng, T.Y. Decoherence of Einstein–Podolsky–Rosen steering and the teleportation fidelity in the dynamical Casimir effect. Quant. Inform. Proces. 2020, 19, 322. [Google Scholar] [CrossRef]
- Viotti, L.; Lombardo, F.C.; Villar, P.I. Enhanced decoherence for a neutral particle sliding on a metallic surface in vacuum. Phys. Rev. A 2021, 103, 032809. [Google Scholar] [CrossRef]
- Long, Y.M.; Zhang, X.; Zheng, T.Y. Entanglement and Gaussian interference power in the dynamical Casimir effect. Int. J. Theor. Phys. 2020, 59, 3574–3582. [Google Scholar] [CrossRef]
- Del Grosso, N.F.; Lombardo, F.C.; Villar, P.I. Entanglement degradation of cavity modes due to the dynamical Casimir effect. Phys. Rev. D 2020, 102, 125008. [Google Scholar] [CrossRef]
- Velasco, C.I.; Del Grosso, N.F.; Lombardo, F.C.; Soba, A.; Villar, P.I. Photon generation and entanglement in a double superconducting cavity. Phys. Rev. A 2022, 106, 043701. [Google Scholar] [CrossRef]
- Zhao, S.; Long, Y.; Zhang, M.; Zheng, T.; Zhang, X. Genuine tripartite entanglement in the dynamical Casimir coupled waveguides. Quant. Inform. Proces. 2021, 20, 308. [Google Scholar] [CrossRef]
- Agasti, S.; Djorwé, P. Bistability-assisted mechanical squeezing and entanglement. Phys. Scr. 2024, 99, 095129. [Google Scholar] [CrossRef]
- Medina-Armendariz, M.A.; Quezada, L.F.; Sun, G.-H.; Dong, S.-H. Exploring entanglement dynamics in an optomechanical cavity with a type-V qutrit and quantized two-mode field. Phys. A Stat. Mech. Apppl. 2024, 635, 129514. [Google Scholar] [CrossRef]
- Mercurio, A.; Russo, E.; Mauceri, F.; Savasta, S.; Nori, F.; Macrì, V.; Lo Franco, R. Bilateral photon emission from a vibrating mirror and multiphoton entanglement generation. SciPost Phys. 2025, 18, 067. [Google Scholar] [CrossRef]
- Nakata, K.; Suzuki, K. Magnonic Casimir effect in ferrimagnets. Phys. Rev. Lett. 2023, 130, 096702. [Google Scholar] [CrossRef]
- Esteso, V.; Frustaglia, D.; Carretero-Palacios, S.; Míguez, H. Casimir–Lifshitz optical resonators: A new platform for exploring physics at the nanoscale. Adv. Phys. Res. 2024, 3, 2300065. [Google Scholar] [CrossRef]
- Hau, L.V.; Harris, S.E.; Dutton, Z.; Behroozi, C.H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 1999, 397, 594–598. [Google Scholar] [CrossRef]
- Andreata, M.A.; Dodonov, V.V. Energy density and packet formation in a vibrating cavity. J. Phys. A Math. Gen. 2000, 33, 3209–3223. [Google Scholar] [CrossRef]
- Leonhardt, U.; Piwnicki, P. Relativistic effects of light in moving media with extremely low group velocity. Phys. Rev. Lett. 2000, 84, 822–825. [Google Scholar] [CrossRef]
- Wegkamp, D.; Stähler, J. Ultrafast dynamics during the photoinduced phase transition in VO2. Prog. Surf. Sci. 2015, 90, 464–502. [Google Scholar] [CrossRef]
- Mogunov, I.A.; Fernández, F.; Lysenko, S.; Kent, A.J.; Scherbakov, A.V.; Kalashnikova, A.M.; Akimov, A.V. Ultrafast insulator-metal transition in VO2 nanostructures assisted by picosecond strain pulses. Phys. Rev. Appl. 2019, 11, 014054. [Google Scholar] [CrossRef]
- Dodonov, V.V. Is it possible to simulate the Dynamical Casimir Effect in a cavity? A simplified classical model. Int. J. Mod. Phys. A 2025, 40, 2543009. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Klimov, A.B. Generation and detection of photons in a cavity with a resonantly oscillating boundary. Phys. Rev. A 1996, 53, 2664–2682. [Google Scholar] [CrossRef]
- Dodonov, V.V. Resonance photon generation in a vibrating cavity. J. Phys. A Math. Gen. 1998, 31, 9835–9854. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dodonov, V.V. Dynamical Casimir Effect: 55 Years Later. Physics 2025, 7, 10. https://doi.org/10.3390/physics7020010
Dodonov VV. Dynamical Casimir Effect: 55 Years Later. Physics. 2025; 7(2):10. https://doi.org/10.3390/physics7020010
Chicago/Turabian StyleDodonov, Viktor V. 2025. "Dynamical Casimir Effect: 55 Years Later" Physics 7, no. 2: 10. https://doi.org/10.3390/physics7020010
APA StyleDodonov, V. V. (2025). Dynamical Casimir Effect: 55 Years Later. Physics, 7(2), 10. https://doi.org/10.3390/physics7020010