Blockchain-Based Mobile IoT System with Configurable Sensor Modules
Abstract
:1. Introduction
2. Related Works
3. Materials and Methods
3.1. System Architecture and Components
3.1.1. Overall System Design and Hardware Configuration of MSID and BMIS
3.1.2. Electronic Circuitry and Firmware Configuration of the MSID
- Tasmota Firmware
- Arduino IDE
3.1.3. Sensor Communication and Data Protocol
3.2. Blockchain System
3.2.1. Local Blockchain Simulation
3.2.2. Blockchain Network
3.2.3. Network Connection and Smart Contract
3.2.4. Sensor Data Storage and Retrieval System
3.3. IoT-Based Remote Monitoring and Blockchain Data Integrity System
3.3.1. System Architecture for Dual-Path Data Transmission
- ThingSpeak platform: for real-time monitoring, the original sensor data are transmitted directly to the ThingSpeak platform via an HTTP POST method using its API. This supports immediate visualization and analysis on the cloud-based platform provided by MathWorks;
- Ethereum Sepolia Testnet: in parallel, the collected sensor data are prepared for secure storage on the blockchain. First, the sensor data are combined with their corresponding timestamp. Instead of using traditional AES, our implementation utilizes the following blockchain-standard procedures:
3.3.2. Data Security and Integrity Assurance Mechanisms
- (1)
- Keccak-256 Hash Function for Data Integrity Verification:
- (2)
- RLP Encoding for Transaction Formatting:
- (3)
- HTTPS Protocol-Based Secure Transmission:
- (4)
- ECDSA Signature-Based Sender Authentication:
3.3.3. Implementation and Integration with BMIS
3.4. Experimental Setup
4. Results and Discussion
4.1. Manufactured MSID Master and Slave Modules with 3D Printing Process
4.2. Analyze System Performance and Assess Data Collection Reliability
4.3. Analyze Sensor Data Storage Interactions on a Local Blockchain
4.4. Smart Contract Deployment and Functionality
4.5. Analysis of Blockchain-Based Sensor Data Transactions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koohang, A.; Sargent, C.S.; Nord, J.H.; Paliszkiewicz, J. Internet of Things (IoT): From Awareness to Continued Use. Int. J. Inf. Manag. 2022, 62, 102442. [Google Scholar] [CrossRef]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef]
- Maemunah, M.; Riasetiawan, M. The Architecture of Device Communication in Internet of Things Using Inter-Integrated Circuit and Serial Peripheral Interface Method. In Proceedings of the 2018 4th International Conference on Science and Technology (ICST), Yogyakarta, Indonesia, 7–8 August 2018; IEEE: New York, NY, USA; pp. 1–4. [Google Scholar]
- Yalli, J.S.; Hasan, M.H.; Badawi, A. Internet of Things (IoT): Origin, Embedded Technologies, Smart Applications and Its Growth in the Last Decade. IEEE Access 2024, 12, 91357–91382. [Google Scholar] [CrossRef]
- Zikria, Y.B.; Ali, R.; Afzal, M.K.; Kim, S.W. Next-Generation Internet of Things (IoT): Opportunities, Challenges, and Solutions. Sensors 2021, 21, 1174. [Google Scholar] [CrossRef]
- Islam, M.M.; Rahaman, A.; Islam, M.R. Development of Smart Healthcare Monitoring System in IoT Environment. SN Comput. Sci. 2020, 1, 185. [Google Scholar] [CrossRef]
- Lakhwani, K.; Gianey, H.; Agarwal, N.; Gupta, S. Development of IoT for Smart Agriculture—A Review. In Emerging Trends in Expert Applications and Security: Proceedings of ICETEAS 2018; Springer: Singapore, 2019; pp. 425–432. [Google Scholar]
- Yuvaraj, S.; Sangeetha, M. Smart Supply Chain Management Using Internet of Things (IoT) and Low Power Wireless Communication Systems. In Proceedings of the 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 23–25 March 2016; IEEE: New York, NY, USA; pp. 555–558. [Google Scholar]
- Fantin Irudaya Raj, E.; Appadurai, M. Internet of Things-Based Smart Transportation System for Smart Cities. In Intelligent Systems for Social Good: Theory and Practice; Springer Nature: Singapore, 2022; pp. 39–50. [Google Scholar]
- Suzuki, L.R. Smart Cities IoT: Enablers and Technology Road Map. In Smart City Networks: Through the Internet of Things; Springer: Cham, Switzerland, 2017; pp. 167–190. [Google Scholar]
- Wang, J.; Lim, M.K.; Wang, C.; Tseng, M.L. The Evolution of the Internet of Things (IoT) over the Past 20 Years. Comput. Ind. Eng. 2021, 155, 107174. [Google Scholar] [CrossRef]
- Kashani, M.H.; Madanipour, M.; Nikravan, M.; Asghari, P.; Mahdipour, E. A Systematic Review of IoT in Healthcare: Applications, Techniques, and Trends. J. Netw. Comput. Appl. 2021, 192, 103164. [Google Scholar] [CrossRef]
- Dong, S.; Shu, L.; Xia, Q.; Kamruzzaman, J.; Xia, Y.; Peng, T. Device Identification Method for Internet of Things Based on Spatial-Temporal Feature Residuals. IEEE Trans. Serv. Comput. 2024, 17, 3400–3416. [Google Scholar] [CrossRef]
- Gulati, K.; Boddu, R.S.K.; Kapila, D.; Bangare, S.L.; Chandnani, N.; Saravanan, G. A Review Paper on Wireless Sensor Network Techniques in Internet of Things (IoT). Mater. Today Proc. 2022, 51, 161–165. [Google Scholar] [CrossRef]
- Sharma, R.; Prakash, S.; Roy, P. Methodology, Applications, and Challenges of WSN-IoT. In Proceedings of the 2020 International Conference on Electrical and Electronics Engineering (ICE3), Gorakhpur, India, 14–15 February 2020; IEEE: New York, NY, USA; pp. 502–507. [Google Scholar]
- Kumar, A.; Zhao, M.; Wong, K.J.; Guan, Y.L.; Chong, P.H.J. A Comprehensive Study of IoT and WSN MAC Protocols: Research Issues, Challenges and Opportunities. IEEE Access 2018, 6, 76228–76262. [Google Scholar] [CrossRef]
- Burhanuddin, M.A.; Mohammed, A.A.J.; Ismail, R.; Hameed, M.E.; Kareem, A.N.; Basiron, H.A. A Review on Security Challenges and Features in Wireless Sensor Networks: IoT Perspective. J. Telecommun. Electron. Comput. Eng. 2018, 10, 17–21. [Google Scholar]
- Koo, O.; Kim, S. Application of Digital Technologies for Food Safety. Food Sci. Ind. 2024, 57, 260–269. [Google Scholar] [CrossRef]
- Rajasekaran, A.S.; Azees, M.; Al-Turjman, F. A Comprehensive Survey on Blockchain Technology. Sustain. Energy Technol. Assess. 2022, 52, 102039. [Google Scholar] [CrossRef]
- Andoni, M.; Robu, V.; Flynn, D.; Abram, S.; Geach, D.; Jenkins, D.; Peacock, A. Blockchain Technology in the Energy Sector: A Systematic Review of Challenges and Opportunities. Renew. Sustain. Energy Rev. 2019, 100, 143–174. [Google Scholar] [CrossRef]
- Kim, S. Application of Blockchain in the Food Industry. Food Sci. Ind. 2021, 54, 132–144. [Google Scholar]
- Khezr, S.; Moniruzzaman, M.; Yassine, A.; Benlamri, R. Blockchain Technology in Healthcare: A Comprehensive Review and Directions for Future Research. Appl. Sci. 2019, 9, 1736. [Google Scholar] [CrossRef]
- Bhutta, M.N.M.; Khwaja, A.A.; Nadeem, A.; Ahmad, H.F.; Khan, M.K.; Hanif, M.A.; Cao, Y. A Survey on Blockchain Technology: Evolution, Architecture and Security. IEEE Access 2021, 9, 61048–61073. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, X.; Ni, Y.; Gu, L.; Zhu, H. Blockchain for the IoT and Industrial IoT: A Review. Internet Things 2020, 10, 100081. [Google Scholar] [CrossRef]
- Badri, N.; Nasraoui, L.; Saidane, L.A. Blockchain for WSN and IoT Applications. IoT 2022, 9, 543–548. [Google Scholar]
- Ghayvat, H.; Mukhopadhyay, S.; Gui, X.; Suryadevara, N. WSN-and IoT-Based Smart Homes and Their Extension to Smart Buildings. Sensors 2015, 15, 10350–10379. [Google Scholar] [CrossRef]
- Onasanya, A.; Lakkis, S.; Elshakankiri, M. Implementing IoT/WSN-Based Smart Saskatchewan Healthcare System. Wirel. Netw. 2019, 25, 3999–4020. [Google Scholar] [CrossRef]
- Sharma, P.K.; Kumar, N.; Park, J.H. Blockchain Technology Toward Green IoT: Opportunities and Challenges. IEEE Netw. 2020, 34, 263–269. [Google Scholar] [CrossRef]
- Dwivedi, A.D.; Srivastava, G.; Dhar, S.; Singh, R. A Decentralized Privacy-Preserving Healthcare Blockchain for IoT. Sensors 2019, 19, 326. [Google Scholar] [CrossRef]
- Humayun, M.; Jhanjhi, N.Z.; Hamid, B.; Ahmed, G. Emerging Smart Logistics and Transportation Using IoT and Blockchain. IEEE Internet Things Mag. 2020, 3, 58–62. [Google Scholar] [CrossRef]
- Khan, A.A.; Laghari, A.A.; Shaikh, Z.A.; Dacko-Pikiewicz, Z.; Kot, S. Internet of Things (IoT) Security with Blockchain Technology: A State-of-the-Art Review. IEEE Access 2022, 10, 122679–122695. [Google Scholar] [CrossRef]
- Verma, S.; Kaur, S.; Manchanda, R.; Pant, D. Essence of Blockchain Technology in Wireless Sensor Network: A Brief Study. In Proceedings of the 2020 International Conference on Advances in Computing, Communication & Materials (ICACCM), Dehradun, India, 21–22 November 2020; IEEE: New York, NY, USA; pp. 394–398. [Google Scholar]
- Gangwani, P.; Perez-Pons, A.; Bhardwaj, T.; Upadhyay, H.; Joshi, S.; Lagos, L. Securing environmental IoT data using masked authentication messaging protocol in a DAG-based blockchain: IOTA tangle. Future Internet 2021, 13, 312. [Google Scholar] [CrossRef]
- Volpes, G.; Valenti, S.; Zafar, H.; Pernice, R.; Stojanović, G.M. Feasibility of Conductive Embroidered Threads for I2C Sensors in Microcontroller-Based Wearable Electronics. Flex. Print. Electron. 2023, 8, 015016. [Google Scholar] [CrossRef]
- Anusha, M.; Kumar, P.B.; Akhil, V.; Gouthami, M.; Chinnaaiah, M.C.; Shaik, S. Internet of Things (IoT) Based Energy Monitoring with ESP 32 and Using ThingSpeak. In Proceedings of the 2024 10th International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, 4–6 April 2024; IEEE: New York, NY, USA; pp. 1383–1387. [Google Scholar]
- Durgun, Y. Nesnelerin İnterneti Teknolojisinin Kümes Ortamına Uygulanması ve Etkileri. Avrupa Bilim ve Teknoloji Dergisi 2021, 28, 463–468. [Google Scholar]
- Kim, H.J. Technical Aspects of Blockchain. In The Emerald Handbook of Blockchain for Business; Treiblmaier, H., Beck, R., Eds.; Emerald Publishing Limited: Bingley, UK, 2021; pp. 49–64. [Google Scholar]
- Dong, S.; Abbas, K.; Li, M.; Kamruzzaman, J. Blockchain technology and application: An overview. PeerJ Comput. Sci. 2023, 9, e1705. [Google Scholar] [CrossRef]
- Dener, M.; Orman, A. BBAP-WSN: A New Blockchain-Based Authentication Protocol for Wireless Sensor Networks. Appl. Sci. 2023, 13, 1526. [Google Scholar] [CrossRef]
- Chanana, R.; Singh, A.K.; Killa, R.; Agarwal, S.; Mehra, P.S. Blockchain-Based Secure Model for Sensor Data in Wireless Sensor Network. In Proceedings of the 2020 6th International Conference on Signal Processing and Communication (ICSC), Noida, India, 5–7 March 2020; IEEE: New York, NY, USA; pp. 288–293. [Google Scholar]
- Kapengut, E.; Mizrach, B. An Event Study of the Ethereum Transition to Proof-of-Stake. Commodities 2023, 2, 96–110. [Google Scholar] [CrossRef]
- Csikós, B.; Sipos, M. Blockchain-Based Voting DApp with MetaMask Integration. In Proceedings of the 2024 IEEE 22nd Jubilee International Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia, 21–23 September 2024; IEEE: New York, NY, USA; pp. 469–476. [Google Scholar]
- Naik, K.N.; Patil, A.R.; Patil, K.N.; More, S.S. FileFox: A Blockchain-Based File Storage Using Ethereum and IPFS. In Proceedings of the International Conference on Data Intelligence and Cognitive Informatics, Singapore, 23–24 June 2023; Springer Nature: Singapore, 2023; pp. 137–150. [Google Scholar]
- Sideris, A.; Sanida, T.; Dasygenis, M. A Novel Hardware Architecture for Enhancing the Keccak Hash Function in FPGA Devices. Information 2023, 14, 475. [Google Scholar] [CrossRef]
- Doerner, J.; Kondi, Y.; Lee, E.; Shelat, A. Secure Two-Party Threshold ECDSA from ECDSA Assumptions. In Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2018; pp. 980–997. [Google Scholar]
Sensor | Measurement | Sensitivity | Interface | ||
---|---|---|---|---|---|
DHT-22 | Temperature/Humidity | ±0.2 °C/±0.1% RH | Digital | ||
DS18B20 | Temperature | ±0.5 °C | 1-Wire | ||
BH1750 | Light intensity | ±20% LUX | I2C | ||
BMP180 | Barometric pressure | ±0.03 hPa (0.25 m) | I2C | ||
SSD1306 | Display | 100 kHz | I2C | ||
MicroController | CPU | Clock Speed | Flash Memory/SRAM | Wi-Fi Built-In | Output Voltage |
NodeMCU ESP8266 | Tensilica LX106 32-bit RISC | 80–160 MHZ | 4 MB/64 KB | 802.11 b/g/n | 2.7–3.6 V |
Parameter | Setting | ||
---|---|---|---|
Resolution | 0.20 mm | ||
Infill density | 15% | ||
Sparse infill pattern | Rectilinear pattern | ||
Internal solid infill pattern | Monotonic pattern | ||
Nozzle temperature/Bed temperature | 220 °C/65 °C | ||
Part Name | Printing Time (H:M:S) | Material Weight (g) | Material Length (m) |
Master_Case | 02:05:31 | 87.29 | 29.27 |
Master_Top | 01:11:43 | 31.86 | 10.68 |
Slave_Case_1 | 00:44:19 | 17.8 | 5.97 |
Slave_Top_1 | 00:18:13 | 6.05 | 2.03 |
Slave_Case_2 | 01:03:43 | 36.28 | 12.16 |
Slave_Top_2 | 00:36:25 | 13.11 | 4.39 |
Category | Applied Technology | Purpose |
---|---|---|
Data hash generation | Keccak-256 | Data integrity verification |
Data encoding | RLP | Standardized formatting of transaction data |
Transmission protocol | HTTPS (TLS) | Network segment encryption |
Sender authentication | ECDSA | Prevention of forgery and ensuring traceability |
Category | Result | Note |
---|---|---|
Total data collected/Duration | 121 points/120 min | 100% data acquisition success |
Data acquisition interval (Mean ± SD) | 60.15 ± 0.82 s | Close to the 1 min setting |
Total uploads/Success rate | 119 uploads/98.35% | Minor data loss detected |
Upload delay time (Mean ± SD) | 0.64 ± 0.21 s | minimal delay in ThingSpeak upload |
Wi-Fi connection time | approximately 10 s | initial connection only |
Category | Result |
---|---|
Total number of transactions/Transactions success rate | 13 transactions/100% |
Processing Time (Mean ± SD) | 16.38 ± 11.68 s |
Transaction fee (ETH, Mean ± SD) | 8.61 × 10−5 ± 5.1 × 10−6 ETH |
Gas price (Gwei 1, Mean ± SD) | 0.309 ± 0.030 Gwei |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Byun, J.; Kim, S. Blockchain-Based Mobile IoT System with Configurable Sensor Modules. IoT 2025, 6, 25. https://doi.org/10.3390/iot6020025
Lee J, Byun J, Kim S. Blockchain-Based Mobile IoT System with Configurable Sensor Modules. IoT. 2025; 6(2):25. https://doi.org/10.3390/iot6020025
Chicago/Turabian StyleLee, Jooho, Jihyun Byun, and Sangoh Kim. 2025. "Blockchain-Based Mobile IoT System with Configurable Sensor Modules" IoT 6, no. 2: 25. https://doi.org/10.3390/iot6020025
APA StyleLee, J., Byun, J., & Kim, S. (2025). Blockchain-Based Mobile IoT System with Configurable Sensor Modules. IoT, 6(2), 25. https://doi.org/10.3390/iot6020025