Drug Delivery Systems for Infectious Eye Diseases: Advancements and Prospects
Abstract
:1. Introduction
2. Infectious Eye Diseases
2.1. Infectious Keratitis
2.2. Infectious Conjunctivitis
2.3. Endophthalmitis
3. Optimized Drug Delivery Systems for Infectious Ocular Diseases
3.1. Drug Delivery Systems for Infectious Keratitis
Drug Delivery System | Details of Drug Delivery System | Disease | Mechanism of Action | Applications |
---|---|---|---|---|
Nanoparticles | Gelatin-capped silver nanoparticles | Bacterial keratitis | Antibacterial and anti-angiogenic properties of the silver nanoparticles | The gelatin-capped silver nanoparticles alleviate S. aureus-induced bacterial keratitis in rabbit eyes and bacterial infection-induced corneal neovascularization [82]. |
Silver nanoparticles prepared from fungus | Viral keratitis | Show antiviral activity by blocking interaction between cells and virus | Silver nanoparticles reduce viral infectivity in a size-dependent manner against herpes simplex virus and human parainfluenza virus; smaller sizes resulting in higher antiviral activity [83]. | |
Protease responsive TLR-4 conjugated gelatin nanoparticles | Fungal keratitis | Enhance drug residence time by anchoring to the cornea | Used for management of keratitis by sustained and stimuli responsive release of antifungal drug and inhibition of inflammation [9]. | |
Nigella sativa aqueous extract and chitosan nanoparticles | Parasitic keratitis | Overcome drug resistance | The combination of Nigella sativa aqueous extract and chitosan nanoparticles shows synergistic antiparasitic activity in an animal model of Acanthamoeba keratitis [84]. | |
Nanospheres | Silver nanospheres | Keratitis | Kill S. aureus by predominance of specific particle density and high-atom-density | Shows higher biocompatibility, anti-bacterial activity, anti-angiogenic capability, and repair of infected corneal tissues as compared to rod and triangular silver nanoparticles [10]. |
Liposomes | Liposome-dual TLR 3/9 agonist nanoparticles | HSP-1 induced conjunctivitis, keratitis, uveitis | Immunomodulation in subconjunctival tissues and corneal epithelium and suppression of herpesvirus replication and signs of infection | Significant lessening of ocular signs of infection and significantly fewer episodes of viral shedding compared to feline herpesvirus -1 infected cats. This is achieved by induction of both type I and II interferon responses along with suppression of feline herpesvirus -1 replication [57]. |
Tobramycin liposomes | Bacterial keratitis | Single topical administration of tobramycin liposomes reduced frequent dosing by sustained drug release | Single topical administration of tobramycin liposomes provides bactericidal effects in Pseudomonas keratitis rabbit model and may provide better patient compliance [85]. | |
Liposomal amphotericin B (Fungisome) | Fungal keratitis | Liposomal formulation slows down the ocular drug clearance and acts as a drug reservoir | Topical application of Fungisome was more effective in reduction of fungal keratitis with lower toxicity than naked amphotericin B, though not statistically significant [58]. | |
Combinatorial delivery of siRNA (serine phosphatase and glycogen phosphoryl)-loaded liposomes and chlorhexidine | Parasitic keratitis | Provide enhanced corneal penetration and chlorhexidine- siRNA act against Acanthamoeba. | After 15 days of eight daily administrations, the liposomal complex combined with chlorhexidine treatment is able to reverse the lesions associated with keratitis [86]. | |
Micelles | Chtosan-poly(lactide-co-glycolide)/poloxamer mixed micelles | Bacterial keratitis | Show enhanced antibacterial activity by high cellular uptake, corneal retention, muco-adhesiveness, and antibacterial effect | Exhibiting superior therapeutic effects in P. aeruginosa and S. aureus-infected BK mouse models by reducing the corneal bacterial load and preventing corneal damage [87]. |
Acyclovir-loaded Soluplus micelles | Viral keratitis | Increases its solubility, corneal permeability and sclera penetration | In vivo efficacy in viral keratitis needed to be evaluated [88]. | |
Itraconazole-loaded polymeric micelles | Fungal keratitis | Enhance corneal permeability of hydrophobic drug and mucoadhesivity | Shows in vitro anti-fungal activity against Candida albicans through inhibition of chitin synthesis [89,90]. | |
Niosomes | Ciprofloxacin-loaded Solulan C24- and Bile Salts-Modified Niosome | Bacterial keratitis | Enhance drug permeability and prolong ocular residence time | Significantly improves the Pseudomonas aeruginosa induced corneal ulcer, enhanced healing rate, inhibition of inflammatory cytokines secretion in vivo in rabbit [60]. |
Natamycin-loaded nanoparticle noisome | Fungal keratitis | Enhance corneal penetration, protection against acidic and enzymatic effects, reduction in toxicity | Exhibits superior anti-inflammatory and antifungal activity as compared to free natamycin in rabbit in both Candida and Aspergillus keratitis [91,92]. | |
Isoniazid-nanoparticles-amphotericin B | Parasitic keratitis | Yet to be tested for the eye and hence, can be explored | Shows antiamoebic effects against Acanthamoeba castellanii [93]. | |
Nanosuspensions | Eudragit- Ganciclovir Nanosuspension | Viral keratitis | Enhance corneal penetration, provides sustained release at pH 7.4 | In vitro and in vivo efficacy study needed to be performed. Ganciclovir’s main mode of action against CMV involves the inhibition of viral DNA replication through the activity of ganciclovir-5’-triphosphate (ganciclovir-TP) [94,95]. |
Moxifloxacin–pamoate nanosuspensions | Bacterial keratitis | Provide a significant increase in ocular drug absorption | Improved prevention and treatment of ocular keratitis in rat model of ocular Staphylococcus aureus infection [96]. | |
Voriconazole-loaded Glycol chitosan nanosuspensions with 4-carboxyphenylboronic acid pinacol ester as a ROS-responsive group (GC-EV-VOR) | Fungal keratitis | Exhibits high penetration through corneal barriers, good retention in the cornea and controllable drug release under low concentrations of ROS | Improved therapeutic effects with depletion of ROS, ocular inflammation and antifungal activity. Voriconazole exhibits antifungal activity by inhibition of cytochrome P450–dependent 14α-lanosterol demethylation, which is a vital step in cell membrane ergosterol synthesis by fungi [64,97]. | |
Praziquantel nanosuspensions | Parasitic keratitis | These nanosuspensions greatly modify the energetic metabolism of T. cysticerci in vivo | Treating with nanosuspensions in T. crassiceps cysticerci-infected mice led to elevated levels of glycolysis related organic acids and promoted a partial reversal of the tricarboxylic acid cycle, urea cycle, and ketone body production within the parasites, in contrast to the groups treated with the Praziquantel [98]. | |
Nanoemulsions | Acyclovir-loaded termoresponsive in situ gel nanoemulsion | Viral keratitis | Enhance ocular permeation and sustained drug release | The DDSs shows good ocular tolerance bioavailability; however, the in vitro and in vivo efficacy need to be evaluated [20]. |
Ciprofloxacin-loaded nanoemulsion fabricated from sing oleic acid and Labrafa Lipophile WL 1349, Tween 80 and Poloxamer 188 | Bacterial keratitis | Enhance corneal penetration and sustained drug release | The nanoemulsion system demonstrated prolonged release and a 2.1-fold increase in permeation compared to the commercial ciprofloxacin formulation. Additionally, it exhibits robust stability at room temperature and can be frozen for up to one month. These findings suggest promising potential for treating bacterial keratitis [99]. | |
Luliconazole-loaded nanoemulsion composed of Capryol 90, ethoxylated hydrogenated castor oil, Transcutol® P and water | Fungal keratitis | Enhance drug release and antifungal activity and ocular bioavailability | The nanoemulsion formulation displayed outstanding physicochemical properties, excellent tolerability, enhanced antifungal activity, and improved bioavailability in ocular tissues [100]. | |
Amphotericin-loaded nanoemulsion formulated from cholesterol and stearyl amine | Parasitic keratitis | Improve drug stability, bioactivity and sustained delivery | A single dose of nanoemulsion formulation could provide stability and sustained release of drug in vitro. However, in vivo evaluation needs to be performed [101]. | |
Cubosomes | Gatifloxacin Loaded cubosomes | Bacterial keratitis | Enhance corneal penetration, bioactivity of the drug, and overcome bacterial resistance | Gatifloxacin-loaded cubosomal dispersions enhanced corneal permeation and a fourfold reduction in the minimum inhibitory concentration against a clinically isolated methicillin-resistant strain in a rat model of bacterial keratitis [102]. |
Fluconazole-loaded cubosome | Fungal keratitis | Enhance corneal penetration and improved efficacy | Fluconazole-loaded cubosomes shows two-fold corneal penetration, and higher efficacy and safety as compared to aqueous fluconazole solution in rat model [68]. | |
Hydrogel | Supramolecular hydrogel generated by ganciclovir and 2′-deoxyguanosine in the presence of potassium ions. | Herpes simplex keratitis | Enhance corneal retention because of high viscoelasticity, excellent spreadability, and effective deformation recovery properties | Ganciclovir and 2′-deoxyguanosine-based supra molecular hydrogel exhibit longer ocular retention higher therapeutic efficacy compared to the clinical ganciclovir gel [72]. |
Norfloxacin-loaded PLGA-laden hydroxypropyl methylcellulose hydrogel | Bacterial keratitis | Enhance corneal permeation, sustained drug release, and antibacterial properties | The DDS enhances corneal permeation, ensuring sustained delivery and effectiveness against Pseudomonas aeruginosa-induced infection and inflammation in a rabbit corneal ulcer model [73]. | |
Econazole-cyclodextrin embedded in deacylated gellan gum and k-carrageenan hydrogel or hyaluronic acid hydrogel | Fungal keratitis | Enhance drug solubility and ocular retention | The econazole hydrogel shows superior ocular retention, sustained release, non-irritation, and a better safety profile compared to the control drug [94]. | |
Poly-Epsilon-Lysine (PEK) Functionalized Hydrogels | Parasitic keratitis | Offer amoebicidal activity | The PEK-hydrogels shows equivalent anti-microbial properties as compared to Chlorohexidine against A. castellanii in in vitro and ex vivo studies [103]. | |
In-situ gelling system | Acyclovir-loaded sodium alginate based in situ gelling system | Viral keratitis | Increase the half-life of the drug, prolong corneal contact time, eradicate drug elimination and increase the bioavailability | Ophthalmic in situ gels offer the potential for sustained delivery, leading to extended ocular residence time, enhanced shelf life, and precise dosing compared to conventional dosage forms [104]. |
Oxytetracycline-loaded gelatin-polyacrylic acid nanoparticles In Situ Poloxamer N-407 gel | Bacterial keratitis | Provides sustained delivery of drug | The in situ gelling system provides sustained delivery of drug, minimizing irritation and exhibiting excellent antibacterial properties. It holds promise as a potential delivery system for treating bacterial keratitis [105]. | |
Voriconazole-loaded poloxamer-188, poloxamer-407 and carboxymethyl cellulose based in situ gel | Fungal keratitis | Increase residence time, and the bioavailability of voriconazole in the ocular mucosa | This in situ gelling system offers sustained delivery, potent antifungal effects, and causes no eye irritation. It shows promise for development as a potential delivery system for treating fungal keratitis [106]. | |
Super aggregated amphotericin B with a thermoreversible in situ gel | Parasitic keratitis | Enhance biocompatibility, low toxicity, and high residence time on the ocular surface | This in situ gelling system could enhance the residence time while reducing toxicity and being active against Acanthamoeba keratitis, thus, holds promise for treating parasitic keratitis [107]. | |
Contact lenses | Methacrylic acid-based imprinted valacyclovir-loaded contact lenses | Viral keratitis | Provide sustained release and enhance ocular penetration of drug | These contact lenses improve drug solubility, boost drug bioavailability through enhanced ocular penetration, and demonstrate excellent ocular compatibility [74]. |
Melimine-coated contact lens | Bacterial keratitis | Provide antibacterial properties against Pseudomonas aeruginosa by inhibiting adhesion of bacteria. | Contact lenses coated with melimine decreased the occurrence of microbial keratitis linked to Pseudomonas aeruginosa in a rabbit model of keratitis [108]. | |
Hybrid hydrogel-based contact lens which comprises quaternized chitosan, silver nanoparticles, and graphene oxide with voriconazole | Fungal keratitis | Provide sustained delivery of drug and silver nanoparticles and further enhances the antifungal properties of the developed contact lens. | The hybrid hydrogel-based contact lens offers continuous dry release, exhibits excellent biocompatibility, and effectively treats fungal keratitis in a mouse model [109]. | |
Miltefosine coated PLGA contact lens | Acanthamoeba Keratitis | Provide sustained and local delivery of drug | The drug-eluting contact lens not only shows similar physicochemical and biocompatible properties as compared to the commercial contact lens, but also provides sustained and local delivery of drug at a therapeutic concentration for treatment of parasitic keratitis [110]. | |
Micro-needles | Core-shell microneedles containing Ag@ZIF8 nanoparticles in the core and Rapamycin in the hydrophilic shell | Bacterial keratitis | The core provides antimicrobial properties, and shell provides anti-inflammatory and antiangiogenic properties. | A single application of the core–shell microneedles patch in a rat model of bacterial keratitis demonstrates effective antimicrobial action, along with superior anti-angiogenic and anti-inflammatory effects compared to daily topical eyedrops [77]. |
Amphotericin B-loaded polyvinyl alcohol and polyvinyl pyrrolidone microneedle patch | Fungal keratitis | Enhances drug solubility, corneal penetration, and provides sustained drug delivery | The application of amphotericin B-loaded microneedles patch significantly decreased the Candida albicans presence within the cornea and enhanced the epithelial and stromal differentiation of the corneal membrane in rabbit model [75]. | |
polyhexamethylene biguanide (PHMB)-loaded PLGA microneedle patch | Acanthamoeba keratitis | Provide sustained delivery | A solitary application of a biodegradable microneedle can replace the repetitive use of eyedrops in treating Aacanthamoeba keratitis [76]. | |
Ocular implants | Besifloxacin HCl-loaded nanofibrous PCL/PEG mucoadhesive ocular inserts | Bacterial keratitis | Enhance bio-adhesion and sustained delivery | The ocular inserts demonstrated effective reduction of bacterial keratitis in rabbit eyes in a single dose, outperforming multiple doses of the commercial drug [78]. |
3.2. Drug Delivery Systems for Infectious Conjunctivitis
Drug Delivery System | Details of Drug Delivery System | Disease | Mechanism of Action | Applications |
---|---|---|---|---|
Nanoparticles | Biological adhesion reticulate structure (BNP/CA-PEG) | Conjunctivitis | Enhances ocular surface retention by mucoadhesive properties | BNP/CA-PEG showed significantly higher adhesion properties, sustained drug release and better treatment efficacy in an ocular rat model of conjunctivitis [111]. |
Nanospheres | Levofloxacin-loaded chitosan-cyclodextrin nanospheres | Conjunctivitis | May increase ocular retention by promoting the interaction of positively charged nanospheres with the negatively charged ocular tissue | In vitro, antibacterial activity against Gram-positive and Gram-negative bacteria showed double the activity in levofloxacin-loaded chitosan-cyclodextrin nanospheres compared to the free drug [114]. |
Liposomes | Liposome containing gaseous ozone or ozonated oil | Conjunctivitis | Ozone generates free oxygen radicals that promote the formation of hydrogen peroxide and lipo-peroxide, contributing to bacterial lysis and eventual death | Shows antibacterial properties against broad spectrum bacteria like Pseudomonas aeruginosa, and is more evident against Staphylococcus and Streptococcus spp. [115,116]. |
Micelles | Erythromycin-loaded polymeric micelles | Bacterial conjunctivitis | Prolongs the drug release and permeation profile. | Even after ocular permeation, the formulation retains antibacterial properties, which is a promising strategy against ocular infection [112]. |
Dendrimers | Aminoterminated-poly(amidoamine) (PAMAM) dendrimer | Bacterial conjunctivitis | Effective against gram negative bacteria by disrupting bacterial cell membrane | Effective against gram-negative bacteria but does not cause cell death to corneal cells, thus expanding its application towards conjunctivitis [117]. |
Niosomes | Lomefloxacin Hcl (LXN)-loaded niosomes | Ketaritis and bacterial conjunctivitis | Enhances corneal penetration of LXN | Effective against Staphylococcus aureus induced conjunctivitis in vivo without having any ocular toxicity in rabbit model [61]. |
Nanosuspension | Ion-paired moxifloxacin–pamoate nanosuspension | Keratitis and conjuctivitis | Increases intraocular antibiotic absorption | Single dosing per day of moxifloxacin–pamoate nanosuspension is as effective as three doses per day of bare moxifloxacin [19]. |
Nanoemulsion | Moxifloxacin hydrochloride-loaded nanoemulsion-based in situ gel | Bacterial conjunctivitis | Provides sustained delivery and reduced toxicity | The nanosuspension improves ocular bioavailability of drugs through enhanced penetration into the eye and sustained delivery [66]. |
Cubosomes | Cubosomes formed by 60 mg of ciprofloxacin, 100 mg phytantriol, 25 mg Lutrol, and hydration media pH equal 5.8 | Conjunctivitis and corneal ulcer | Improves eye permeation, prolonged the ocular retention time, and enhanced the antimicrobial activity | Single administration of cubosomal DDSs can maintain drug levels above the minimum inhibitory concentration (MIC), contrasting with commercial drops that necessitate administration four times daily [69]. |
Hydrogel | Poloxamer 407 and chitosan hydrogel containing combination of neomycin sulphate and betamethasone sodium phosphate | Conjunctivitis | Enhances permeation and without any irritation | It can inhibit infection and inflammation simultaneously while providing sustained release of drugs [15]. |
In situ gelling system | levofloxacin hemihydrate containing ion-sensitive gellan gum based in situ gelling system | Bacterial conjunctivitis | Provides prolonged drug release (24 h), enhanced stability and shows good ocular tolerability | The gellan gum-based in situ gelling system provides higher bioavailability of drug in conjunctiva as compared to the commercial product Levotop PF® with a good ocular tolerability, indicating potential use for treatment of bacterial conjunctivitis [118]. |
Contact lens | Contact lenses loaded with moxifloxacin HCl and hyaluronic acid | Bacterial conjunctivitis | Provides sustained drug release for 96 h, enhanced retention in eye | It shows better efficacy against Staphylococcus aureus induced conjunctivitis as compared to eye drops [16]. |
3.3. Drug Delivery Systems for Endophthalmitis
Drug Delivery Systems | Details of Drug Delivery Systems | Disease | Mechanism of Action | Applications |
---|---|---|---|---|
Nanoparticles | Chitosan coated poly-l-lactide nanoparticles | Endophthalmitis | Overcome the blood ocular and retinal barrier by enhanced penetration | The azithromycin- and triamcinolone acetonide-loaded dual drug DDSs showed antibacterial properties against both gram positive and gram negative bacteria [8]. |
Nanospheres | Vancomycine-loaded lipid nano- capsules/spheres | Endophthalmitis | Show higher bioavailability of drug in the vitreous region by enhanced corneal penetration | Antimicrobial activity is comparable to intravitreal injection of vancomycin. Further, the optimized formula was found to be nonirritating and safe for ophthalmic administration [120]. |
Liposomes | Liposomes-loaded Amphotericin-B or Fluconazole | Endophthalmitis | Show lower efficacy against Candida albicans induced fungal endophthalmitis | The liposomal antifungal drug shows lower toxicity and lower intravitreal clearance; however, it shows lower efficacy. Amphotericin B acts on disruption of fungal cell wall synthesis, and fluconazole inhibits the synthesis of ergosterol to increase cellular permeability [121,122,123,124]. |
Micelles | Miconazole nitrate-loaded micelles of tri-block copolymers Pf 127 and Pf 68 | Fungal endophthalmitis | Enhance corneal penetration | Sustained drug delivery and achieved the therapeutic level of drug at 8 h of release [59]. |
Dendrimers | Dendrimeric polyguanidilyated translocators-gatifloxacin complex | Endophthalmitis | Enhance gatifloxacin solubility, enhanced epithelial permeability and antimicrobial activity against Staphylococcus aureus | Shows promising effects against S. aureus induced endophthalmitis by enhancing drug solubility, permeability, antimicrobial activity, and in vivo delivery, potentially allowing a once-daily dose regimen [125]. |
Niosomes | Niosome made up of Tween 60, cholesterol and dicetyl phosphate | Ocular infection | Provides sustained delivery of Gentamicin with no ocular irritation | May be useful for both gram positive and gram-negative bacteria and can be explored for ocular infections like endophthalmitis [62]. |
Nanosponges | RBC-PLGA nanosponges | Endophthalmitis | Effective against Enterococcus faecalis | The biomimetic nanosponges neutralize cytolysin, protect the retina, preserve vision, and may provide an adjunct detoxification therapy for bacterial infections [63]. |
nanosuspensions | Acyclovir containing polymeric nanosuspension | May be useful for ocular infection | Enhance drug solubility, ocular bioavailability, and sustained drug release | The nanosuspensions exhibit promising potential due to their ability to enhance drug solubility, ocular bioavailability, sustained drug release, and antifungal properties. However, additional in vitro and in vivo assessments are required to evaluate their efficacy further [65]. |
Nanoemulsion | Moxifloxacin Mucoadhesive Nanoemulsion | Endophthalmitis | Effective against both gram positive and negative bacteria | Provides sustained drug release for enhanced corneal penetration and equivalent antibacterial properties as compared to commercial Vigamox® eyedrops [67]. |
Cubosomes | In situ gel containing Natamycin-loaded cubosomes | Endophthalmitis | Enhance drug solubility and ocular penetration with less ocular irritation | May be effective against fungal endopthalmitis, though in vivo evaluation in a disease model is needed [70]. |
In situ gelling system | Ciprofloxacin containing micro emulsion-based in situ gelling systems | Endophthalmitis | Enhances the drug’s absorption, penetration, and retention, thereby boosting its bioavailability | Given that the drug concentration in the vitreous is approximately 0.4 µg/mL, surpassing the therapeutic threshold required for gram-negative bacteria, it presents a potential avenue for investigation in the context of endophthalmitis [126]. |
Intraocular implants | Moxifloxacin releasing hyaluronic acid | Endophthalmitis | Maintain therapeutic concentration of drug for Pseudomonas aeruginosa and Staphylococcus aureus for more than 5 days after implantation | Can be utilized as a potential drug delivery method for the prevention and treatment of bacterial infections like endophthalmitis after ophthalmic surgery [79]. |
Intra-ocular lens | Intraocular lens containing antibiotic solutions of 0.3% and 0.5% gatifloxacin and 0.5% and 1.5% levofloxacin | Prevention of post cataract endophthalmitis | Effective against Enterococcus faecalis | Provide sustained release of antibiotics and prevent bacterial proliferation [127]. |
4. Targeted Drug Delivery Systems for Infectious Ocular Diseases
4.1. Ocular Tissue Targeting by Varying the Physicochemical Properties of the Drug Delivery Systems
4.2. Ocular Tissue Targeting by Magnetic Nanoparticles (MNPs)
4.3. Ocular Tissue Targeting by Ligand-Receptor Interactions
5. Combination Therapies for Infectious Ocular Diseases
6. Stimuli Responsive Drug Delivery Systems for Infectious Ocular Diseases
7. Safety and Biocompatibility of Ocular Drug Delivery Systems
7.1. In Vivo Ocular Toxicity Study
7.2. In Vitro Cytotoxicity Assays
7.3. In Vitro Hemocompatibility Study
7.4. Ocular Tolerance Test (HET-CAM)
7.5. In Vitro Genotoxicity Assay
8. Marketed Products for Infectious Eye Diseases Based on Drug Delivery Systems
9. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watson, S.; Cabrera-Aguas, M.; Khoo, P. Common eye infections. Aust. Prescr. 2018, 41, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Stiles, J. 128—Ocular Infections. In Greene’s Infectious Diseases of the Dog and Cat, 5th ed.; Sykes, J.E., Ed.; W.B. Saunders: Philadelphia, PA, USA, 2021; pp. 1688–1709. [Google Scholar]
- Ghafoorianfar, S.; Ghorani-Azam, A.; Mohajeri, S.A.; Farzin, D. Efficiency of nanoparticles for treatment of ocular infections: Systematic literature review. J. Drug Deliv. Sci. Technol. 2020, 57, 101765. [Google Scholar] [CrossRef]
- Chigbu, D.I.; Labib, B.A. Pathogenesis and management of adenoviral keratoconjunctivitis. Infect. Drug Resist. 2018, 11, 981–993. [Google Scholar] [CrossRef] [PubMed]
- Kakkar, S.; Karuppayil, S.M.; Raut, J.S.; Giansanti, F.; Papucci, L.; Schiavone, N.; Kaur, I.P. Lipid-polyethylene glycol based nano-ocular formulation of ketoconazole. Int. J. Pharm. 2015, 495, 276–289. [Google Scholar] [CrossRef] [PubMed]
- Khalil, I.A.; Ali, I.H.; El-Sherbiny, I.M. Noninvasive biodegradable nanoparticles-in-nanofibers single-dose ocular insert: In vitro, ex vivo and in vivo evaluation. Nanomedicine 2019, 14, 33–55. [Google Scholar] [CrossRef]
- Eid, H.M.; Elkomy, M.H.; El Menshawe, S.F.; Salem, H.F. Development, optimization, and in vitro/in vivo characterization of enhanced lipid nanoparticles for ocular delivery of ofloxacin: The influence of pegylation and chitosan coating. AAPS Pharmscitech 2019, 20, 1–14. [Google Scholar] [CrossRef]
- Mahaling, B.; Baruah, N.; Ahamad, N.; Maisha, N.; Lavik, E.; Katti, D.S. A non-invasive nanoparticle-based sustained dual-drug delivery system as an eyedrop for endophthalmitis. Int. J. Pharm. 2021, 606, 120900. [Google Scholar] [CrossRef]
- Ahsan, S.M.; Rao, C.M. Condition responsive nanoparticles for managing infection and inflammation in keratitis. Nanoscale 2017, 9, 9946–9959. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.D.; Luo, L.-J.; Lai, J.-Y. Toward understanding the purely geometric effects of silver nanoparticles on potential application as ocular therapeutics via treatment of bacterial keratitis. Mater. Sci. Eng. C 2021, 119, 111497. [Google Scholar] [CrossRef]
- Mahaling, B.; Katti, D.S. Understanding the influence of surface properties of nanoparticles and penetration enhancers for improving bioavailability in eye tissues in vivo. Int. J. Pharm. 2016, 501, 1–9. [Google Scholar] [CrossRef]
- Mahaling, B.; Katti, D.S. Physicochemical properties of core–shell type nanoparticles govern their spatiotemporal biodistribution in the eye. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 2149–2160. [Google Scholar] [CrossRef]
- Giannaccini, M.; Giannini, M.; Calatayud, M.P.; Goya, G.F.; Cuschieri, A.; Dente, L.; Raffa, V. Magnetic nanoparticles as intraocular drug delivery system to target retinal pigmented epithelium (RPE). Int. J. Mol. Sci. 2014, 15, 1590–1605. [Google Scholar] [CrossRef]
- Giannaccini, M.; Pedicini, L.; De Matienzo, G.; Chiellini, F.; Dente, L.; Raffa, V. Magnetic nanoparticles: A strategy to target the choroidal layer in the posterior segment of the eye. Sci. Rep. 2017, 7, 43092. [Google Scholar] [CrossRef]
- Deepthi, S.; Jose, J. Novel hydrogel-based ocular drug delivery system for the treatment of conjunctivitis. Int. Ophthalmol. 2019, 39, 1355–1366. [Google Scholar] [CrossRef]
- Maulvi, F.A.; Singhania, S.S.; Desai, A.R.; Shukla, M.R.; Tannk, A.S.; Ranch, K.M.; Vyas, B.A.; Shah, D.O. Contact lenses with dual drug delivery for the treatment of bacterial conjunctivitis. Int. J. Pharm. 2018, 548, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Kodati, S.; Eller, A.W.; Kowalski, R.P. The Susceptibility of Bacterial Endophthalmitis Isolates to Vancomycin, Ceftazidime, and Amikacin: A 23-Year Review. Ophthalmol. Retin. 2017, 1, 206–209. [Google Scholar] [CrossRef]
- Sushma, M.V.; Sankaranarayanan, S.A.; Bantal, V.; Pemmaraju, D.B.; Rengan, A.K. Ethosomal Nanoformulations for Combinational Photothermal Therapy of Fungal Keratitis. Adv. Ther. 2023, 6, 2200331. [Google Scholar] [CrossRef]
- Josyula, A.; Omiadze, R.; Parikh, K.; Kanvinde, P.; Appell, M.B.; Patel, P.; Saeed, H.; Sutar, Y.; Anders, N.; He, P.; et al. An ion-paired moxifloxacin nanosuspension eye drop provides improved prevention and treatment of ocular infection. Bioeng. Transl. Med. 2021, 6, e10238. [Google Scholar] [CrossRef]
- Mahboobian, M.M.; Mohammadi, M.; Mansouri, Z. Development of thermosensitive in situ gel nanoemulsions for ocular delivery of acyclovir. J. Drug Deliv. Sci. Technol. 2020, 55, 101400. [Google Scholar] [CrossRef]
- Chen, H.; Yang, J.; Sun, L.; Zhang, H.; Guo, Y.; Qu, J.; Jiang, W.; Chen, W.; Ji, J.; Yang, Y.-W.; et al. Synergistic Chemotherapy and Photodynamic Therapy of Endophthalmitis Mediated by Zeolitic Imidazolate Framework-Based Drug Delivery Systems. Small 2019, 15, 1903880. [Google Scholar] [CrossRef] [PubMed]
- Davaran, S.; Lotfipour, F.; Sedghipour, N.; Sedghipour, M.R.; Alimohammadi, S.; Salehi, R. Preparation and in vivo evaluation of in situ gel system as dual thermo-/pH-responsive nanocarriers for sustained ocular drug delivery. J. Microencapsul. 2015, 32, 511–519. [Google Scholar]
- Dong, Y.; Wu, T.; Jiang, T.; Zhu, W.; Chen, L.; Cao, Y.; Xiao, Y.; Peng, Y.; Wang, L.; Yu, X.; et al. Chitosan-coated liposome with lysozyme-responsive properties for on-demand release of levofloxacin. Int. J. Biol. Macromol. 2024, 269, 132271. [Google Scholar] [CrossRef] [PubMed]
- Luchs, J. Azithromycin in DuraSite for the treatment of blepharitis. Clin. Ophthalmol. 2010, 4, 681–688. [Google Scholar] [CrossRef]
- Miller, D. Review of moxifloxacin hydrochloride ophthalmic solution in the treatment of bacterial eye infections. Clin. Ophthalmol. 2008, 2, 77–91. [Google Scholar] [CrossRef]
- Clare, G.; Kempen, J.H.; Pavésio, C. Infectious eye disease in the 21st century—An overview. Eye 2024, 38, 2014–2027. [Google Scholar] [CrossRef]
- Cabrera-Aguas, M.; Khoo, P.; Watson, S.L. Infectious keratitis: A review. Clin. Exp. Ophthalmol. 2022, 50, 543–562. [Google Scholar] [CrossRef]
- Ung, L.; Chodosh, J. Foundational concepts in the biology of bacterial keratitis. Exp. Eye Res. 2021, 209, 108647. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; D’Souza, S.; Gorimanipalli, B.; Shetty, R.; Ghosh, A.; Deshpande, V. Ocular Surface Infection Mediated Molecular Stress Responses: A Review. Int. J. Mol. Sci. 2022, 23, 3111. [Google Scholar] [CrossRef] [PubMed]
- Ahmadikia, K.; Aghaei Gharehbolagh, S.; Fallah, B.; Naeimi Eshkaleti, M.; Malekifar, P.; Rahsepar, S.; Getso, M.I.; Sharma, S.; Mahmoudi, S. Distribution, Prevalence, and Causative Agents of Fungal Keratitis: A Systematic Review and Meta-Analysis (1990 to 2020). Front. Cell. Infect. Microbiol. 2021, 11, 698780. [Google Scholar] [CrossRef] [PubMed]
- Tuli, S.S. Fungal keratitis. Clin. Ophthalmol. 2011, 5, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Mills, B.; Radhakrishnan, N.; Karthikeyan Rajapandian, S.G.; Rameshkumar, G.; Lalitha, P.; Prajna, N.V. The role of fungi in fungal keratitis. Exp. Eye Res. 2021, 202, 108372. [Google Scholar] [CrossRef]
- Kaye, S.; Choudhary, A. Herpes simplex keratitis. Prog. Retin. Eye Res. 2006, 25, 355–380. [Google Scholar] [CrossRef]
- Farooq, A.V.; Shukla, D. Herpes simplex epithelial and stromal keratitis: An epidemiologic update. Surv. Ophthalmol. 2012, 57, 448–462. [Google Scholar] [CrossRef]
- Missotten, L. Immunology and herpetic keratitis. Eye 1994, 8, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, R.; Xu, C.; Zhou, H. Pathogenesis of herpes stromal keratitis: Immune inflammatory response mediated by inflammatory regulators. Front. Immunol. 2020, 11, 766. [Google Scholar] [CrossRef]
- Rajasagi, N.K.; Rouse, B.T. The Role of T Cells in Herpes Stromal Keratitis. Front. Immunol. 2019, 10, 512. [Google Scholar] [CrossRef] [PubMed]
- Fanselow, N.; Sirajuddin, N.; Yin, X.T.; Huang, A.J.W.; Stuart, P.M. Acanthamoeba Keratitis, Pathology, Diagnosis and Treatment. Pathogens 2021, 10, 323. [Google Scholar] [CrossRef] [PubMed]
- Neelam, S.; Niederkorn, J.Y. Pathobiology and Immunobiology of Acanthamoeba Keratitis: Insights from Animal Models. Yale J. Biol. Med. 2017, 90, 261–268. [Google Scholar]
- Ortillés, Á.; Goñi, P.; Rubio, E.; Sierra, M.; Gámez, E.; Fernández, M.T.; Benito, M.; Cristóbal, J.Á.; Calvo, B. A Rabbit Model of Acanthamoeba Keratitis: Use of Infected Soft Contact Lenses After Corneal Epithelium Debridement With a Diamond Burr. Investig. Ophthalmol. Vis. Sci. 2017, 58, 1218–1227. [Google Scholar] [CrossRef]
- de Lacerda, A.G.; Lira, M. Acanthamoeba keratitis: A review of biology, pathophysiology and epidemiology. Ophthalmic Physiol. Opt. 2021, 41, 116–135. [Google Scholar] [CrossRef]
- Cvenkel, B.; Globočnik, M. Conjunctival scrapings and impression cytology in chronic conjunctivitis. Correlation with microbiology. Eur. J. Ophthalmol. 1997, 7, 19–23. [Google Scholar] [CrossRef]
- Livingston, E.T.; Mursalin, M.H.; Callegan, M.C. A Pyrrhic Victory: The PMN Response to Ocular Bacterial Infections. Microorganisms 2019, 7, 537. [Google Scholar] [CrossRef] [PubMed]
- Pippin, M.M.; Le, J.K. Bacterial Conjunctivitis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Azari, A.A.; Barney, N.P. Conjunctivitis: A systematic review of diagnosis and treatment. JAMA 2013, 310, 1721–1730. [Google Scholar] [CrossRef] [PubMed]
- Gallenga, C.E.; Maritati, M.; Mura, M.; Di Virgilio, F.; Conti, P.; Contini, C. Macrophage Activation in Follicular Conjunctivitis during the COVID-19 Pandemic. Microorganisms 2023, 11, 2198. [Google Scholar] [CrossRef]
- Bannier-Hélaouët, M.; Korving, J.; Ma, Z.; Begthel, H.; Giladi, A.; Lamers, M.M.; van de Wetering, W.J.; Yawata, N.; Yawata, M.; LaPointe, V.L.S.; et al. Human conjunctiva organoids to study ocular surface homeostasis and disease. Cell Stem Cell 2024, 31, 227–243.e212. [Google Scholar] [CrossRef] [PubMed]
- Kernt, M.; Kampik, A. Endophthalmitis: Pathogenesis, clinical presentation, management, and perspectives. Clin. Ophthalmol. 2010, 4, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Sheu, S.-J. Endophthalmitis. kjo 2017, 31, 283–289. [Google Scholar] [CrossRef]
- Rao, N.A.; Hidayat, A.A. Endogenous mycotic endophthalmitis: Variations in clinical and histopathologic changes in candidiasis compared with aspergillosis. Am. J. Ophthalmol. 2001, 132, 244–251. [Google Scholar] [CrossRef]
- Soon, M.Y.; Allen, P.J.; Dawkins, R.C.H. Cytokine Expression in Staphylococcal and Streptococcal Endophthalmitis. Biomed. Hub. 2022, 7, 88–98. [Google Scholar] [CrossRef]
- Mahaling, B.; Pandala, N.; Wang, H.-C.; Lavik, E.B. Azithromycin protects retinal glia against oxidative stress-induced morphological changes, inflammation, and cell death. ACS Bio Med. Chem. Au 2022, 2, 499–508. [Google Scholar] [CrossRef]
- Peyman, G.A.; Herbst, R. Bacterial endophthalmitis: Treatment with intraocular injection of gentamicin and dexamethasone. Arch. Ophthalmol. 1974, 91, 416–418. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Wang, Y.; Jian, J.; Song, S. Self-aggregated nanoparticles based on amphiphilic poly (lactic acid)-grafted-chitosan copolymer for ocular delivery of amphotericin B. Int. J. Nanomed. 2013, 3715–3728. [Google Scholar]
- Mahaling, B.; Srinivasarao, D.A.; Raghu, G.; Kasam, R.K.; Reddy, G.B.; Katti, D.S. A non-invasive nanoparticle mediated delivery of triamcinolone acetonide ameliorates diabetic retinopathy in rats. Nanoscale 2018, 10, 16485–16498. [Google Scholar] [CrossRef] [PubMed]
- Mahaling, B.; Low, S.W.; Ch, S.; Addi, U.R.; Ahmad, B.; Connor, T.B.; Mohan, R.R.; Biswas, S.; Chaurasia, S.S. Next-Generation Nanomedicine Approaches for the Management of Retinal Diseases. Pharmaceutics 2023, 15, 2005. [Google Scholar] [CrossRef]
- Lappin, M.; Wotman, K.; Chow, L.; Williams, M.; Hawley, J.; Dow, S. Nanoparticle ocular immunotherapy for herpesvirus surface eye infections evaluated in cat infection model. PLoS ONE 2023, 18, e0279462. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Rudramurthy, S.M.; Gupta, A.; Choudhary, H.; Singh, S.; Thakur, A.; Jatana, M. Evaluation of liposomal and conventional amphotericin B in experimental fungal keratitis rabbit model. Transl. Vis. Sci. Technol. 2019, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, V.; Kumar, M.; Pathak, K. Defining the properties of pH-sensitive polymeric micellar ocular delivery system of miconazole nitrate for the management of fungal endophthalmitis. Pharm. Nanotechnol. 2014, 2, 157–166. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Abdelgawad, M.A.; Alaaeldin, R.; Fathalla, Z.; Moharram, H.; Abdallah, R.M.A.; Abdel-Rahman, I.M.; Abdel-Aziz, M.; Abuo-Rahma, G.E.A.; Ghoneim, M.M.; et al. Solulan C24- and Bile Salts-Modified Niosomes for New Ciprofloxacin Mannich Base for Combatting Pseudomonas-Infected Corneal Ulcer in Rabbits. Pharmaceuticals 2021, 15, 44. [Google Scholar] [CrossRef]
- Khalil, R.M.; Abdelbary, G.A.; Basha, M.; Awad, G.E.; El-Hashemy, H.A. Enhancement of lomefloxacin Hcl ocular efficacy via niosomal encapsulation: In vitro characterization and in vivo evaluation. J. Liposome Res. 2017, 27, 312–323. [Google Scholar] [CrossRef]
- Abdelbary, G.; El-Gendy, N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS Pharmscitech 2008, 9, 740–747. [Google Scholar] [CrossRef]
- LaGrow, A.L.; Coburn, P.S.; Miller, F.C.; Land, C.; Parkunan, S.M.; Luk, B.T.; Gao, W.; Zhang, L.; Callegan, M.C. A novel biomimetic nanosponge protects the retina from the Enterococcus faecalis cytolysin. Msphere 2017, 2, 10–1128. [Google Scholar] [CrossRef]
- Niu, P.; Wu, Y.; Zeng, F.; Zhang, S.; Liu, S.; Gao, H. Development of nanodrug-based eye drops with good penetration properties and ROS responsiveness for controllable release to treat fungal keratitis. NPG Asia Mater. 2023, 15, 31. [Google Scholar] [CrossRef]
- Dandagi, P.; Kerur, S.; Mastiholimath, V.; Gadad, A.; Kulkarni, A. Polymeric ocular nanosuspension for controlled release of acyclovir: In vitro release and ocular distribution. Iran. J. Pharm. Res. 2009, 8, 79–86. [Google Scholar]
- Prajapati, B.G.; Patel, A.G.; Paliwal, H. Fabrication of nanoemulsion-based in situ gel using moxifloxacin hydrochloride as model drug for the treatment of conjunctivitis. Food Hydrocoll. Health 2021, 1, 100045. [Google Scholar] [CrossRef]
- Youssef, A.A.A.; Thakkar, R.; Senapati, S.; Joshi, P.H.; Dudhipala, N.; Majumdar, S. Design of Topical Moxifloxacin Mucoadhesive Nanoemulsion for the Management of Ocular Bacterial Infections. Pharmaceutics 2022, 14, 1246. [Google Scholar] [CrossRef]
- Nasr, M.; Teiama, M.; Ismail, A.; Ebada, A.; Saber, S. In vitro and in vivo evaluation of cubosomal nanoparticles as an ocular delivery system for fluconazole in treatment of keratomycosis. Drug Deliv. Transl. Res. 2020, 10, 1841–1852. [Google Scholar] [CrossRef]
- Alharbi, W.S.; Hosny, K.M. Development and optimization of ocular in situ gels loaded with ciprofloxacin cubic liquid crystalline nanoparticles. J. Drug Deliv. Sci. Technol. 2020, 57, 101710. [Google Scholar] [CrossRef]
- Hosny, K.M.; Rizg, W.Y.; Alkhalidi, H.M.; Abualsunun, W.A.; Bakhaidar, R.B.; Almehmady, A.M.; Alghaith, A.F.; Alshehri, S.; El Sisi, A.M. Nanocubosomal based in situ gel loaded with natamycin for ocular fungal diseases: Development, optimization, in-vitro, and in-vivo assessment. Drug Deliv. 2021, 28, 1836–1848. [Google Scholar] [CrossRef]
- Mahaling, B.; Roy, C.; Ghosh, S. Silk–gelatin hybrid hydrogel: A potential carrier for RNA therapeutics. J. Mater. Chem. B 2024. [CrossRef]
- Hu, J.; Zhou, X.; Chen, S.; Yin, D.; Yang, Y.; Chen, M.; Gui, C.; Cai, Y.; Hong, J.; Cheng, Y. A supramolecular gel with unique rheological properties for treating corneal virus infection. Nano Today 2023, 50, 101841. [Google Scholar] [CrossRef]
- Gebreel, R.M.; Edris, N.A.; Elmofty, H.M.; Tadros, M.I.; El-Nabarawi, M.A.; Hassan, D.H. Development and Characterization of PLGA Nanoparticle-Laden Hydrogels for Sustained Ocular Delivery of Norfloxacin in the Treatment of Pseudomonas Keratitis: An Experimental Study. Drug Des. Dev. Ther. 2021, 15, 399–418. [Google Scholar] [CrossRef] [PubMed]
- Varela-Garcia, A.; Gomez-Amoza, J.L.; Concheiro, A.; Alvarez-Lorenzo, C. Imprinted Contact Lenses for Ocular Administration of Antiviral Drugs. Polymers 2020, 12, 2026. [Google Scholar] [CrossRef]
- Roy, G.; Galigama, R.D.; Thorat, V.S.; Mallela, L.S.; Roy, S.; Garg, P.; Venuganti, V.V.K. Amphotericin B containing microneedle ocular patch for effective treatment of fungal keratitis. Int. J. Pharm. 2019, 572, 118808. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, K.; Kang, H.; Lee, Y.; Lee, J.; Kim, J.H.; Song, H.B.; Ryu, W. Single Administration of a Biodegradable, Separable Microneedle Can Substitute for Repeated Application of Eyedrops in the Treatment of Infectious Keratitis. Adv. Healthc. Mater. 2021, 10, 2002287. [Google Scholar] [CrossRef]
- Jiang, X.; Jin, Y.; Zeng, Y.; Shi, P.; Li, W. Self-Implantable Core–Shell Microneedle Patch for Long-Acting Treatment of Keratitis via Programmed Drug Release. Small 2024, 20, 2310461. [Google Scholar] [CrossRef]
- Polat, H.K.; Bozdağ Pehlivan, S.; Özkul, C.; Çalamak, S.; Öztürk, N.; Aytekin, E.; Fırat, A.; Ulubayram, K.; Kocabeyoğlu, S.; İrkeç, M.; et al. Development of besifloxacin HCl loaded nanofibrous ocular inserts for the treatment of bacterial keratitis: In vitro, ex vivo and in vivo evaluation. Int. J. Pharm. 2020, 585, 119552. [Google Scholar] [CrossRef]
- Kim, D.J.; Jung, M.-Y.; Park, J.-H.; Pak, H.-J.; Kim, M.; Chuck, R.S.; Park, C.Y. Moxifloxacin releasing intraocular implant based on a cross-linked hyaluronic acid membrane. Sci. Rep. 2021, 11, 24115. [Google Scholar] [CrossRef]
- Sharma, A.; Taniguchi, J. Review: Emerging strategies for antimicrobial drug delivery to the ocular surface: Implications for infectious keratitis. Ocul. Surf. 2017, 15, 670–679. [Google Scholar] [CrossRef]
- Bachu, R.D.; Chowdhury, P.; Al-Saedi, Z.H.; Karla, P.K.; Boddu, S.H. Ocular drug delivery barriers—Role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics 2018, 10, 28. [Google Scholar] [CrossRef]
- Luo, L.-J.; Lin, T.-Y.; Yao, C.-H.; Kuo, P.-Y.; Matsusaki, M.; Harroun, S.G.; Huang, C.-C.; Lai, J.-Y. Dual-functional gelatin-capped silver nanoparticles for antibacterial and antiangiogenic treatment of bacterial keratitis. J. Colloid. Interface Sci. 2019, 536, 112–126. [Google Scholar] [CrossRef]
- Gaikwad, S.; Ingle, A.; Gade, A.; Rai, M.; Falanga, A.; Incoronato, N.; Russo, L.; Galdiero, S.; Galdiero, M. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int. J. Nanomed. 2013, 8, 4303–4314. [Google Scholar] [CrossRef]
- Elkadery, A.A.S.; Elsherif, E.A.; Ezz Eldin, H.M.; Fahmy, I.A.F.; Mohammad, O.S. Efficient therapeutic effect of Nigella sativa aqueous extract and chitosan nanoparticles against experimentally induced Acanthamoeba keratitis. Parasitol. Res. 2019, 118, 2443–2454. [Google Scholar] [CrossRef]
- Frucht-Perry, J.; Assil, K.K.; Ziegler, E.; Douglas, H.; Brown, S.I.; Schanzlin, D.J.; Weinreb, R.N. Fibrin-enmeshed tobramycin liposomes: Single application topical therapy of Pseudomonas keratitis. Cornea 1992, 11, 393–397. [Google Scholar] [CrossRef]
- Zorzi, G.K.; Schuh, R.S.; Maschio, V.J.; Brazil, N.T.; Rott, M.B.; Teixeira, H.F. Box Behnken design of siRNA-loaded liposomes for the treatment of a murine model of ocular keratitis caused by Acanthamoeba. Colloids Surf. B Biointerfaces 2019, 173, 725–732. [Google Scholar] [CrossRef]
- Ch, S.; Padaga, S.G.; Ghosh, B.; Roy, S.; Biswas, S. Chitosan-poly(lactide-co-glycolide)/poloxamer mixed micelles as a mucoadhesive thermo-responsive moxifloxacin eye drop to improve treatment efficacy in bacterial keratitis. Carbohydr. Polym. 2023, 312, 120822. [Google Scholar] [CrossRef]
- Varela-Garcia, A.; Concheiro, A.; Alvarez-Lorenzo, C. Soluplus micelles for acyclovir ocular delivery: Formulation and cornea and sclera permeability. Int. J. Pharm. 2018, 552, 39–47. [Google Scholar] [CrossRef]
- Jaiswal, M.; Kumar, M.; Pathak, K. Zero order delivery of itraconazole via polymeric micelles incorporated in situ ocular gel for the management of fungal keratitis. Colloids Surf. B: Biointerfaces 2015, 130, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Rinaldi, M. In vitro antifungal activity of nikkomycin Z in combination with fluconazole or itraconazole. Antimicrob. Agents Chemother. 1999, 43, 1401–1405. [Google Scholar] [CrossRef] [PubMed]
- El-Mofty, H.M.; El-Nabarawi, M.A.; Abd El Rehem, R.T.; Teaima, M.H.; Abary, M.Y.S.; Salah, M.; Lotfy, N.M. Niosomes: Do They Increase the Potency of Topical Natamycin Ketorolac Formula in Treating Aspergillus Keratitis? An Experimental Study. J. Ocul. Pharmacol. Ther. 2020, 36, 545–554. [Google Scholar] [CrossRef]
- El-Nabarawi, M.A.; Abd El Rehem, R.T.; Teaima, M.; Abary, M.; El-Mofty, H.M.; Khafagy, M.M.; Lotfy, N.M.; Salah, M. Natamycin niosomes as a promising ocular nanosized delivery system with ketorolac tromethamine for dual effects for treatment of candida rabbit keratitis; in vitro/in vivo and histopathological studies. Drug Dev. Ind. Pharm. 2019, 45, 922–936. [Google Scholar] [CrossRef]
- Iqbal, K.; Abdalla, S.A.O.; Anwar, A.; Iqbal, K.M.; Shah, M.R.; Anwar, A.; Siddiqui, R.; Khan, N.A. Isoniazid conjugated magnetic nanoparticles loaded with Amphotericin B as a potent Antiamoebic agent against Acanthamoeba castellanii. Antibiotics 2020, 9, 276. [Google Scholar] [CrossRef] [PubMed]
- Peter, S.; Mathews, M.M.; Saju, F.; Paul, S. Development, Optimization and In Vitro Characterization of Eudragit-Ganciclovir Nanosuspension or Treating Herpes Simplex Keratitis. J. Pharm. Innov. 2023, 18, 1328–1337. [Google Scholar] [CrossRef]
- Matthews, T.; Boehme, R. Antiviral activity and mechanism of action of ganciclovir. Rev. Infect. Dis. 1988, 10 (Suppl. 3), S490–S494. [Google Scholar] [CrossRef] [PubMed]
- Kaul, S.; Nagaich, U.; Verma, N. Preclinical assessment of nanostructured liquid crystalline particles for the management of bacterial keratitis: In vivo and pharmacokinetics study. Drug Deliv. Transl. Res. 2022, 12, 1719–1737. [Google Scholar] [CrossRef] [PubMed]
- Saravolatz, L.D.; Johnson, L.B.; Kauffman, C.A. Voriconazole: A New Triazole Antifungal Agent. Clin. Infect. Dis. 2003, 36, 630–637. [Google Scholar] [CrossRef]
- Silva, L.D.; Arrúa, E.C.; Pereira, D.A.; Fraga, C.M.; Costa, T.L.d.; Hemphill, A.; Salomon, C.J.; Vinaud, M.C. Elucidating the influence of praziquantel nanosuspensions on the in vivo metabolism of Taenia crassiceps cysticerci. Acta Trop. 2016, 161, 100–105. [Google Scholar] [CrossRef]
- Youssef, A.A.A.; Cai, C.; Dudhipala, N.; Majumdar, S. Design of Topical Ocular Ciprofloxacin Nanoemulsion for the Management of Bacterial Keratitis. Pharmaceuticals 2021, 14, 210. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liang, Z.; Lu, P.; Song, F.; Zhang, Z.; Zhou, T.; Li, J.; Zhang, J. Development of a Luliconazole Nanoemulsion as a Prospective Ophthalmic Delivery System for the Treatment of Fungal Keratitis: In Vitro and In Vivo Evaluation. Pharmaceutics 2022, 14, 2052. [Google Scholar] [CrossRef]
- Prajapat, V.M.; Aalhate, M.; Sriram, A.; Mahajan, S.; Maji, I.; Gupta, U.; Kumari, D.; Singh, K.; Kalia, N.P.; Dua, K.; et al. Amphotericin B loaded nanoemulsion: Optimization, characterization and in-vitro activity against L. donovani promastigotes. Parasitol. Int. 2024, 100, 102848. [Google Scholar] [CrossRef]
- Nasr, M.; Saber, S.; Bazeed, A.Y.; Ramadan, H.A.; Ebada, A.; Ciorba, A.L.; Cavalu, S.; Elagamy, H.I. Advantages of Cubosomal Formulation for Gatifloxacin Delivery in the Treatment of Bacterial Keratitis: In Vitro and In Vivo Approach Using Clinical Isolate of Methicillin-Resistant Staphylococcus aureus. Materials 2022, 15, 3374. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, S.M.; Deshpande, P.; Gallagher, A.G.; Horsburgh, M.J.; Allison, H.E.; Kaye, S.B.; Wellings, D.A.; Williams, R.L. Amoebicidal Activity of Poly-Epsilon-Lysine Functionalized Hydrogels. Investig. Ophthalmol. Vis. Sci. 2022, 63, 11. [Google Scholar] [CrossRef]
- Hussain, A.; Majumdar, A.; Malviya, N.; Dhere, M. Formulation and Evaluation of Ophthalmic Novel In-Situ Gel Containing Acyclovir for the Treatment of Herpes Simplex Keratitis. Res. J. Pharm. Technol. 2022, 15, 3747–3750. [Google Scholar] [CrossRef]
- Abbas, M.N.; Khan, S.A.; Sadozai, S.K.; Khalil, I.A.; Anter, A.; Fouly, M.E.; Osman, A.H.; Kazi, M. Nanoparticles loaded thermoresponsive in situ gel for ocular antibiotic delivery against bacterial keratitis. Polymers 2022, 14, 1135. [Google Scholar] [CrossRef] [PubMed]
- Okur, N.Ü.; Yozgatlı, V.; Okur, M.E.; Yoltaş, A.; Siafaka, P.I. Improving therapeutic efficacy of voriconazole against fungal keratitis: Thermo-sensitive in situ gels as ophthalmic drug carriers. J. Drug Deliv. Sci. Technol. 2019, 49, 323–333. [Google Scholar] [CrossRef]
- Büchele, M.L.C.; Filippin-Monteiro, F.B.; de Lima, B.; Camargo, C.d.J.; Restrepo, J.A.S.; Souza, L.C.; Creczynski-Pasa, T.B.; Caumo, K.S. Super aggregated amphotericin B with a thermoreversible in situ gelling ophthalmic system for amoebic keratitis treatment. Acta Trop. 2021, 224, 106144. [Google Scholar] [CrossRef]
- Dutta, D.; Vijay, A.K.; Kumar, N.; Willcox, M.D.P. Melimine-Coated Antimicrobial Contact Lenses Reduce Microbial Keratitis in an Animal Model. Investig. Ophthalmol. Vis. Sci. 2016, 57, 5616–5624. [Google Scholar] [CrossRef]
- Huang, J.-F.; Zhong, J.; Chen, G.-P.; Lin, Z.-T.; Deng, Y.; Liu, Y.-L.; Cao, P.-Y.; Wang, B.; Wei, Y.; Wu, T.; et al. A Hydrogel-Based Hybrid Theranostic Contact Lens for Fungal Keratitis. ACS Nano 2016, 10, 6464–6473. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Kuang, L.; Ross, A.E.; Farhat, W.; Boychev, N.; Sharfi, S.; Kanu, L.N.; Liu, L.; Kohane, D.S.; Ciolino, J.B. Topical Sustained Delivery of Miltefosine Via Drug-Eluting Contact Lenses to Treat Acanthamoeba Keratitis. Pharmaceutics 2022, 14, 2750. [Google Scholar] [CrossRef]
- Kong, X.; Jia, Y.; Wang, H.; Li, R.; Li, C.; Cheng, S.; Chen, T.; Mai, Y.; Nie, Y.; Deng, Y. Effective Treatment of Haemophilus influenzae-Induced Bacterial Conjunctivitis by a Bioadhesive Nanoparticle Reticulate Structure. ACS Appl. Mater. Interfaces 2023, 15, 22892–22902. [Google Scholar] [CrossRef]
- Sipos, B.; Budai-Szűcs, M.; Kókai, D.; Orosz, L.; Burián, K.; Csorba, A.; Nagy, Z.Z.; Balogh, G.T.; Csóka, I.; Katona, G. Erythromycin-loaded polymeric micelles: In situ gel development, in vitro and ex vivo ocular investigations. Eur. J. Pharm. Biopharm. 2022, 180, 81–90. [Google Scholar] [CrossRef]
- Hosoya, K.; Lee, V.H.; Kim, K.J. Roles of the conjunctiva in ocular drug delivery: A review of conjunctival transport mechanisms and their regulation. Eur. J. Pharm. Biopharm. 2005, 60, 227–240. [Google Scholar] [CrossRef] [PubMed]
- De Gaetano, F.; Marino, A.; Marchetta, A.; Bongiorno, C.; Zagami, R.; Cristiano, M.C.; Paolino, D.; Pistarà, V.; Ventura, C.A. Development of Chitosan/Cyclodextrin Nanospheres for Levofloxacin Ocular Delivery. Pharmaceutics 2021, 13, 1293. [Google Scholar] [CrossRef] [PubMed]
- Marchegiani, A.; Magagnini, M.; Cerquetella, M.; Troiano, P.; Franchini, I.; Franchini, A.; Scapagnini, G.; Spaterna, A. Preoperative topical liposomal ozone dispersion to reduce bacterial colonization in conjunctival sac and periocular skin: Preliminary study in dogs. Exp. Eye Res. 2019, 189, 107848. [Google Scholar] [CrossRef] [PubMed]
- Grandi, G.; Cavallo, R.; Zanotto, E.; Cipriani, R.; Panico, C.; Protti, R.; Scapagnini, G.; Davinelli, S.; Costagliola, C. In vitro antimicrobial activity of ozonated oil in liposome eyedrop against multidrug-resistant bacteria. Open Med. 2022; 17, 1057–1063. [Google Scholar] [CrossRef]
- Calabretta, M.K.; Kumar, A.; McDermott, A.M.; Cai, C. Antibacterial activities of poly(amidoamine) dendrimers terminated with amino and poly(ethylene glycol) groups. Biomacromolecules 2007, 8, 1807–1811. [Google Scholar] [CrossRef] [PubMed]
- Bhalerao, H.; Koteshwara, K.; Chandran, S. Levofloxacin hemihydrate in situ gelling ophthalmic solution: Formulation optimization and in vitro and in vivo evaluation. AAPS PharmSciTech 2019, 20, 1–12. [Google Scholar] [CrossRef]
- Radhika, M.; Mithal, K.; Bawdekar, A.; Dave, V.; Jindal, A.; Relhan, N.; Albini, T.; Pathengay, A.; Flynn, H.W. Pharmacokinetics of intravitreal antibiotics in endophthalmitis. J. Ophthalmic Inflamm. Infect. 2014, 4, 22. [Google Scholar] [CrossRef]
- Jounaki, K.; Makhmalzadeh, B.S.; Feghhi, M.; Heidarian, A. Topical ocular delivery of vancomycin loaded cationic lipid nanocarriers as a promising and non-invasive alternative approach to intravitreal injection for enhanced bacterial endophthalmitis management. Eur. J. Pharm. Sci. 2021, 167, 105991. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.R.; Peyman, G.A.; Khoobehi, B. Efficacy of liposome-bound amphotericin B for the treatment of experimental fungal endophthalmitis in rabbits. Investig. Ophthalmol. Vis. Sci. 1989, 30, 1527–1534. [Google Scholar]
- Gupta, S.K.; Dhingra, N.; Velpandian, T.; Jaiswal, J. Efficacy of fluconazole and liposome entrapped fluconazole for C. albicans induced experimental mycotic endophthalmitis in rabbit eyes. Acta Ophthalmol. Scand. 2000, 78, 448–450. [Google Scholar] [CrossRef]
- Gupta, S.K.; Velpandian, T.; Dhingra, N.; Jaiswal, J. Intravitreal Pharmacokinetics of Plain and Liposome-Entrapped Fluconazole in Rabbit Eyes. J. Ocul. Pharmacol. Ther. 2000, 16, 511–518. [Google Scholar] [CrossRef]
- Velpandian, T.; Narayanan, K.; Nag, T.C.; Ravi, A.K.; Gupta, S.K. Retinal toxicity of intravitreally injected plain and liposome formulation of fluconazole in rabbit eye. Indian J. Ophthalmol. 2006, 54, 237–240. [Google Scholar] [CrossRef]
- Durairaj, C.; Kadam, R.S.; Chandler, J.W.; Hutcherson, S.L.; Kompella, U.B. Nanosized dendritic polyguanidilyated translocators for enhanced solubility, permeability, and delivery of gatifloxacin. Investig. Ophthalmol. Vis. Sci. 2010, 51, 5804–5816. [Google Scholar] [CrossRef] [PubMed]
- Eram, F. In-vivo Evaluation and Characterization of Novel In-Situ Gelling System as Controlled Delivery System Containing Ciprofloxacin for Ocular Drug Delivery. J. Drug Deliv. Ther. 2020, 10, 32–39. [Google Scholar] [CrossRef]
- Tsuchiya, Y.; Kobayakawa, S.; Tsuji, A.; Tochikubo, T. Preventive effect against post-cataract endophthalmitis: Drug delivery intraocular lens versus intracameral antibiotics. Curr. Eye Res. 2008, 33, 868–875. [Google Scholar] [CrossRef] [PubMed]
- Narayana, S.; Ahmed, M.G.; Gowda, B.H.J.; Shetty, P.K.; Nasrine, A.; Thriveni, M.; Noushida, N.; Sanjana, A. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: A comprehensive review. Future J. Pharm. Sci. 2021, 7, 186. [Google Scholar] [CrossRef]
- Tang, B.; Wang, Q.; Zhang, G.; Zhang, A.; Zhu, L.; Zhao, R.; Gu, H.; Meng, J.; Zhang, J.; Fang, G. OCTN2- and ATB0,+-targeted nanoemulsions for improving ocular drug delivery. J. Nanobiotechnol. 2024, 22, 130. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Cai, L.; Li, C. Characterization and targeting ability evaluation of cell-penetrating peptide LyP-1 modified alginate-based nanoparticles. RSC Adv. 2020, 10, 32443–32449. [Google Scholar] [CrossRef] [PubMed]
- Amit, C.; Muralikumar, S.; Janaki, S.; Lakshmipathy, M.; Therese, K.L.; Umashankar, V.; Padmanabhan, P.; Narayanan, J. Designing and enhancing the antifungal activity of corneal specific cell penetrating peptide using gelatin hydrogel delivery system. Int. J. Nanomed. 2019, 14, 605–622. [Google Scholar] [CrossRef]
- Chahud, F.; Ramalho, L.N.; Ramalho, F.S.; Haddad, A.; Roque-Barreira, M.C. The lectin KM+ induces corneal epithelial wound healing in rabbits. Int. J. Exp. Pathol. 2009, 90, 166–173. [Google Scholar] [CrossRef]
- García-Posadas, L.; Contreras-Ruiz, L.; López-García, A.; Villarón Álvarez, S.; Maldonado, M.J.; Diebold, Y. Hyaluronan receptors in the human ocular surface: A descriptive and comparative study of RHAMM and CD44 in tissues, cell lines and freshly collected samples. Histochem. Cell Biol. 2012, 137, 165–176. [Google Scholar] [CrossRef]
- Kompella, U.B.; Sundaram, S.; Raghava, S.; Escobar, E.R. Luteinizing hormone-releasing hormone agonist and transferrin functionalizations enhance nanoparticle delivery in a novel bovine ex vivo eye model. Mol. Vis. 2006, 12, 1185–1198. [Google Scholar] [PubMed]
- Qaddoumi, M.; Lee, V.H.L. Lectins as Endocytic Ligands: An Assessment of Lectin Binding and Uptake to Rabbit Conjunctival Epithelial Cells. Pharm. Res. 2004, 21, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Miller, F.C.; Coburn, P.S.; Huzzatul, M.M.; LaGrow, A.L.; Livingston, E.; Callegan, M.C. Targets of immunomodulation in bacterial endophthalmitis. Prog. Retin. Eye Res. 2019, 73, 100763. [Google Scholar] [CrossRef]
- Bertino Jr, J.S. Impact of antibiotic resistance in the management of ocular infections: The role of current and future antibiotics. Clin. Ophthalmol. 2009, 3, 507–521. [Google Scholar] [CrossRef] [PubMed]
- Scotty, N.C.; Brooks, D.E.; Rose, C.D.S. In vitro efficacy of an ophthalmic drug combination against corneal pathogens of horses. Am. J. Vet. Res. 2008, 69, 101–107. [Google Scholar] [CrossRef]
- Cai, J.; Yang, C.; Wei, Q.; Lian, H.; An, L.; Zhang, R. Natamycin versus natamycin combined with voriconazole in the treatment of fungal keratitis. Pak. J. Med. Sci. 2023, 39, 775. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Chang, Y.-F.; Ko, Y.-C.; Liu, C.J.-l. Development of a dual delivery of levofloxacin and prednisolone acetate via PLGA nanoparticles/thermosensitive chitosan-based hydrogel for postoperative management: An in-vitro and ex-vivo study. Int. J. Biol. Macromol. 2021, 180, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Topete, A.; Serro, A.P.; Saramago, B. Dual drug delivery from intraocular lens material for prophylaxis of endophthalmitis in cataract surgery. Int. J. Pharm. 2019, 558, 43–52. [Google Scholar] [CrossRef]
- Topete, A.; Tang, J.; Ding, X.; Filipe, H.P.; Saraiva, J.A.; Serro, A.P.; Lin, Q.; Saramago, B. Dual drug delivery from hydrophobic and hydrophilic intraocular lenses: In-vitro and in-vivo studies. J. Control. Release 2020, 326, 245–255. [Google Scholar] [CrossRef]
- Yu, A.; Hu, Y.; Ma, X.; Mo, L.; Pan, M.; Bi, X.; Wu, Y.; Wang, J.; Li, X. Sequential drug release of co-assembled supramolecular hydrogel as synergistic therapy against Staphylococcus aureus endophthalmitis. Chem. Eng. J. 2022, 427, 130979. [Google Scholar] [CrossRef]
- Shih, M.-H.; Huang, F.-C. Effects of Photodynamic Therapy on Rapidly Growing Nontuberculous Mycobacteria Keratitis. Investig. Ophthalmol. Vis. Sci. 2011, 52, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.D.; Arboleda, A.; Naranjo, A.; Aguilar, M.C.; Durkee, H.; Monsalve, P.; Dubovy, S.R.; Donaldson, K.E.; Miller, D.; Amescua, G.; et al. Long-term outcomes of riboflavin photodynamic antimicrobial therapy as a treatment for infectious keratitis. Am. J. Ophthalmol. Case Rep. 2019, 15, 100481. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.D.; Lai, J.-Y. Advancing the stimuli response of polymer-based drug delivery systems for ocular disease treatment. Polym. Chem. 2020, 11, 6988–7008. [Google Scholar] [CrossRef]
- Lin, X.; Wu, X.; Chen, X.; Wang, B.; Xu, W. Intellective and stimuli-responsive drug delivery systems in eyes. Int. J. Pharm. 2021, 602, 120591. [Google Scholar] [CrossRef]
- Han, H.; Gao, Y.; Chai, M.; Zhang, X.; Liu, S.; Huang, Y.; Jin, Q.; Grzybowski, A.; Ji, J.; Yao, K. Biofilm microenvironment activated supramolecular nanoparticles for enhanced photodynamic therapy of bacterial keratitis. J. Control. Release 2020, 327, 676–687. [Google Scholar] [CrossRef]
- Kesavan, K.; Kant, S.; Pandit, J.K. Therapeutic effectiveness in the treatment of experimental bacterial keratitis with ion-activated mucoadhesive hydrogel. Ocul. Immunol. Inflamm. 2016, 24, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Tomé, V.; Luaces-Rodríguez, A.; Silva-Rodríguez, J.; Blanco-Dorado, S.; García-Quintanilla, L.; Llovo-Taboada, J.; Blanco-Méndez, J.; García-Otero, X.; Varela-Fernández, R.; Herranz, M.; et al. Ophthalmic Econazole Hydrogels for the Treatment of Fungal Keratitis. J. Pharm. Sci. 2018, 107, 1342–1351. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Xu, H.; Wei, J.; Niu, L.; Zhu, H.; Jiang, C. Bacteria-Targeting Nanoparticles with ROS-Responsive Antibiotic Release to Eradicate Biofilms and Drug-Resistant Bacteria in Endophthalmitis. Int. J. Nanomed. 2024, 19, 2939–2956. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Liang, Z.; Han, L.; Feng, H.; He, S.; Zhang, J. Fabrication of a drug delivery system that enhances antifungal drug corneal penetration. Drug Deliv. 2018, 25, 938–949. [Google Scholar] [CrossRef]
- Alambiaga-Caravaca, A.M.; Calatayud-Pascual, M.A.; Rodilla, V.; Concheiro, A.; López-Castellano, A.; Alvarez-Lorenzo, C. Micelles of Progesterone for Topical Eye Administration: Interspecies and Intertissues Differences in Ex Vivo Ocular Permeability. Pharmaceutics 2020, 12, 702. [Google Scholar] [CrossRef]
- Mahaling, B.; Sinha, N.R.; Sokupa, S.; Addi, U.R.; Mohan, R.R.; Chaurasia, S.S. Mustard gas exposure instigates retinal Müller cell gliosis. Exp. Eye Res. 2023, 230, 109461. [Google Scholar] [CrossRef]
- Draize, J.H. Methods for the study of irritation and toxicity of substances applied topically to the skin and the mucous membranes. J. Pharmacol. Exp. Ther. 1944, 82, 377–390. [Google Scholar]
- Mehra, N.K.; Cai, D.; Kuo, L.; Hein, T.; Palakurthi, S. Safety and toxicity of nanomaterials for ocular drug delivery applications. Nanotoxicology 2016, 10, 836–860. [Google Scholar] [CrossRef]
- Barile, F.A. Validating and troubleshooting ocular in vitro toxicology tests. J. Pharmacol. Toxicol. Methods 2010, 61, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Zou, R.; Shi, H.; Yu, S.; Li, X.; Guo, R.; Yan, L.; Li, G.; Liu, Y.; Dai, L. Ocular biocompatibility evaluation of hydroxyl-functionalized graphene. Mater. Sci. Eng. C 2015, 50, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Lim, R.R.; Mahaling, B.; Tan, A.; Mehta, M.; Kaur, C.; Hunziker, W.; Kim, J.E.; Barathi, V.A.; Ghosh, A.; Chaurasia, S.S. ITF2357 regulates NF-κB signaling pathway to protect barrier integrity in retinal pigment epithelial cells. FASEB J. 2024, 38, e23512. [Google Scholar] [CrossRef]
- Mahaling, B.; Verma, M.; Mishra, G.; Chaudhuri, S.; Dutta, D.; Sivakumar, S. Fate of GdF3 nanoparticles-loaded PEGylated carbon capsules inside mice model: A step toward clinical application. Nanotoxicology 2020, 14, 577–594. [Google Scholar] [CrossRef] [PubMed]
- Alenius, H.; Catalán, J.; Lindberg, H.; Norppa, H.; Palomäki, J.; Savolainen, K. Chapter 3—Nanomaterials and Human Health. In Handbook of Nanosafety; Vogel, U., Savolainen, K., Wu, Q., van Tongeren, M., Brouwer, D., Berges, M., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 59–133. [Google Scholar]
- Patil, A.; Lakhani, P.; Majumdar, S. Current perspectives on natamycin in ocular fungal infections. J. Drug Deliv. Sci. Technol. 2017, 41, 206–212. [Google Scholar] [CrossRef]
- Chou, T.Y.; Hong, B.Y. Ganciclovir ophthalmic gel 0.15% for the treatment of acute herpetic keratitis: Background, effectiveness, tolerability, safety, and future applications. Ther. Clin. Risk Manag. 2014, 10, 665–681. [Google Scholar] [CrossRef] [PubMed]
- Novack, G.D. Eyes on new product development. J. Ocul. Pharmacol. Ther. 2013, 29, 785. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Keam, S.J.; Shirley, M.; Syed, Y.Y. Loteprednol Etabonate (Submicron) Ophthalmic Gel 0.38%: A Review in Post-Operative Inflammation and Pain Following Ocular Surgery. Clin. Drug Investig. 2020, 40, 387–394. [Google Scholar] [CrossRef]
- Minigh, J. Fluorometholone. In xPharm: The Comprehensive Pharmacology Reference; Enna, S.J., Bylund, D.B., Eds.; Elsevier: New York, NY, USA, 2007; pp. 1–4. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahaling, B.; Baruah, N.; Dinabandhu, A. Drug Delivery Systems for Infectious Eye Diseases: Advancements and Prospects. J. Nanotheranostics 2024, 5, 133-166. https://doi.org/10.3390/jnt5040010
Mahaling B, Baruah N, Dinabandhu A. Drug Delivery Systems for Infectious Eye Diseases: Advancements and Prospects. Journal of Nanotheranostics. 2024; 5(4):133-166. https://doi.org/10.3390/jnt5040010
Chicago/Turabian StyleMahaling, Binapani, Namrata Baruah, and Aumreetam Dinabandhu. 2024. "Drug Delivery Systems for Infectious Eye Diseases: Advancements and Prospects" Journal of Nanotheranostics 5, no. 4: 133-166. https://doi.org/10.3390/jnt5040010
APA StyleMahaling, B., Baruah, N., & Dinabandhu, A. (2024). Drug Delivery Systems for Infectious Eye Diseases: Advancements and Prospects. Journal of Nanotheranostics, 5(4), 133-166. https://doi.org/10.3390/jnt5040010