IR780-Based Nanotheranostics and In Vivo Effects: A Review
Abstract
:1. Introduction
Identification | |||
---|---|---|---|
IR780 | 2-[2-[2-Chloro-3-[(1,3-dihydro-3,3-dimethyl-1-propyl-2H-indol-2-ylidene)ethylidene]-1-cyclohexen-1-yl]ethenyl]-3,3-dimethyl-1-propylindolium iodide | ||
Empirical Formula | C36H44ClIN2 | ||
CAS number | 207399-07-3 | ||
Molecular weight | 667.11 g/mol | ||
Physicochemical Properties | |||
Property | Solvent | Value | Ref. |
Lop P | n-octanol/water | 4.087 | [12] |
Solubility | Water | <0.4 μg/mL | [9] |
Water | 5 μg/mL | [13] | |
PBS pH 7.4 | 9 μg/mL | [13] | |
PBS with 1% of polysorbate 80 | 101 μg/mL | [14] | |
Maximum absorption wavelength (nm) | Acetone–water (1:1) | 780 nm | [13] |
Acetonitrile | 780 nm | [15,16] | |
Methanol | 780 nm | [17,18] | |
Ethanol | 780 nm | [19,20] | |
PBS | 780 nm | [21] | |
DMSO | 796 nm | [22] | |
Pyridine | 803 nm | [23] | |
Molar absorptivity (105 M−1 cm−1) | Methanol (λmax = 780 nm) | 2.65 | [17] |
3.3 | [18] | ||
Ethanol (λmax = 780 nm) | 2.8 | [19] | |
2.74 | [20] | ||
DMSO (λmax = 796 nm) | 2.48 | [22] | |
Pyridine (λmax = 803 nm) | 2.85 | [23] | |
Maximal emission wavelength (nm) | Acetonitrile | 790 nm | [16] |
Methanol | 805 nm | [17] | |
Methanol | 798 nm | [18] | |
Ethanol | 799 nm | [20] | |
DMSO | 826 nm | [22] | |
Pyridine | 815 nm | [23] | |
Fluorescence quantum yield (Φf) | Acetonitrile | 0.680 | [16] |
DMEM | 0.080 | [16] | |
Encapsulated in PLA nanoparticle/water | 0.483 | [16] | |
Methanol | 0.07 | [18] | |
Ethanol | 0.08 | [20] | |
DMSO | 0.153 | [22] | |
Pyridine | 0.368 | [23] | |
Molecular Brightness (M−1·cm−1) | Ethanol | 20,800 | [20] |
Singlet oxygen quantum yield (Φso)—% | DMSO | 8.1 | [22] |
12.7 | [24] | ||
Photothermal conversion efficiency (η)—% | DMSO | 10.7 | [22] |
Ethanol | 7.6 | [25] |
2. Photophysical Properties of IR780: Advantages and Challenges
3. Development of IR780-Based Nanocarriers
3.1. Lipid-Based Nanocarriers
Lipid-Based Nanocarriers | API Co-Loaded | Targeting Approach/Moiety | Application/ Approach | In Vitro/In Vivo Outcomes | Ref. |
---|---|---|---|---|---|
Liposome | Sunitinib IR780-loaded | No | PDT | Inhibit angiogenesis in vitro in HUVEC in Matrigel and 4T1 tumor in BALB/c mouse model. | [34] |
Nanostructured lipid carrier (NLC) CXCR4 targeted | IR780-loaded | AMD3100 coating (CXCR4 antagonist) | PTT | Photothermal efficiency: IR780 < IR780-NLCs < IR780-AMD-NLCs; stronger fluorescence intensity (2.18-fold) in tumors than free IR780 in Balb/C mice carrying 4T1-luc tumor. | [35] |
N-acetyl glucosamine- modified PEG-coated and 68Ga-labeled liposomes | 68Ga IR780-loaded | N-acetyl glucosamine (NAG)- modified | PDT, PTT, FI, PET/CT, and NIR imaging | Targeted formulations reduced glioblastoma cells (U87 and RG2) viability more effectively with higher intracellular uptake; free IR780 was more cytotoxic than encapsulated formulations; targeted liposomes displayed superior tumor accumulation and targeting in U87 glioblastoma in cd1 nude mice; higher tumor uptake; reduced off-target effects; reduced glioblastoma growth; minimal toxicity to healthy tissues. | [38] |
Hybrid SMEDDS curcumin–phospholipid complex | Curcumin IR780-loaded | No | PTT, PDT, bioavailability | CUR/IR780@SMEDDS by PTT and PDT suppresses lung metastasis; inhibited tumor progression in orthotopic 4T1 tumor-bearing nude mice model of breast cancer upon oral administration; SMEDDS enhanced oral bioavailability of curcumin and IR780 in rats; inhibited migration and invasion in vitro. | [39] |
Targeted solid lipid nanoparticle (SLN) | IR780-loaded | c(RGDyK) | PTT, PDT | Target cell lines overexpressing αvβ3 integrin; reduces U87MG (glioblastoma) cells viability under laser irradiation; PTT of tumor induced by U87MG transplantation was eradicated by applying cRGD-IR-780 SLNs + laser in nude mice bearing xenograft U87 MG tumor. | [40] |
Liposomes | Perfluorooctyl bromide IR780-loaded | IR780-mediated targeting | PAI, FI-guided pre/intraoperative surgery, PTT, computed tomography | improved survival of mice through image-guided tumor resection and PTT in orthotopic breast cancer mouse models; NP-IR780 served as a tumor indicator for precise resection of lesions during surgery as an image guide. | [41] |
Liposomes termed (M1E/AALs) hybridized with exosomes of M1-like macrophage conjugated with AS1411 aptamer | Perfluorotributylamine (PFTBA) IR780-loaded | AS1411 aptamer-conjugated; exosomes of M1-like macrophage | PDT, immunotherapy | Overcomes hypoxic and immunosuppressive TME by targeted TAM reprogramming and enhanced tumor photodynamic immunotherapy; suppresses tumor growth and prolongs the survival of 4T1 tumor-bearing mice. | [42] |
Lipid shells of nanobubbles | Docetaxel IR780-loaded | No | PDT, PTT, NIRF, CEUI | IR780-NBs-DTX targeted pancreatic cancer cells; precisely detected pancreatic xenotransplant (Mia-Paca2) through NIRF imaging and CEUI pancreatic cancer in vivo; tumor almost disappeared 18 days after combined treatment; NIRF signals were detected mainly in the liver, lungs, and kidneys. | [43] |
Perfluorohexane lipid particles with lecithin DSPE-PEG2000 | IR780-loaded | Oxygen self-enriching PDT (Oxy-PDT) | Oxygen self-enriching PDT (Oxy-PDT) | Improved singlet oxygen quantum yield of IR780 and direct injection into tumors inhibited tumor growth in mice; intravenous injection reduces tumor hypoxia and enhances tumor accumulation by passive targeting. | [44] |
Liposomes | Baicalein IR780-loaded | No | PTT, PDT, antifungal | Liposomes exhibit potent anticancer activity in two-dimensional (2D) cell cultures and three-dimensional (3D) tumor spheroids of TNBC cells, inhibiting cancer cell proliferation and migration; exhibited biocompatibility in zebrafish embryos and inhibited fungal growth. | [45] |
IR780/SB-505124-based nanoliposomes | Immunomodulator (TGF-β inhibitor, SB-505124) IR780-loaded | No | PTT immunotherapy | PTT-induced immunogenic cell death and dual mitigation of immunosuppression strategy (TGF-β inhibition/PD-1/PD-L1 blockade); TGF-β pathway is inhibited by SB to drive effector T cells into a responsive state and reduce the infiltration of Treg cells; immunosuppressive “protection” of tumor cells is also neutralized by blocking PD-1/PD-L1 immune checkpoint; selectively accumulate, penetrate deeply in tumor tissues of 4T1 tumor-bearing mice. | [46] |
Nanoliposomes | IR780-loaded chlorophyll-rich fraction of Anthocephalus cadamba (CfAc) | No | PDT | Bioactive phyto fraction-mediated autophagic cancer cell death triggered by NIR light; anti-tumor potential through a combined effect (via heat and CfAc). | [47] |
mPEG 2000-DSPE liposomes loaded with gambogic acid | Gambogic acid (Hsp90 inhibitor) IR780-loaded | No | PTT, PDT, CDT | PTT after 808 nm laser irradiation (2.0 W/cm2) induces 89.7% tumor ablation in xenograft 4T1-bearing mice model; produced ROS proving PDT effect; exhibited tumor accumulation; no systemic toxicity indicated by unaltered histological profiles of major organs. | [48] |
pH-responsive liposome | Metformin IR780-loaded | No | PAI, FI, SDT, PDT | Long blood circulation half-life and a high tumor absorption rate in breast xenograft tumor model, combined with US irradiation, inhibited breast tumors by ROS production; metformin reduced tumor oxygen consumption. | [49] |
Liposomes DSPE-PEG/CHOL/DPPC loading perfluoro pentane | IR780-loaded | IR780 as a mitochondria-targeting moiety | SDT, FI, PAI, US imaging | The generated bubbles enhanced US imaging. In the presence of US, the bubbles increase the acoustic droplet vaporization (ADV) effect and assist the conveyance of IR780-NDs from the circulatory system to tumor regions; the acoustic wave force increases the penetration depth within tumor tissues. | [50] |
Thermosensitive liposomes (CAP-TSL) targeted with peptide | Paclitaxel–albumin (HSA-PTX) IR780-loaded | FAP-α-responsive cleavable amphiphilic peptide (CAP) | PTT, CDT | PTT is effective in a luciferase-labeled orthotopic tumor model (Pan 02-luc cell) in the pancreas of C57BL/6 mice (pancreatic ductal adenocarcinoma); IR780 induces hyperthermia and expands the tumor interstitial space; and it promotes the HSA-PTX release in deep tumors. | [51] |
Nanostructured lipid carrier (NLC) | Erlotinib IR780-loaded | No | NIR imaging | After oral administration, the free IR780 solution exhibited high ROI throughout the body; IR780-loaded NLC has low radiance; ERL suspension distributes better across the body; NLCs avoided first-pass metabolism by adopting the intestinal lymphatic pathway; and oral bioavailability of ERL was enhanced. | [52] |
Thermos-sensitive lipid nanostructures | Tirapazamine IR780-loaded | IR780 as mitochondria targeting | PDT, PTT, PCT, FI, PAI, image guidance | Anti-tumor efficacy under PAI and FL imaging guidance and monitoring; improved anti-tumor effectiveness; fatty acids that undergo a solid–liquid phase transition at 39 °C. | [53] |
Lipid mixed—artificial synaptic vesicles aptamer-functionalized | IR780-loaded | Functionalized 5-Hydroxytryptophan (5-HTP) aptamer | PTT, FI | Improved BBB permeability (RSC-96, bEnd.3 and HUVEC cells); PTT-triggered 5-HTP release; enhanced cerebral drug enrichment; reduced depressive-like behaviors in chronic, unpredictable, moderate stress model mice. | [54] |
RBC membrane-based vesicles | Doxorubicin IR780-loaded | No | PTT | Increased the accumulation into the Dox-resistant prostate cancer cells (PC-3/Dox); enhanced anticancer performance and accumulation in vivo. | [55] |
pH-responsive lipid membrane-enclosed perfluorooctyl bromide oil droplet nanoparticles | Co-delivering oxygen, IR780, and mTHPC-loaded | Surface-modified with N-acetyl histidine-modified D-α-tocopheryl polyethylene glycol 1000 succinate | PDT, PTT, pH sensitivity | After 808 nm laser (1.0 W/cm2) irradiation for 5 min of TRAMP-C1 cells in SC tissue of C57BL/6 mice, NPs induced inhibition of tumor growth, exhibited tumor targeting, and relieved tumor hypoxia. | [56] |
3.2. Polymeric-Based Nanocarriers
Polymeric Nanoparticles | API Co-Loaded | Targeting Approach/Moiety | Application/ Approach | In Vitro/In Vivo Outcomes | Ref. |
---|---|---|---|---|---|
Albumin-loaded nanoparticles | Tanshinone IIA IR780-loaded | No | PDT | Enhanced the antibacterial activity both in vitro and in vivo; enhanced antibacterial activity under near-infrared irradiation in wounds. | [5] |
Human serum albumin nanoparticles | IR780-loaded | No | PDT | HSA-IR780 NPs exhibited tumor inhibition by intratumoral injection CT26 (colon adenocarcinoma) tumor-bearing mice MCF-7 cells. | [9] |
Albumin-coated trimethyl chitosan NPs | Bufalin IR780-loaded | Bufalin | PTT, PDT | TBH NPs inhibited cell proliferation and mitochondrion activity of metastatic 4T1 breast cancer cells; albumin camouflage resulted in tumor accumulation and penetration within tumor mass; potent inhibition of tumor growth with laser irradiation; efficient prevention of lung metastasis. | [10] |
Albumin Nanocarrier | IR 780-loaded | Magnetic core | PDT, PTT | Safety studies (acute oral toxicity, cardiovascular evaluation, and histopathological analysis) demonstrated an increase in tumoral necrosis areas 24 and 72 h after treatment, indicating tumor regression; viability determined in Ehrlich ascites carcinoma cells. | [11] |
PEG-PLA nanocapsules and nanospheres | IR780-loaded | No | PDT | Improved uptake, cell death, and reduced migration in human breast cancer cells (MDA-MB231 and MCF-7) and reduced cytotoxicity in normal breast cells (MCF-10A). | [14] |
Transferrin-protein-based nanoparticles | IR780-loaded | Transferrin | PTT, PDT | Treatment with Tf-IR780 NPs resulted in significant tumor suppression in CT26 tumor-bearing mice, enhanced generation of ROS under laser illumination, and increased tumor-to-background ratio in CT26 tumor-bearing mice. | [32] |
Micelles of synthetic amphiphilic hyaluronic acid derivative (FHSV) micelles | Paclitaxel IR780-loaded | Hyaluronic acid targeting GSH-rich tumors | PTT, PDT | IR780/PTX/FHSV micelles accumulate 1.9-fold in tumor tissues compared to free IR780/PTX; upon NIR illumination showed more substantial tumor suppression, with 1.4-times-higher tumor inhibition than that of the IR780/PTX group in Kunming mice bearing S18 tumor; fast release of PTX and IR780 under GSH-rich tumor microenvironment; produced local hyperthermia and sufficient reactive oxygen species inducing apoptosis and necrosis. | [57] |
PEG-PCL nanospheres with internal SS cross-link | Doxorubicin IR780-loaded | No | PTT, NIR illumination, NIR-imaging | After 21 days, the DOX&IR780@PEG-PCL-SS NPs with NIR irradiation reduce tumor size and inhibit their growth in the orthotopic bladder cancer model in C57BL/6 mice. | [58] |
PEG-PCL paramagnetic nanoparticle | Doxorubicin IR780-loaded Manganese | No | PTT, CDT dual mode imaging-guided | PCL-block-PIEt-Mn could be accumulated effectively at the tumor sites. Upon the NIR laser irradiation, tumor growth was inhibited by PTT-enhanced chemotherapy. | [59] |
Polymersomes of PEG-block-poly(β-amino acrylate)-block-PEG copolymers | Doxorubicin IR780-loaded | No | PDT/PTT | Target-specific drug release through destruction of carrier structure via 1O2-mediated photocleavage of the membrane upon NIR light irradiation; excellent antitumor effect in Balb/c mice bearing 4T1 tumor. | [60] |
P-DOX-(P(FPMA-co-DEA)-block-POEGMA)-conjugated micelles | Doxorubicin IR780-loaded | No | PTT, PDT, CDT | IR780-PDMs show remarkably long blood circulation; intravenous micelles showed high delivery efficiency and exhibited 97.6% tumor growth inhibition in A549 tumor-bearing mice. | [61] |
Platelet membrane-coated PLGA-nanoparticles | Doxorubicin IR780-loaded | No | PTT, PDT | PM-NPs actively targeted 4T1 cells via platelet-mimicking; low uptake by Raw 264.7 cells; circulated longer in the blood; accumulated more at the tumor site; with NIR irradiation, 4T1 tumor eliminated without recurrence in 18 days. | [62] |
Micelles IR780-CSOSA/DOX | Doxorubicin IR780-loaded | No | CDT, PDT, FI | Significant reduction in tumor volume in Balb/C mice carrying MCF-7/4T1/H22 tumors; 85.3% tumor growth inhibition by chemo-photothermal therapy; targeting. | [63] |
DOX-SS-DOX self-assemble nanoparticles stabilized with hydroxyethyl starch-folic acid | Doxorubicin IR780-loaded | Folic acid | PDT TME modulation | FDINs showed high tumor accumulation in SC and orthotopic 4T1 tumor-bearing mice model; modulated the tumor mechanical microenvironment; depleted cancer stem cells; suppressed tumor growth in both tumor models. | [64] |
Polymeric nanoparticles of polydopamine | Camptothecin (CPT) IR780-loaded | No | CDT PTT PDT | CPT-PDA-IR780 exhibited a higher PTT effect on A549 human lung cancer cells and LLC murine lung cancer cells under NIR irradiation; induced apoptosis; increased cytotoxic effect of CPT-PDA-IR780 + NIR for A549 cell 2.5-fold; increased tumor temperatures with NIR irradiation in BALB/c nude mice bearing tumor of A549 cells; exhibited superior tumor a with accumulation and retention of NPs; induced potent tumor growth inhibition. | [65] |
pH-sensitive PLGA NPs coated with zwitterionic diblock copolymers, mPEG-block-poly(methacrylic acid-co-histamine methacrylamide) | IR780-loaded | No | PDT, PTT NIR imaging | mPEG-block-P(MAA-co-HMA acidity-elicited structural transformation of NPs with increased uptake by TRAMP-C1 cells (mouse prostate cancer); prolonged tumor retention time; increase in NIR-elicited hyperthermia by intratumoral injection of IR780-loaded PMHPN in TRAMP-C1 tumor-bearing mice; prolong tumor retention; reduce nanoparticle/drug elimination caused by high interstitial fluid pressure of tumor extracellular matrix. | [66] |
PLGA nanoparticles | IR780-loaded | No | SDT, PDT, PTT | Effectively combat resistant bacterial infections. | [67] |
PLGA nanoparticles | Polyphyllin II (PPII) IR780-loaded | Aptamer AS1411 | CDT, PTT, ICD | Apt/PPII/IR780-NPs significantly improved the Anti-PD-1 efficacy; aptamer AS1411 was modified on the surface of nanoparticles to construct the targeting HCC. | [68] |
Albumin nanoplatform co-delivering | MnO2, NLG919 paclitaxel dimer IR780-loaded | MnO2 | PDT, PTT, CDT | Improved the effect in Female BALB/c mice bearing 4T1 tumor. | [69] |
Human serum albumin-modified multifunctional persistent luminescence nanoplatform | IR780-loaded | Fe3+ Human serum albumin | Photo-enhanced CDT, PDT, and PTT, MRI, PLI, PAI, reduce hypoxia | Inhibit tumor growth in 4T1 tumor model mice; theranostic platform for PLI/PAI/MRI multimodal imaging and efficient CDT/PTT/PDT combination cancer therapy; tumor imaging; exhibits high T1 contrast effect; photo-enhanced Fenton-like activity of Fe3+. | [70] |
Self-assembled albumin nanoparticles (IGM) combined with MnO2 | IR780 and gambogic acid | MnO2 | PTT, PDT | GA inhibits Hsp90 and increases sensitivity to PTT in 4T1 tumor-bearing mice and HUVEC cells; increases temperature and releases O2 to reduce hypoxia; increases the PDT effect and tumor accumulation. | [71] |
PLGA core/shell nanoparticle with hematoporphyrin monomethyl ether core (HMME) | Glucose oxidase IR780 in the shell | Hematoporphyrin monomethyl ether | SDT starvation therapy PAI FL | Accumulation in cancer cells/sites; mitochondrial targeting for synergistic SDT and starvation therapy; improved outcome in treatment (4.7-fold lower tumor growth); excellent PAI/FL imaging contrast agents to simultaneously monitor and guide cancer therapy. | [72] |
PLGA nanospheres | IR780-loaded glucose oxidase | No | PDT, PAI, NIR imaging, PDT, FI, starvation | The therapeutic process is guided/monitored by photoacoustic (PAI) and fluorescence (FL) dual imaging. PTT- and PDT-induced tumor deep penetration guided by IR780 mitochondria targeting. | [73] |
Poly(lactic-co-glycolic acid) nanoparticles | 3-bromopyruvate (oxygen regulator) IR780-loaded | IR780 as a targeting moiety for mitochondria | PDT, PAI, dual mode FI | Alleviate tumor hypoxia by decreasing physiological oxygen consumption in 4T1 tumors Balb/c nude mice; 3BP@PLGA-IR780 interrupted the energy metabolism of tumor cells; increased the internalization 3BP@ PLGA-IR780 in vitro in 3D tumor spheroid models; diffused throughout the tumor spheroid; NPs enriched in tumor tissues. | [74] |
Mesoporous polydopamine nanoparticles | IR780-loaded | No | PDT, PTT, PAI, FI, ICD | Intravenous IR-780@MPDA triggered immunogenic cell death (ICD) in 4T1 breast tumor model and PTT conversion ability; cellular accumulation; 1.6-fold-higher accumulation than free IR-780; significant suppression of tumor growth. | [75] |
Methoxy-PEG-block-poly(2-hexoxy-2-oxo-1,3,2-dioxaphospholane micelles (mPEG-block-PHEP) nanocomposite | Zinc manganese sulfide IR780-loaded | PTT-responsive; thermally sensitive flowable core | PTT, CDT, ICD, TME reprogram, NIR light-triggered release | TME reprogramming; PPIR780-ZMS evokes an immune response and protects male C57BL/6 mice from pulmonary metastasis melanoma model (B16F10); NIR triggered active release and suppressed B16F10 cell invasion and migration in vitro with high ROS production. | [76] |
Micelles of mercaptopropionic acid grafted PEG-block-poly(ε-caprolactone)-block-poly(allyl-glycidyl ether) copolymer | IR780-loaded | No | PTT, PDT, FI | IR-780@TBMPA accumulates in tumor with hyperthermia to kill tumor cells; intratumoral injection in U14 cervical cancer in mice model; mPEG5K-PCL10K-PAGE6 induces hyperthermia and ROS to Hela cell inducing apoptosis and tumor necrosis without relapse. | [77] |
Chitosan nanoparticles | 5-aminolevulinic acid IR780-loaded | No | PTT/PDT | Chitosan NP improved colon cancer management and oral 5-ALA absorption, and local accumulation in SC mouse colon tumors (CT-26 cells) model with no overt adverse effects. | [78] |
Maltodextrin nanoparticles | Cinnamaldehyde IR780-loaded | Oxidative stress inducer through acid-labile acetal linkage | PTT, PDT | IV-administered NPs combined with NIR laser eradicated tumors in mouse xenograft model; hyperthermia- and oxidative stress-inducing. | [79] |
Multifunctional heparin-folic acid-conjugated nanoparticles | IR780-loaded | Folic acid (FA) conjugated with heparin | PDT, PTT, FI | Increased tumor temperature in MCF-7 tumor-bearing nude mice; induced necrosis. | [80] |
Hyaluronic acid conjugated with C18 chain micelles | IR780-loaded | Hyaluronic acid conjugated with micelles targeting CD44 | PDT, PTT | HA-IR780 selectively accumulated in tumors within 24 h and caused photothermal ablation in the tumor region in TC-1 xenografts mice model; exhibited CD44- and EPR-based tumor accumulation; temperature reached 49.9° in CTC-1 cells. | [81] |
Poly-ϵ-caprolactone targeted nanoparticles with bovine albumin as a stabilizer | Paclitaxel IR780-loaded | Peptide-recognizing luteinizing hormone receptors on ovarian cancer cells | PTT, CDT, PDT | PCL-LHRH/IR780-PTX efficiently hinders the growth of drug-resistant xenografts with an 808 nm NIR laser with selective tumor targeting. | [82] |
PEG-PCL nanoparticles | Sorafenib IR780-loaded | Decorated with legumain-activable melittin (LM) | PDT, CDT, FI | LPN improves the oral delivery of water-insoluble sorafenib, which accumulates at the tumor site with deep penetrating capacity. NIR laser irradiation inhibited tumor growth. Oral bioavailability of sorafenib was remarkably increased (75.9-fold), and uptake increased in BGC-823 (gastric cancer cells). | [83] |
iRGD peptide as ligand-mediated polymeric micelles conjugated with disulfide bond prodrug polymer | Camptothecin IR780-loaded | Ligand-iRGD peptide conjugated with PEG | PTT, PDT | CPD@IR780 showed favorable ability to cross the BBB and target glioma cells via αv β integrin and neuropilin-1-mediated ligand transportation in vitro (BEnd3 cell U87 cells) and in vivo; enhanced the antitumor effect with NIR laser irradiation. | [84] |
Polymeric hybrid micelles PCL-PEI/PCL-PEG/lumbrokinase | IR-780-loaded | FXIII peptide conjugated | PAI, MSOT, FM | FXIII-conjugated micelles designed for obstructive thrombosis rapidly target FXIIIa-rich clots after IV administration undergoing thrombogenesis; increased the imaged embolized vessel by MSOT; dredge the vessel; dissolved the fibrin framework of the thrombus in a FeCl3-induced carotid thrombosis model. | [85] |
Lycium barum polysaccharide nanoparticles | Cardamonin IR780-loaded | No | PTT, PDT | CRD-IR780-LBP induces a 1.24-fold increase in tumor suppression compared to NPs containing only CRD in 4T1-bearing mice model; PTT effects upon NIR irradiation increased anti-tumor efficacy. | [86] |
Self-Assembled Nanoparticles | Berberine Hydrochloride IR780-loaded | No | PDT, PP, FI | Accumulation in the tumor of nude mice bearing subcutaneous HepG2 xenograft tumors; 96% reduction in tumor growth; increased tumor temperature; exhibited efficient cellular uptake; induced 3.5-times-higher ROS production after laser irradiation in (HepG2 and Huh7) cell lines; FI confirmed targeting. | [87] |
3.3. Mixed Composition-Based Nanocarriers
Mixed Nanocarriers | API Co-Loaded | Targeting Approach/Moiety | Application/ Approach | In Vitro/In Vivo Outcomes | Ref. |
---|---|---|---|---|---|
Three-dimensional multi-FUS-TSE (Focused Ultrasound Temporal Sequential Excitation) | IR780-loaded | No | FI imaging | Three-dimensional FUS therapy increased 66.4% IR-780 accumulation in tumor of BALB/c mice bearing subcutaneous 4T1 breast cancer xenografts; 2.5-times-greater efficiency in drug delivery compared to the 2D FUS system. | [48] |
Magnetic endogenous functional lipid droplets: IR780@LDs-Fe3O4/OA | Doxorubicin IR780-loaded Fe3O4 magnetic | Magnetic field | SDT, PDT, CDT, Reverse MDR | IR780@LDs-Fe3O4/OA targeting the lysosome and mitochondria to reverse MDR in breast cancer; promoted advancements in SDT; enriched within tumor sites in a static magnetic field; inhibited Pgp efflux; Mediated Cascade-Targeted Sonodynamic Therapy for MDR breast cancer (MCF-7/ADR cells). | [88] |
Magneto-fluorescent nanocarrier with erythrocyte membrane-camouflaged | IR780-loaded manganese ferrite (MnFe2O4) | Erythrocyte membrane-derived camouflage | FI, biodistribution studies | IR-780 accumulates in fat tissues right after the distribution phase and subsequently undergoes a slower elimination during the post-distributive phase; the elimination half-life of free IR780 was 170 h and NPs was 92 h, both distribution half-life was short (~1–2 h); ex vivo 2D-FMT images indicated a preferential accumulation of MMFns within the tumor 72 h after the administration. | [89] |
TPP-conjugated Zn Cu-loaded polymer-lipid hybrid nanoparticles (PLGA/Lecithin/ DSPE-PEG-5000/TPP-PEG) | IR780-loaded Zn-doped Cu | Mitochondria-targeting TPP-PEG triphenylphosphonium | PTT, PDT, FI | NP enhanced efficacy in tumor model in vivo; induced ROS generation upon irradiation; enhanced accumulation in tumor tissue; prolonged circulation in blood; TPP provides lipophilic cationic mitochondria targeting and dysfunction. | [90] |
Targeted nanoparticle with H-40 polymer core coated with red blood cells + WSU-HN6 oral squamous cell hybrid membrane | Tirapazamine IR780-loaded | Asp8–aspartic acid; RBC membrane promotes immune evasion | PTT, PDT, Hypoxia, CDT | Asp8[H40-TPZ/IR780@(RBC-H)] increased 4-fold cytotoxicity against human WSU-HN6, HeLa, RAW 264.7, and HUVEC cells lines; hypoxia + laser irradiation reduced 85% viability; induced homotypic targeting and 2-fold-higher uptake in BALB/c nude mice with WSU-HN6-induced mandibular bone invasion; immune evasion and 90% reduction in macrophage uptake; dual targeting increased 2-fold accumulation; 3-fold reduction in tumor weight; increased tumor temperatures to 57 °C. | [91] |
lncRNA nanoparticles NONHSAT159592.1 | si-lncRNA IR780-loaded | Silencing RNA | PDT | Enhanced effect against U87 and U251 glioblastoma cell lines; silencing lncRNA could significantly inhibit proliferation in orthotopic xenograft nude mice tumor model; prolonged the survival time. | [92] |
Lysolipid-based thermosensitive liposome decorated with cRGD peptide conjugated on the surface of an IR780-loaded microbubble | Doxorubicin IR780-loaded | cRGD peptide | US, PAI, CDT, thermo-responsive, FI, SDT | US-mediated drug release upon laser irradiation enhances DOX efficacy in breast cancer cell MCF-7 xenograft nude mice; a combination of RTSL-IMBs and US shows a 2.8-fold increase in tumor accumulation. | [93] |
PLGA nanoparticles and fused breast cancer cell and bacterial outer membranes in a hybrid membrane | IR780-loaded | Hybrid cell membranes (HMs) | SDT, PDT | NP targeted to 4T1 tumors promoted macrophage type I polarization and DC activation, strengthened anti-tumor inflammatory factors expression, and presented the ability to kill tumors both in vitro and in vivo; reduced breast cancer bone metastasis. | [94] |
Platelet-mimicking nanoparticles | Metformin (Met) IR780-loaded | Platelet mimicking membrane | PDT, Immune activation | Reversed tumor hypoxia; 4T1 tumor bearing BALB/c mice; immunogenic activation; immunosuppressive reversion by mitochondrial-respiration-inhibited platelet-mimicking NPs. | [95] |
Hydrophobin-based nanoparticle | IR780-loaded | Tumor-penetrating peptide tLyP-1 | PTT | Reduced lung and liver metastasis, primary tumor growth, and recurrence; enhanced tumor targeting and photothermal therapeutic efficacy. | [96] |
Iron tetroxide core coated with cetuximab | IR780-loaded | DSPE-PEG-cetuximab | SDT, TME, FI, RMI | Biodistribution of IR780@INPs-CTX using fluorescence image indicates the accumulation in the tumor and a small amount in the liver; MRI displays fast enrichment into the tumor tissue, and after ultrasound irradiation, the complete disappearance of the tumor or a continued decrease in tumor volume. | [97] |
Specific nanoreactor utilizing EGCG and Ce3+ | IR780-loaded EGCG Ce3+ | AS1411 aptamer | PTT, PDT, CDT | Inhibited tumor growth and prolonged the survival of 4 T1 tumor-bearing mice; exhibited prolonged accumulation at the tumor tissues; improved the tumor immunosuppressive microenvironment; activated the systemic immune system, and generated long-term immune memory via the combined effects of ferroptosis and PTT. | [98] |
Oxidation-sensitive nanoparticles of mesoporous silica with CeO2 | IR780 and Metformin loaded | CeO2 as gatekeeper | PDT, oxidation sensitivity, biodistribution | The plasma half-life of NPs was much longer than that of free IR780 in B16F10 (melanoma) tumor-bearing mouse models; two-times-higher accumulation in tumor than free IR780; higher antitumor and antimetastatic effects; NPs were etched by overexpressed endogenous H2O2 in tumor tissues. | [99] |
4. Mechanisms of IR780 Action Inside Cells and Tissues
4.1. IR780 Targeting Mitochondria in Tumoral Cells
4.2. Near-Infrared Fluorescence (NIRF) Imaging
4.3. Photodynamic Therapy (PDT)
4.4. Photothermal Therapy (PTT)
4.5. Immunogenic Cell Death (ICD)
4.6. Sonodynamic Therapy (SDT)
4.7. Photoacoustic Imaging (PAI)
4.8. Chemodynamic Therapy (CDT)
5. Biomedical Applications
5.1. Imaging Probe
5.2. Cancer
5.3. Cardiovascular Disease
5.4. Nervous System-Related Diseases
5.5. Inflammations
5.6. Infectious Diseases
5.7. Metabolic Diseases and Obesity
6. Strategies for Improvement of IR780 as a Biological Tracer in Nanocarrier
6.1. IR780 Chemical Conjugation
Nanostructure | API Co-Loaded | Targeting Approach | Application/ Approach | In Vitro/In Vivo Main Outcomes | Ref. |
---|---|---|---|---|---|
PEG-PLA nanocapsules and nanospheres IR780-conjugated | IR-PLA (IR780 conjugated to PLA polymer) | No | PDT | Improved uptake, cell death, and reduced migration in human breast cancer cells (MDA-MB231 and MCF-7) and reduced cytotoxicity in normal breast cells (MCF-10A). Conjugated IR780-PLA improved tumor distribution. | [14,15] |
Thermos-sensitive lipid nanostructures | Tirapazamine (TPZ) | Fatty acids that undergo a solid–liquid phase transition at 39 °C; IR780 as mitochondria targeting | PDT, PTT, PCT, FI, PAI, image guidance | Anti-tumor efficacy under PAI and FL imaging guidance and monitoring; improved anti-tumor effectiveness. | [53] |
PLGA core/shell nanoparticle with hematoporphyrin monomethyl ether | Glucose oxidase IR780 in the shell | Hematoporphyrin monomethyl ether core | SDT Starvation therapy PAI FL | Accumulation in cancer cells/sites; mitochondrial targeting for synergistic SDT and starvation therapy; improved outcome in treatment (4.7-fold lower tumor growth); excellent photoacoustic (PA)/fluorescent (FL) imaging contrast agents to simultaneously monitor and guide cancer therapy. | [72] |
PLGA nanoparticles with Lithocholic acid/IR780 nanoconjugate | Lithocholic acid and IR780 iodide | Lithocholic acid (LA)/IR780 conjugate | PDT, PTT, SDT, PAI | Accumulation in breast cancer cell lines in a time-dependent manner, a synergistic anticancer effect in the presence of the NIR light compared to the free conjugate; NIR light-activated ROS mediated apoptosis; phantom experiments revealed a significant photoacoustic signal intensity in the novel bioconjugate. | [121] |
Solid lipid nanoparticles (SLN) with biomimetic osteosarcoma membrane | Doxorubicin, IR780-conjugated (DSPE-PEG- IR780) | Osteosarcoma membrane, mitochondria targeting with IR780-conjugated PEG-lipid | PDT, CDT | SLN accumulated in subcutaneous murine osteosarcoma (K7M2) in male BABL/c mice model; achieved intracellular drug release upon NIR stimulation in mitochondria; triggered apoptosis pathway; increased expression of cytochrome C, Bax, C-Caspase 3, Caspase 9, and decreased expression of Bcl-2; exhibited photo-cytotoxicity under NIR laser irradiation, 14-fold-increased suppression of cell migration. | [123] |
TAT peptide-conjugated IR780 nanoparticle | Doxorubicin | TAT peptide-conjugated IR780 | PDT, PTT, CDT | Improved cellular internalization and nuclear localization; achieved significant synergistic effects on breast tumor ablation and recurrence after laser irradiation. | [124] |
Natural protein ferritin (FRT) and nanoscale graphene oxide (NGO) as dual-carriers | Resveratrol | IR780-conjugated for mitochondrion targeted | PTT, PDT, CDT | Synergistic photothermal chemotherapy induces tumor suppression in ovarian cancer models, causes cell apoptosis, and increases animal survival. | [125] |
IR780-Gd-OPN polymeric micelles | Osteopontin (OPN) conjugated IR780-PEG-OPN | IR780-PEG-Gd-DOTA IR780-conjugated | PTT, PDT and dual-mode imaging NIR-FI, MRI, macrophage modulation | Dual-mode imaging enabled precise localization of atherosclerotic plaques; strong signals in NIRFI and T1-weighted MRI; IR780-Gd-OPN micelles exhibited 2.5-fold-higher uptake by foam cells (RAW 264.7-derived treated with oxidized LDL); 4-times-reduced foam cell lipid content; 2.3-fold upregulated HSP27 protein, protecting from apoptosis and reducing inflammation; IR780-Gd-OPN showed 3-fold-greater accumulation in aortic plaques compared to IR780-Gd; decreased by ~50%, lipid content in plates. | [126] |
Lipid nanoparticles | IR-780-oleyl (lipophilic derivative) | Cyclic RGD peptides | PDT, PTT, FI, biodistribution | In vitro targeting of the receptor with cRGD-LNPs in HEK293(β3), HEK293(β3)-αvRFP, DU145, and PC3 cell lines; cRGD-LNPs bind to αvβ3, interfere with cell adhesion to vitronectin and co-internalize with αvβ3; biodistribution and tumor targeting in mice bearing DU145 or M21 tumors indicate no difference in accumulation/retention in tumors. | [127] |
Hyaluronic acid-IR780-conjugated self-assembled nanoparticles | - | Hyaluronic acid-conjugated with IR780 | PTT, PDT | Bladder cancer cells (MB-49) overexpressing CD44 in an orthotopic mouse model treated with NPs showed high tumor selectivity, efficacy, good bioavailability, and biocompatibility, and reduced tumor growth, preserving the bladder. | [128] |
Cationic thermosensitive lipid nanoparticles | IR780-PEG-ODC (octadecyl alcohol) BMS202 (PD-1/PD-L1 inhibitors) | IR780-conjugated with PEG and octadecyl alcohol | PDT, PTT, FI, ICD | Orthotopic 4T1 tumors exhibited a pronounced PTT with induced hyperthermia (55.4 °C) with NIR-laser irradiation; higher fluorescence intensity and cell uptake efficiency against 4T1 tumor compared to 293T normal cells; reduced cancer-associated fibroblasts and remodeled the spatial distribution of TILs in TME; enhanced the antigen-presenting ability of DCs to activate cytotoxic T lymphocytes; tumor tissues showed the highest fluorescence intensity. | [131] |
Micelles of PEG-IR-780-C13 Conjugated self-assembled polymer | PEG-IR-C13 | No | PDT, PTT | Tumors were ablated by combining PEG-IR-780-C13 micelles with 808 nm laser irradiation in Balb/c mice bearing CT26 (colon carcinoma) xenograft; no toxicity was observed after intravenous injection. | [152] |
Self-assembled cyclodextrin functionalized with IR780 loading biotin-Pt(IV)-derivative | IR780 linked to cyclodextrin; biotin-labeled Pt(IV) prodrug derivative | IR780 as a ligand for mitochondria targeting | PTT, PDT, CDT, NIRF, PAI | Overcome cisplatin resistance and eliminate A549R tumors completely; increase the Pt accumulation, reduce GSH levels; avoid DNA repair machinery in cisplatin-resistant cancer cells (A549R); inhibit A549R tumor growth on animal models. | [153] |
Strategies | Description | Examples/Applications | Ref. |
---|---|---|---|
IR780 physical association with nanocarriers (loaded) (Table 2, Table 3 and Table 4) |
| Amphiphilic micelles loaded with IR780 controlled release in tumor microenvironment (TME). | [6] |
PEG-PLA nanocapsules enhanced IR780 stability and promote its controlled release. | [37] | ||
Greater photostability and reactive oxygen species (ROS) generation capacity compared to free IR780, attributed to assembly into homodimers. | [157] | ||
The organization of IR780 photosensitizers into crystalline nanotubes significantly reduces molecular self-quenching, enhancing photodynamic and photothermal efficiency. | [158] | ||
Targeting moieties conjugated with nanocarriers loading IR780 |
| cRGD peptides as ligands in polymeric micelles: solid lipid nanoparticles; lipid nanoparticles; nanoparticles. | [40,84,93,127] |
Tumor-penetrating peptides (tLyP-1). | [96] | ||
As1411 aptamer associated with different nanocarriers. | [9,42,98] | ||
5-HTP aptamer in lipid vesicles. | [54] | ||
N-acetyl-glucosamine (NAG) linked to liposomes. | [38] | ||
Folic acid conjugated with nanocarriers. | [64,80] | ||
Transferrin conjugated with nanoparticles. | [32] | ||
Hyaluronic acid as a ligand for active targeting of U87 cancer cells (IR780-rGOG-HA/DOX); hyaluronic acid ligand in micelles; and hyaluronic acid in polymeric nanoparticles. | [57,81,128,154] | ||
IR780 covalent conjugation with biocompatible polymers |
| IR780 conjugated-PLA minimizes dye degradation and prevents leakage from nanospheres and nanocapsules, ensuring reliable NIR fluorescence for in vitro and in vivo imaging. | [15] |
Poly(2-Ethyl-2-Oxazoline)–IR780 conjugate nanoparticles reduce photodegradation, and increase chemical stability and PDT efficiency in biological environments. | [138] | ||
Prodrug of IR780 design for pH and temperature sensitivity |
| Acidic TME-activated nanoparticle release actives. | [112] |
NIR laser irradiation induces thermosensitive lipid nanoparticles with responsive and controlled release of IR780 and other active ingredients. | [131] | ||
Hybrid systems: activation of hyperthermia, pyroptosis, apoptosis Multi-modal theranostic platforms |
| IR780 nanoplatforms—enabling PDT, PTT, and CDT therapeutic synergy through pyroptosis, ferroptosis, and hyperthermia. | [159] |
MnO2/IR780 nanospheres—improves photothermal properties combined with MnO2 catalytic activity as multifunctional nanozyme, and enhances the sensitivity and specificity of exosome detection. | [117] | ||
Iron nanoparticles—combines imaging diagnostics (IR780 fluorescence + magnetic resonance imaging) plus SDT-lung cancer treatment. | [88,89] | ||
NIR-responsive nanoplatforms—integrate PTT, PDT, mitochondrial pathway-mediated apoptosis for laryngeal cancer treatment. | [160] | ||
Genomic or proteomic approaches |
| Micelles inside microneedles platform: Integrates CRISPR/Cas9 with the IR780 photosensitizer for localized and efficient delivery with synergic effect; genomic editing of the FBXO44 gene by CRISPR/Cas9 inhibits tumor cell migration and invasion. | [136] |
Encapsulating silencing RNA. | [92] | ||
TAT-IR780—Targeted photothermal and photodynamic therapy directed at the nucleus directly destroys genetic material (DNA/RNA), disrupting replication and transcription in cancer cells and inducing apoptosis. | [124] |
6.2. Targeting Moieties at Nanocarrier Surface
6.3. Combination with Other Antitumoral Agents
6.4. pH- and Temperature-Sensitive Nanocarriers and Prodrugs
6.5. Genomic and Proteomics-Based Approaches
7. Concluding Remarks and Future Perspectives
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Misra, R.; Acharya, S.; Sahoo, S.K. Cancer nanotechnology: Application of nanotechnology in cancer therapy. Drug Discov. Today 2010, 15, 842–850. [Google Scholar] [CrossRef]
- Qiu, Y.; Yuan, B.; Cao, Y.; He, X.; Akakuru, O.U.; Lu, L.; Chen, N.; Xu, M.; Wu, A.; Li, J. Recent progress on near-infrared fluorescence heptamethine cyanine dye-based molecules and nanoparticles for tumor imaging and treatment. WIREs Nanomed. Nanobiotechnol. 2023, 15, e1910. [Google Scholar] [CrossRef]
- Alves, C.G.; Lima-Sousa, R.; de Melo-Diogo, D.; Louro, R.O.; Correia, I.J. IR780 based nanomaterials for cancer imaging and photothermal, photodynamic and combinatorial therapies. Int. J. Pharm. 2018, 542, 164–175. [Google Scholar] [CrossRef]
- Zhou, Z.; Song, J.; Nie, L.; Chen, X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 2016, 45, 6597–6626. [Google Scholar] [CrossRef]
- Chen, H.; Li, Y.; Chen, D.; Fang, Y.; Gong, X.; Wang, K.; Ma, C. Photothermally enhanced antibacterial wound healing using albumin-loaded tanshinone IIA and IR780 nanoparticles. Front. Bioeng. Biotechnol. 2024, 12, 1487660. [Google Scholar] [CrossRef]
- Pais-Silva, C.; de Melo-Diogo, D.; Correia, I.J. IR780-loaded TPGS-TOS micelles for breast cancer photodynamic therapy. Eur. J. Pharm. Biopharm. 2017, 113, 108–117. [Google Scholar] [CrossRef]
- Rajendrakumar, S.K.; Cherukula, K.; Park, H.J.; Uthaman, S.; Jeong, Y.Y.; Lee, B.-I.; Park, I.-K. Dual-stimuli-responsive albumin-polyplex nanoassembly for spatially controlled gene release in metastatic breast cancer. J. Control. Release 2018, 276, 72–83. [Google Scholar] [CrossRef]
- Alves, C.G.; de Melo-Diogo, D.; Lima-Sousa, R.; Correia, I.J. IR780 loaded sulfobetaine methacrylate-functionalized albumin nanoparticles aimed for enhanced breast cancer phototherapy. Int. J. Pharm. 2020, 582, 119346. [Google Scholar] [CrossRef]
- Jiang, C.; Cheng, H.; Yuan, A.; Tang, X.; Wu, J.; Hu, Y. Hydrophobic IR780 encapsulated in biodegradable human serum albumin nanoparticles for photothermal and photodynamic therapy. Acta Biomater. 2015, 14, 61–69. [Google Scholar] [CrossRef]
- Hu, H.; Qi, Q.; Dong, Z.; Yu, X.; Mo, Y.; Luo, J.; Wang, Y.; Du, S.; Lu, Y. Albumin coated trimethyl chitosan-based targeting delivery platform for photothermal/chemo-synergistic cancer therapy. Carbohydr. Polym. 2020, 241, 116335. [Google Scholar] [CrossRef]
- Capistrano, G.; Sousa-Junior, A.A.; Silva, R.A.; Mello-Andrade, F.; Cintra, E.R.; Santos, S.; Nunes, A.D.; Lima, R.M.; Zufelato, N.; Oliveira, A.L.S.; et al. IR-780-Albumin-Based Nanocarriers Promote Tumor Regression Not Only from Phototherapy but Also by a Nonirradiation Mechanism. ACS Biomater. Sci. Eng. 2020, 6, 4523–4538. [Google Scholar] [CrossRef]
- Bazylińska, U.; Skrzela, R.; Szczepanowicz, K.; Warszyński, P.; Wilk, K.A. Novel approach to long sustained multilayer nanocapsules: Influence of surfactant head groups and polyelectrolyte layer number on the release of hydrophobic compounds. Soft Matter 2011, 7, 6113–6124. [Google Scholar] [CrossRef]
- Bazylińska, U.; Lewińska, A.; Lamch, Ł.; Wilk, K.A. Polymeric nanocapsules and nanospheres for encapsulation and long sustained release of hydrophobic cyanine-type photosensitizer. Colloids Surf. A Physicochem. Eng. Asp. 2014, 442, 42–49. [Google Scholar] [CrossRef]
- Machado, M.G.C.; Pound-Lana, G.; de Oliveira, M.A.; Lanna, E.G.; Fialho, M.C.P.; de Brito, A.C.F.; Barboza, A.P.M.; Aguiar-Soares, R.D.d.O.; Mosqueira, V.C.F. Labeling PLA-PEG nanocarriers with IR780: Physical entrapment versus covalent attachment to polylactide. Drug Deliv. Transl. Res. 2020, 10, 1626–1643. [Google Scholar] [CrossRef]
- de Oliveira, M.A.; Machado, M.G.C.; Silva, S.E.D.; Nascimento, T.L.; Lima, E.M.; Pound-Lana, G.; Mosqueira, V.C.F. IR780-polymer conjugates for stable near-infrared labeling of biodegradable polyester-based nanocarriers. Eur. Polym. J. 2019, 120, 109255. [Google Scholar] [CrossRef]
- de Oliveira, M.A.; Pound-Lana, G.; Capelari-Oliveira, P.; Pontífice, T.G.; Silva, S.E.D.; Machado, M.G.C.; Postacchini, B.B.; Mosqueira, V.C.F. Release, transfer and partition of fluorescent dyes from polymeric nanocarriers to serum proteins monitored by asymmetric flow field-flow fractionation. J. Chromatogr. A 2021, 1641, 461959. [Google Scholar] [CrossRef]
- Li, Q.; Tan, J.; Peng, B.-X. Synthesis and Characterization of Heptamethine Cyanine Dyes. Molecules 1997, 2, 91–98. [Google Scholar] [CrossRef]
- Kiyose, K.; Aizawa, S.; Sasaki, E.; Kojima, H.; Hanaoka, K.; Terai, T.; Urano, Y.; Nagano, T. Molecular Design Strategies for Near-Infrared Ratiometric Fluorescent Probes Based on the Unique Spectral Properties of Aminocyanines. Chem. Eur. J. 2009, 15, 9191–9200. [Google Scholar] [CrossRef]
- Yamaoka, Y.; Harada, Y.; Sakakura, M.; Minamikawa, T.; Nishino, S.; Maehara, S.; Hamano, S.; Tanaka, H.; Takamatsu, T. Photoacoustic microscopy using ultrashort pulses with two different pulse durations. Opt. Express 2014, 22, 17063–17072. [Google Scholar] [CrossRef]
- Levitz, A.; Marmarchi, F.; Henary, M. Synthesis and Optical Properties of Near-Infrared meso-Phenyl-Substituted Symmetric Heptamethine Cyanine Dyes. Molecules 2018, 23, 226. [Google Scholar] [CrossRef]
- Lu, Y.-J.; T. S., A.; Chuang, C.-C.; Chen, J.-P. Liposomal IR-780 as a Highly Stable Nanotheranostic Agent for Improved Photothermal/Photodynamic Therapy of Brain Tumors by Convection-Enhanced Delivery. Cancers 2021, 13, 3690. [Google Scholar] [CrossRef]
- Shen, D.; Ding, S.; Lu, Q.; Chen, Z.; Chen, L.; Lv, J.; Gao, J.; Yuan, Z. Nitroreductase-Responsive Fluorescent “Off-On” Photosensitizer for Hypoxic Tumor Imaging and Dual-Modal Therapy. ACS Omega 2024, 9, 30685–30697. [Google Scholar] [CrossRef]
- Kozlov, A.V.; Rybkin, A.Y.; Belik, A.Y.; Kostina, E.A.; Goryachev, N.S.; Sulimenkov, I.V.; Kozlovskiy, V.I.; Istakova, O.I.; Konev, D.V.; Kotelnikov, A.I. Synthesis and photophysical properties of heptamethine cyanine–fullerene C60 dyads with non-quenched fluorescence. Mendeleev Commun. 2021, 31, 807–809. [Google Scholar] [CrossRef]
- Bian, H.; Ma, D.; Zhang, X.; Xin, K.; Yang, Y.; Peng, X.; Xiao, Y. Tailored Engineering of Novel Xanthonium Polymethine Dyes for Synergetic PDT and PTT Triggered by 1064 nm Laser toward Deep-Seated Tumors. Small 2021, 17, 2100398. [Google Scholar] [CrossRef]
- Barcelos, J.M.; Hayasaki, T.G.; de Santana, R.C.; Lima, E.M.; Mendanha, S.A.; Bakuzis, A.F. Photothermal Properties of IR-780-Based Nanoparticles Depend on Nanocarrier Design: A Comparative Study on Synthetic Liposomes and Cell Membrane and Hybrid Biomimetic Vesicles. Pharmaceutics 2023, 15, 444. [Google Scholar] [CrossRef]
- de Paula, C.S.; Tedesco, A.C.; Primo, F.L.; Vilela, J.M.C.; Andrade, M.S.; Mosqueira, V.C.F. Chloroaluminium phthalocyanine polymeric nanoparticles as photosensitisers: Photophysical and physicochemical characterisation, release and phototoxicity in vitro. Eur. J. Pharm. Sci. 2013, 49, 371–381. [Google Scholar] [CrossRef]
- Leitão, M.M.; de Melo-Diogo, D.; Alves, C.G.; Lima-Sousa, R.; Correia, I.J. Prototypic Heptamethine Cyanine Incorporating Nanomaterials for Cancer Phototheragnostic. Adv. Healthc. Mater. 2020, 9, e1901665. [Google Scholar] [CrossRef]
- Leitão, M.M.; Alves, C.G.; de Melo-Diogo, D.; Lima-Sousa, R.; Moreira, A.F.; Correia, I.J. Sulfobetaine methacrylate-functionalized graphene oxide-IR780 nanohybrids aimed at improving breast cancer phototherapy. RSC Adv. 2020, 10, 38621–38630. [Google Scholar] [CrossRef]
- Xu, P.-Y.; Kankala, R.K.; Wang, S.-B.; Chen, A.-Z. Development of highly stable ICG-polymeric nanoparticles with ultra-high entrapment efficiency using supercritical antisolvent (SAS)-combined solution casting process. Int. J. Pharm. 2022, 629, 122348. [Google Scholar] [CrossRef]
- de Melo-Diogo, D.; Pais-Silva, C.; Dias, D.R.; Moreira, A.F.; Correia, I.J. Strategies to Improve Cancer Photothermal Therapy Mediated by Nanomaterials. Adv. Healthc. Mater. 2017, 6, 1700073. [Google Scholar] [CrossRef]
- Yahya, M.; Nural, Y.; Seferoğlu, Z. Recent advances in the nonlinear optical (NLO) properties of phthalocyanines: A review. Dye. Pigment. 2022, 198, 109960. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, Y.; Wang, J.; Yuan, A.; Sun, M.; Wu, J.; Hu, Y. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci. Rep. 2016, 6, 27421. [Google Scholar] [CrossRef]
- Han, X.; Dong, X.; Li, J.; Wang, M.; Luo, L.; Li, Z.; Lu, X.; He, R.; Xu, R.; Gong, M. Free paclitaxel-loaded E-selectin binding peptide modified micelle self-assembled from hyaluronic acid-paclitaxel conjugate inhibit breast cancer metastasis in a murine model. Int. J. Pharm. 2017, 528, 33–46. [Google Scholar] [CrossRef]
- Yang, X.; Li, H.; Qian, C.; Guo, Y.; Li, C.; Gao, F.; Yang, Y.; Wang, K.; Oupicky, D.; Sun, M. Near-infrared light-activated IR780-loaded liposomes for anti-tumor angiogenesis and Photothermal therapy. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 2283–2294. [Google Scholar] [CrossRef]
- Li, H.; Wang, K.; Yang, X.; Zhou, Y.; Ping, Q.; Oupicky, D.; Sun, M. Dual-function nanostructured lipid carriers to deliver IR780 for breast cancer treatment: Anti-metastatic and photothermal anti-tumor therapy. Acta Biomater. 2017, 53, 399–413. [Google Scholar] [CrossRef]
- Pietkiewicz, J.; Wilk, K.A.; Bazylińska, U. In vitro studies of serum albumin interaction with poly (D, L-lactide) nanospheres loaded by hydrophobic cargo. J. Pharm. Biomed. Anal. 2016, 117, 426–435. [Google Scholar] [CrossRef]
- Machado, M.G.C.; de Oliveira, M.A.; Lanna, E.G.; Siqueira, R.P.; Pound-Lana, G.; Branquinho, R.T.; Mosqueira, V.C.F. Photodynamic therapy with the dual-mode association of IR780 to PEG-PLA nanocapsules and the effects on human breast cancer cells. Biomed. Pharmacother. 2022, 145, 112464. [Google Scholar] [CrossRef]
- Onaral, F.G.; Silindir-Gunay, M.; Uluturk, S.; Ozturk, S.C.; Cakir-Aktas, C.; Esendagli, G. Development and In Vitro and In Vivo Efficacy Investigation of Multifunctional, Targeted, Theranostic Liposomes for Imaging and Photodynamic Therapy of Glioblastoma. J. Drug Deliv. Sci. Technol. 2024, 101, 106236. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, P.; Hou, X.; Yan, F.; Jiang, Z.; Shi, J.; Xie, X.; Shen, J.; Fan, Q.; Wang, Z.; et al. Hybrid curcumin–phospholipid complex-near-infrared dye oral drug delivery system to inhibit lung metastasis of breast cancer. Int. J. Nanomed. 2019, 14, 3311–3330. [Google Scholar] [CrossRef]
- Kuang, Y.; Zhang, K.; Cao, Y.; Chen, X.; Wang, K.; Liu, M.; Pei, R. Hydrophobic IR-780 Dye Encapsulated in cRGD-Conjugated Solid Lipid Nanoparticles for NIR Imaging-Guided Photothermal Therapy. ACS Appl. Mater. Interface 2017, 9, 12217–12226. [Google Scholar] [CrossRef]
- Song, J.; Zhang, L.; Yi, H.; Huang, J.; Zhang, N.; Zhong, Y.; Hao, L.; Yang, K.; Wang, Z.; Wang, D.; et al. NIR-responsive nanoplatform for pre/intraoperative image-guided carcinoma surgery and photothermal ablation of residual tumor tissue. Nanomed. Nanotechnol. Biol. Med. 2019, 20, 102020. [Google Scholar] [CrossRef]
- Zhen, X.; Li, Y.; Yuan, W.; Zhang, T.; Li, M.; Huang, J.; Kong, N.; Xie, X.; Wang, S.; Tao, W. Biointerface-Engineered Hybrid Nanovesicles for Targeted Reprogramming of Tumor Microenvironment. Adv. Mater. 2024, 36, e2401495. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, P.; Zhou, Y.; Li, Q.; Cai, W.; Zhao, Z.; Shen, J.; Yao, K.; Duan, Y. Preparation of multifunctional nanobubbles and their application in bimodal imaging and targeted combination therapy of early pancreatic cancer. Sci. Rep. 2021, 11, 6254. [Google Scholar] [CrossRef]
- Cheng, Y.; Cheng, H.; Jiang, C.; Qiu, X.; Wang, K.; Huan, W.; Yuan, A.; Wu, J.; Hu, Y. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun. 2015, 6, 8785. [Google Scholar] [CrossRef]
- Sharma, M.; Bhattacharya, S.; Maheshwari, R. EpCAM aptamer-engineered, azadiradione-loaded, chemo-photo-responsive nano-erythroliposomes for the treatment of triple-negative breast cancer. Colloids Surf. A Physicochem. Eng. Asp. 2024, 703, 135176. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, L.; Zhou, W.; Wang, J.; Zhang, R.; Wang, Z.; Ran, H.; Li, P.; Li, R. Dual mitigation of immunosuppression combined with photothermal inhibition for highly effective primary tumor and metastases therapy. Biomaterials 2021, 274, 120856. [Google Scholar] [CrossRef]
- Appidi, T.; Pemmaraju, D.B.; Khan, R.A.; Alvi, S.B.; Srivastava, R.; Pal, M.; Khan, N.; Rengan, A.K. Light-triggered selective ROS-dependent autophagy by bioactive nanoliposomes for efficient cancer theranostics. Nanoscale 2020, 12, 2028–2039. [Google Scholar] [CrossRef]
- Margolis, R.; Basavarajappa, L.; Li, J.; Obaid, G.; Hoyt, K. Image-guided focused ultrasound-mediated molecular delivery to breast cancer in an animal model. Phys. Med. Biol. 2023, 68, 155012. [Google Scholar] [CrossRef]
- Zhang, N.; Tan, Y.; Yan, L.; Zhang, C.; Xu, M.; Guo, H.; Zhuang, B.; Zhou, L.; Xie, X. Modulation of Tumor Hypoxia by pH-Responsive Liposomes to Inhibit Mitochondrial Respiration for Enhancing Sonodynamic Therapy. Int. J. Nanomed. 2020, 15, 5687–5700. [Google Scholar] [CrossRef]
- Zhang, L.; Yi, H.; Song, J.; Huang, J.; Yang, K.; Tan, B.; Wang, D.; Yang, N.; Wang, Z.-G.; Li, X. Mitochondria-Targeted and Ultrasound-Activated Nanodroplets for Enhanced Deep-Penetration Sonodynamic Cancer Therapy. ACS Appl. Mater. Interfaces 2019, 11, 9355–9366. [Google Scholar] [CrossRef]
- Yu, Q.; Qiu, Y.; Li, J.; Tang, X.; Wang, X.; Cun, X.; Xu, S.; Liu, Y.; Li, M.; Zhang, Z.; et al. Targeting cancer-associated fibroblasts by dual-responsive lipid-albumin nanoparticles to enhance drug perfusion for pancreatic tumor therapy. J. Control. Release 2020, 321, 564–575. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Mangla, B.; Imam, S.A.; Aggarwal, G. Oral in vivo biodistribution of fluorescent labelled nano lipid carrier system of erlotinib using real time optical imaging technique. Int. J. Pharm. 2024, 664, 124588. [Google Scholar] [CrossRef]
- Qu, J.; Teng, D.; Sui, G.; Guan, S.; Wang, Y.; Wang, Q.; Lin, Y.; Ran, H.; Wang, Z.; Wang, H. A photothermal-hypoxia sequentially activatable phase-change nanoagent for mitochondria-targeting tumor synergistic therapy. Biomater. Sci. 2020, 8, 3116–3129. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.; Ma, J.; Li, K.; Wang, W.; Chen, D.; Liu, Z.; Zhan, W.; Zeng, Y.; Zhan, Y. 5-Hydroxytryptophan artificial synaptic vesicles across the blood-brain barrier for the rapid-acting treatment of depressive disorder. Mater. Today Bio 2024, 29, 101357. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, C.; Liu, F.; Ding, T.; Wang, Z. Red blood cells membrane vehicle co-delivering DOX and IR780 for effective prostate cancer therapy. J. Mater. Res. 2020, 35, 3116–3123. [Google Scholar] [CrossRef]
- Kv, R.; Liu, T.-I.; Lu, I.-L.; Liu, C.-C.; Lu, T.-Y.; Chiang, W.-H.; Chiu, H.-C. Tumor microenvironment-responsive and oxygen self-sufficient oil droplet nanoparticles for enhanced photothermal/photodynamic combination therapy against hypoxic tumors. J. Control. Release 2020, 328, 87–99. [Google Scholar] [CrossRef]
- Yang, Y.; Yun, K.; Li, Y.; Zhang, L.; Zhao, W.; Zhu, Z.; Tian, B.; Chen, F.; Pan, W. Self-assembled multifunctional polymeric micelles for tumor-specific bioimaging and synergistic chemo-phototherapy of cancer. Int. J. Pharm. 2021, 602, 120651. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, K.; Qin, H.; Zhao, X.; Chen, W.; Xu, L.; Cao, W.; Guo, H. Internal cross-linked polymeric nanoparticles with dual sensitivity for combination therapy of muscle-invasive bladder cancer. J. Nanobiotechnol. 2020, 18, 124. [Google Scholar] [CrossRef]
- Gao, Z.; Mu, W.; Tian, Y.; Su, Y.; Sun, H.; Zhang, G.; Li, A.; Yu, D.; Zhang, N.; Hao, J.; et al. Self-assembly of paramagnetic amphiphilic copolymers for synergistic therapy. J. Mater. Chem. B 2020, 8, 6866–6876. [Google Scholar] [CrossRef] [PubMed]
- Saravanakumar, G.; Park, H.; Kim, J.; Park, D.; Lim, J.; Lee, J.; Kim, W.J. Polymersomes with singlet oxygen-labile poly (β-aminoacrylate) membrane for NIR light-controlled combined chemo-phototherapy. J. Control. Release 2020, 327, 627–640. [Google Scholar] [CrossRef]
- Song, C.; Li, Y.; Li, T.; Yang, Y.; Huang, Z.; de la Fuente, J.M.; Ni, J.; Cui, D. Long-Circulating Drug-Dye-Based Micelles with Ultrahigh pH-Sensitivity for Deep Tumor Penetration and Superior Chemo-Photothermal Therapy. Adv. Funct. Mater. 2020, 30, 1906309. [Google Scholar] [CrossRef]
- Pei, W.; Huang, B.; Chen, S.; Wang, L.; Xu, Y.; Niu, C. Platelet-Mimicking Drug Delivery Nanoparticles for Enhanced Chemo-Photothermal Therapy of Breast Cancer. Int. J. Nanomed. 2020, 15, 10151–10167. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Zhu, Y.; Wen, L.; Yang, X.; Liu, X.; Meng, T.; Dai, S.; Ping, Y.; Yuan, H.; Hu, F. Mitochondria-Responsive Drug Release along with Heat Shock Mediated by Multifunctional Glycolipid Micelles for Precise Cancer Chemo-Phototherapy. Theranostics 2019, 9, 691–707. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Q.; Wang, H.; Li, Z.; Chen, J.; Zhang, Z.; Zeng, H.; Yu, X.; Yang, X.; Yang, X.; et al. Hydroxyethyl starch-folic acid conjugates stabilized theranostic nanoparticles for cancer therapy. J. Control. Release 2023, 353, 391–410. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Zhang, Y.; Yang, L.; Li, H.; Li, X.; Feng, J.; Jia, L.; Zhang, Z. Camptothecin-loaded and IR780-doped polydopamine nanomedicine used for multifunctional chemo-photothermal-photodynamic therapy for lung cancer. J. Drug Deliv. Sci. Technol. 2024, 97, 105657. [Google Scholar] [CrossRef]
- Lu, I.-L.; Liu, T.-I.; Lin, H.-C.; Chang, S.-H.; Lo, C.-L.; Chiang, W.-H.; Chiu, H.-C. IR780-loaded zwitterionic polymeric nanoparticles with acidity-induced agglomeration for enhanced tumor retention. Eur. Polym. J. 2020, 122, 109400. [Google Scholar] [CrossRef]
- Chen, S.; Wang, J.; Tang, K.; Liao, H.; Xu, Y.; Wang, L.; Niu, C. Multi-Modal Imaging Monitored M2 Macrophage Targeting Sono-Responsive Nanoparticles to Combat MRSA Deep Infections. Int. J. Nanomed. 2022, 17, 4525–4546. [Google Scholar] [CrossRef]
- Huang, H.; Fu, J.; Peng, H.; He, Y.; Chang, A.; Zhang, H.; Hao, Y.; Xu, X.; Li, S.; Zhao, J.; et al. Co-delivery of polyphyllin II and IR780 PLGA nanoparticles induced pyroptosis combined with photothermal to enhance hepatocellular carcinoma immunotherapy. J. Nanobiotechnol. 2024, 22, 647. [Google Scholar] [CrossRef]
- He, M.; Zhang, M.; Xu, T.; Xue, S.; Li, D.; Zhao, Y.; Zhi, F.; Ding, D. Enhancing photodynamic immunotherapy by reprograming the immunosuppressive tumor microenvironment with hypoxia relief. J. Control. Release 2024, 368, 233–250. [Google Scholar] [CrossRef]
- Wu, S.; Qiao, Z.; Li, Y.; Hu, S.; Ma, Y.; Wei, S.; Zhang, L. Persistent Luminescence Nanoplatform with Fenton-like Catalytic Activity for Tumor Multimodal Imaging and Photoenhanced Combination Therapy. ACS Appl. Mater. Interfaces 2020, 12, 25572–25580. [Google Scholar] [CrossRef]
- Zhang, G.; Cheng, W.; Du, L.; Xu, C.; Li, J. Synergy of hypoxia relief and heat shock protein inhibition for phototherapy enhancement. J. Nanobiotechnol. 2021, 19, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, L.; Ran, H.; Li, P.; Huang, J.; Tan, M.; Yang, Y.; Wang, Z. A mitochondria-targeted anticancer nanoplatform with deep penetration for enhanced synergistic sonodynamic and starvation therapy. Biomater. Sci. 2020, 8, 4581–4594. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.; Zhang, L.; Huang, J.; Li, P.; Zhao, Y.; Zhou, C.; Liu, M.; Li, W.; He, J. Mitochondria-targeted nanospheres with deep tumor penetration for photo/starvation therapy. J. Mater. Chem. B 2020, 8, 7740–7754. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Luo, Y.; Gao, H.; Zhang, L.; Wang, X.; Huang, J.; Shang, T.; Zhou, D.; Wang, D.; Wang, Z.; et al. Mitochondria-targeted nanoplatforms for enhanced photodynamic therapy against hypoxia tumor. J. Nanobiotechnol. 2021, 19, 440. [Google Scholar] [CrossRef]
- Tian, Y.; Younis, M.R.; Tang, Y.; Liao, X.; He, G.; Wang, S.; Teng, Z.; Huang, P.; Zhang, L.; Lu, G. Dye-loaded mesoporous polydopamine nanoparticles for multimodal tumor theranostics with enhanced immunogenic cell death. J. Nanobiotechnol. 2021, 19, 365. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chu, Z.; Yang, J.; Qian, H.; Xu, J.; Chen, B.; Tian, T.; Chen, H.; Xu, Y.; Wang, F. Immunogenic Cell Death Augmented by Manganese Zinc Sulfide Nanoparticles for Metastatic Melanoma Immunotherapy. ACS Nano 2022, 16, 15471–15483. [Google Scholar] [CrossRef]
- Shao, N.; Qi, Y.; Lu, H.; He, D.; Li, B.; Huang, Y. Photostability Highly Improved Nanoparticles Based on IR-780 and Negative Charged Copolymer for Enhanced Photothermal Therapy. ACS Biomater. Sci. Eng. 2019, 5, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhao, Y.; Xu, Y.; Zhu, C.; Liu, T.; Wang, K. Chitosan nanoparticles for oral photothermally enhanced photodynamic therapy of colon cancer. Int. J. Pharm. 2020, 589, 119763. [Google Scholar] [CrossRef]
- Hong, E.; Hyun, H.; Lee, H.; Jung, E.; Lee, D. Acid-sensitive oxidative stress inducing and photoabsorbing polysaccharide nanoparticles for combinational anticancer therapy. Int. J. Pharm. 2020, 574, 118893. [Google Scholar] [CrossRef]
- Yue, C.; Liu, P.; Zheng, M.; Zhao, P.; Wang, Y.; Ma, Y.; Cai, L. IR-780 dye loaded tumor targeting theranostic nanoparticles for NIR imaging and photothermal therapy. Biomaterials 2013, 34, 6853–6861. [Google Scholar] [CrossRef]
- Uthaman, S.; Mathew, A.P.; Park, H.J.; Lee, B.-I.; Kim, H.-S.; Huh, K.M.; Park, I.-K. IR 780-loaded hyaluronic acid micelles for enhanced tumor-targeted photothermal therapy. Carbohydr. Polym. 2018, 181, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Tian, J.; Zhu, H.; Hong, L.; Mao, Z.; Oliveira, J.M.; Reis, R.L.; Li, X. Tumor-Targeting Polycaprolactone Nanoparticles with Codelivery of Paclitaxel and IR780 for Combinational Therapy of Drug-Resistant Ovarian Cancer. ACS Biomater. Sci. Eng. 2020, 6, 2175–2185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, J.; Rong, R.; Wang, D.; Wang, D.; Yu, Y.; Wu, P.; Li, Y.; Zhang, Z. Enhancing the oral bioavailability of poorly water-soluble amisupiride with solid nanodispersion. J. Drug Deliv. Sci. Technol. 2023, 86, 104635. [Google Scholar] [CrossRef]
- Lu, L.; Zhao, X.; Fu, T.; Li, K.; He, Y.; Luo, Z.; Dai, L.; Zeng, R.; Cai, K. An iRGD-conjugated prodrug micelle with blood-brain-barrier penetrability for anti-glioma therapy. Biomaterials 2020, 230, 119666. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, X.; Zhao, X.; Yin, Z. Functionalized polymeric hybrid micelles as an efficient nanotheranostic agent for thrombus imaging and thrombolysis. Acta Biomater. 2021, 122, 278–290. [Google Scholar] [CrossRef] [PubMed]
- Teng, P.; Li, Y.; Cheng, W.; Zhou, L.; Shen, Y.; Wang, Y. Neuroprotective effects of Lycium barbarum polysaccharides in lipopolysaccharide-induced BV2 microglial cells. Mol. Med. Rep. 2013, 7, 1977–1981. [Google Scholar] [CrossRef]
- Jia, W.; Yang, M.; Zhang, W.; Xu, W.; Zhang, Y. Carrier-Free Self-Assembled Nanomedicines for Promoting Apoptosis and Inhibiting Proliferation in Hepatocellular Carcinoma. ACS Biomater. Sci. Eng. 2024, 10, 4347–4358. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Zeng, Y.; Luo, J.; Wang, X.; Ma, G.; Zhang, T.; Huang, P. Endogenous Magnetic Lipid Droplet-Mediated Cascade-Targeted Sonodynamic Therapy as an Approach to Reversing Breast Cancer Multidrug Resistance. ACS Nano 2024, 18, 28659–28674. [Google Scholar] [CrossRef]
- Sousa-Junior, A.A.; Mendanha, S.A.; Carrião, M.S.; Capistrano, G.; Próspero, A.G.; Soares, G.A.; Cintra, E.R.; Santos, S.F.O.; Zufelato, N.; Alonso, A.; et al. Predictive Model for Delivery Efficiency: Erythrocyte Membrane-Camouflaged Magnetofluorescent Nanocarriers Study. Mol. Pharm. 2020, 17, 837–851. [Google Scholar] [CrossRef]
- Ruttala, H.B.; Ramasamy, T.; Ruttala, R.R.T.; Tran, T.H.; Jeong, J.-H.; Choi, H.-G.; Ku, S.K.; Yong, C.S.; Kim, J.O. Mitochondria-targeting multi-metallic ZnCuO nanoparticles and IR780 for efficient photodynamic and photothermal cancer treatments. J. Mater. Sci. Technol. 2021, 86, 139–150. [Google Scholar] [CrossRef]
- Chen, H.; Deng, J.; Yao, X.; He, Y.; Li, H.; Jian, Z.; Tang, Y.; Zhang, X.; Zhang, J.; Dai, H. Bone-targeted erythrocyte-cancer hybrid membrane-camouflaged nanoparticles for enhancing photothermal and hypoxia-activated chemotherapy of bone invasion by OSCC. J. Nanobiotechnol. 2021, 19, 342. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, Q.; Chu, X.; Li, N.; Liang, H.; He, F. Nanoparticles (NPs)-meditated si-lncRNA NONHSAT159592.1 inhibits glioblastoma progression and invasion through targeting the ITGA3/FAK/PI3K/AKT pathway. Metab. Brain Dis. 2024, 40, 31. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, S.; Chen, H.; Liang, Y.; Zhao, B.; Luo, W.; Xiao, Q.; Li, J.; Zhu, J.; Peng, C.; et al. An acoustic/thermo-responsive hybrid system for advanced doxorubicin delivery in tumor treatment. Biomater. Sci. 2020, 8, 2202–2211. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liang, S.; Chen, S.; Ma, T.; Chen, M.; Niu, C.; Leng, Y.; Wang, L. Bacterial outer membrane vesicle-cancer cell hybrid membrane-coated nanoparticles for sonodynamic therapy in the treatment of breast cancer bone metastasis. J. Nanobiotechnol. 2024, 22, 328. [Google Scholar] [CrossRef]
- Mai, X.; Zhang, Y.; Fan, H.; Song, W.; Chang, Y.; Chen, B.; Shi, J.; Xin, X.; Teng, Z.; Sun, J.; et al. Integration of immunogenic activation and immunosuppressive reversion using mitochondrial-respiration-inhibited platelet-mimicking nanoparticles. Biomaterials 2020, 232, 119699. [Google Scholar] [CrossRef]
- Yang, J.; Wang, W.; Huang, S.; Guo, D.; Yu, L.; Qiao, W.; Zhang, X.; Han, Z.; Song, B.; Xu, X.; et al. Production, Characterization, and Application of Hydrophobin-Based IR780 Nanoparticles for Targeted Photothermal Cancer Therapy and Advanced Near-Infrared Imaging. Adv. Healthc. Mater. 2024, 14, e2402311. [Google Scholar] [CrossRef]
- Qiu, G.; Xue, L.; Zhu, X.; Lu, X.; Liu, L.; Wang, Z.; Li, X.; Huang, C.; Liu, J. Cetuximab Combined with Sonodynamic Therapy Achieves Dual-Modal Image Monitoring for the Treatment of EGFR-Sensitive Non-Small-Cell Lung Cancer. Front. Oncol. 2022, 12, 756489. [Google Scholar] [CrossRef]
- Mu, M.; Chen, B.; Li, H.; Fan, R.; Yang, Y.; Zhou, L.; Han, B.; Zou, B.; Chen, N.; Guo, G. Augmented the sensitivity of photothermal-ferroptosis therapy in triple-negative breast cancer through mitochondria-targeted nanoreactor. J. Control. Release 2024, 375, 733–744. [Google Scholar] [CrossRef]
- Zuo, H.; Hou, Y.; Yu, Y.; Li, Z.; Liu, H.; Liu, C.; He, J.; Miao, L. Circumventing Myeloid-Derived Suppressor Cell-Mediated Immunosuppression Using an Oxygen-Generated and -Economized Nanoplatform. ACS Appl. Mater. Interfaces 2020, 12, 55723–55736. [Google Scholar] [CrossRef]
- Choi, S.K. Activation Strategies in Image-Guided Nanotherapeutic Delivery. J. Nanotheranostics 2020, 1, 78–104. [Google Scholar] [CrossRef]
- Peng, C.-L.; Shih, Y.-H.; Lee, P.-C.; Hsieh, T.M.-H.; Luo, T.-Y.; Shieh, M.-J. Multimodal Image-Guided Photothermal Therapy Mediated by 188Re-Labeled Micelles Containing a Cyanine-Type Photosensitizer. ACS Nano 2011, 5, 5594–5607. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Huang, X.; Wu, Z.; Gao, M.; Li, R.; Luo, S. A Mitochondria-Targeted Heptamethine Indocyanine Small Molecular Chelator for Attenuating Uranium Nephrotoxicity. Pharmaceuticals 2024, 17, 995. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Luo, S.; Tan, X.; Shi, C. Mechanistic study of IR-780 dye as a potential tumor targeting and drug delivery agent. Biomaterials 2014, 35, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Nottelet, B.; Darcos, V.; Coudane, J. Aliphatic polyesters for medical imaging and theranostic applications. Eur. J. Pharm. Biopharm. 2015, 97, 350–370. [Google Scholar] [CrossRef]
- Mosqueira, V.C.F.; Machado, M.G.C.; de Oliveira, M.A. Polymeric Nanocarriers in Cancer Theranostics. In Cancer Nanotechnology; Springer International Publishing: Cham, Germany, 2023; pp. 45–70. [Google Scholar] [CrossRef]
- Machado, M.G.C.; de Oliveira, M.A.; Araújo, R.S.; Mosqueira, V.C.F. Theragnostic applications. In Smart Nanomaterials for Bioencapsulation; Elsevier: Amsterdam, The Netherlands, 2022; pp. 197–213. [Google Scholar] [CrossRef]
- Lan, M.; Zhao, S.; Liu, W.; Lee, C.; Zhang, W.; Wang, P. Photosensitizers for Photodynamic Therapy. Adv. Healthc. Mater. 2019, 8, e1900132. [Google Scholar] [CrossRef]
- Gao, D.; Guo, X.; Zhang, X.; Chen, S.; Wang, Y.; Chen, T.; Huang, G.; Gao, Y.; Tian, Z.; Yang, Z. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Mater. Today Bio 2020, 5, 100035. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, T.; Su, Y.; Luo, S.; Zhu, Y.; Tan, X.; Fan, S.; Zhang, L.; Zhou, Y.; Cheng, T.; et al. A near-infrared fluorescent heptamethine indocyanine dye with preferential tumor accumulation for in vivo imaging. Biomaterials 2010, 31, 6612–6617. [Google Scholar] [CrossRef]
- Yi, X.; Wang, F.; Qin, W.; Yang, X.; Yuan, J. Near-infrared fluorescent probes in cancer imaging and therapy: An emerging field. Int. J. Nanomed. 2014, 9, 1347–1365. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, E.; Su, Y.; Cheng, T.; Shi, C. A review of NIR dyes in cancer targeting and imaging. Biomaterials 2011, 32, 7127–7138. [Google Scholar] [CrossRef]
- Song, J.; Ye, H.; Jiang, S.; Yang, Y.; Li, X. An Acid Response IR780-Based Targeted Nanoparticle for Intraoperative Near-Infrared Fluorescence Imaging of Ovarian Cancer. Int. J. Nanomed. 2022, 17, 4961–4974. [Google Scholar] [CrossRef]
- De Silva, P.; Saad, M.A.; Thomsen, H.C.; Bano, S.; Ashraf, S.; Hasan, T. Photodynamic therapy, priming and optical imaging: Potential co-conspirators in treatment design and optimization—A Thomas Dougherty Award for Excellence in PDT paper. J. Porphyr. Phthalocyanines 2020, 24, 1320–1360. [Google Scholar] [CrossRef] [PubMed]
- Dolmans, D.E.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Lian, H.; Wu, J.; Hu, Y.; Guo, H. Self-assembled albumin nanoparticles for combination therapy in prostate cancer. Int. J. Nanomed. 2017, 12, 7777–7787. [Google Scholar] [CrossRef]
- Li, N.; Xu, F.; Cheng, J.; Zhang, Y.; Huang, G.; Zhu, J.; Shen, X.; He, D. Perfluorocarbon Nanocapsules Improve Hypoxic Microenvironment for the Tumor Ultrasound Diagnosis and Photodynamic Therapy. J. Biomed. Nanotechnol. 2018, 14, 2162–2171. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Guo, H.; Hou, T.; An, B.; Li, F. Portable multi-amplified temperature sensing for tumor exosomes based on MnO2/IR780 nanozyme with high photothermal effect and oxidase-like activity. Chin. Chem. Lett. 2023, 34, 107607. [Google Scholar] [CrossRef]
- Alsaab, H.O.; Alghamdi, M.S.; Alotaibi, A.S.; Alzhrani, R.; Alwuthaynani, F.; Althobaiti, Y.S.; Almalki, A.H.; Sau, S.; Iyer, A.K. Progress in Clinical Trials of Photodynamic Therapy for Solid Tumors and the Role of Nanomedicine. Cancers 2020, 12, 2793. [Google Scholar] [CrossRef]
- Inoue, H.; Tani, K. Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell Death Differ. 2014, 21, 39–49. [Google Scholar] [CrossRef]
- Galluzzi, L.; Buqué, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 2017, 17, 97–111. [Google Scholar] [CrossRef]
- Ghosh, A.; Rajdev, B.; Parihar, N.; Ponneganti, S.; Das, P.; Naidu, V.; Krishnanand, P.R.; Murty, U.; Kumar, J.; Pemmaraju, D.B. Bio-nanoconjugates of lithocholic acid/IR 780 for ROS-mediated apoptosis and optoacoustic imaging applications in breast cancer. Colloids Surf. B Biointerfaces 2023, 221, 113023. [Google Scholar] [CrossRef]
- Wan, G.; Chen, X.; Wang, H.; Hou, S.; Wang, Q.; Cheng, Y.; Chen, Q.; Lv, Y.; Chen, H.; Zhang, Q. Gene augmented nuclear-targeting sonodynamic therapy via Nrf2 pathway-based redox balance adjustment boosts peptide-based anti-PD-L1 therapy on colorectal cancer. J. Nanobiotechnol. 2021, 19, 347. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, J.; Luo, W.; Wen, C.; Mao, W.; Yang, Y.; Liu, C.; Xu, Y.; Chen, W.; Wen, L. Mitochondria targeted biomimetic platform for chemo/photodynamic combination therapy against osteosarcoma. Int. J. Pharm. 2024, 652, 123865. [Google Scholar] [CrossRef] [PubMed]
- Wan, G.; Cheng, Y.; Song, J.; Chen, Q.; Chen, B.; Liu, Y.; Ji, S.; Chen, H.; Wang, Y. Nucleus-targeting near-infrared nanoparticles based on TAT peptide-conjugated IR780 for photo-chemotherapy of breast cancer. Chem. Eng. J. 2020, 380, 122458. [Google Scholar] [CrossRef]
- Guo, X.; Mei, J.; Zhang, C. Development of Drug Dual-Carriers Delivery System with Mitochondria-Targeted and pH/Heat Responsive Capacity for Synergistic Photothermal-Chemotherapy of Ovarian Cancer. Int. J. Nanomed. 2020, 15, 301–313. [Google Scholar] [CrossRef]
- He, W.; Tu, S.; Han, J.; Cui, H.; Lai, L.; Ye, Y.; Dai, T.; Yuan, Y.; Ji, L.; Luo, J.; et al. Mild phototherapy mediated by IR780-Gd-OPN nanomicelles suppresses atherosclerotic plaque progression through the activation of the HSP27-regulated NF-κB pathway. Acta Biomater. 2024, 182, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Rustique, E.; Henry, M.; Guidetti, M.; Josserand, V.; Sancey, L.; Boutet, J.; Coll, J.-L. Targeting tumors with cyclic RGD-conjugated lipid nanoparticles loaded with an IR780 NIR dye: In vitro and in vivo evaluation. Int. J. Pharm. 2017, 532, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Yuan, A.; Zhao, X.; Lian, H.; Zhuang, J.; Chen, W.; Zhang, Q.; Liu, G.; Zhang, S.; Cao, W.; et al. Self-assembled tumor-targeting hyaluronic acid nanoparticles for photothermal ablation in orthotopic bladder cancer. Acta Biomater. 2017, 53, 427–438. [Google Scholar] [CrossRef]
- Tian, H.; Zhang, J.; Zhang, H.; Jiang, Y.; Song, A.; Luan, Y. Low side-effect and heat-shock protein-inhibited chemo-phototherapy nanoplatform via co-assembling strategy of biotin-tailored IR780 and quercetin. Chem. Eng. J. 2020, 382, 123043. [Google Scholar] [CrossRef]
- Cheng, Y.; Hou, Y.; Ye, Z.; Qiu, C.; Li, S.; Li, L.; Lin, Y.; Chen, N.; Yao, Y.; Jiang, Z.; et al. Photothermal nanocomposite reactivate “immune-hot” for triple-negative breast cancer treatment via glutamine metabolism reprograming. Colloids Surf. B Biointerfaces 2025, 245, 114268. [Google Scholar] [CrossRef]
- Tan, Y.-N.; Li, Y.-P.; Huang, J.-D.; Luo, M.; Li, S.-S.; Lee, A.W.-M.; Hu, F.-Q.; Guan, X.-Y. Thermal-sensitive lipid nanoparticles potentiate anti-PD therapy through enhancing drug penetration and T lymphocytes infiltration in metastatic tumor. Cancer Lett. 2021, 522, 238–254. [Google Scholar] [CrossRef]
- Zhang, B.; Ding, Z.; Wen, X.; Song, G.; Luo, Q. Salinomycin and IR780-loaded upconversion nanoparticles influence biological behavior of liver cancer stem cells by persistently activating the MAPK signaling pathway. Exp. Cell Res. 2024, 434, 113865. [Google Scholar] [CrossRef]
- Far, H.R.; Amiri, M.; Elyasigorji, Z.; Heydari, E.; Saviz, M.; Faraji-Dana, R.; Solouk, A.; Moeini, M. Photothermal Oxygen-Releasing IR780/CaO2 Nanoplatform for Enhanced and On-Demand Photodynamic Therapy. ACS Appl. Nano Mater. 2024, 7, 23627–23640. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, X.; Liu, S.; Yan, H.; Ji, J.; Xi, Y.; Yang, X.; Zhai, G. NIR-triggerable ROS-responsive cluster-bomb-like nanoplatform for enhanced tumor penetration, phototherapy efficiency and antitumor immunity. Biomaterials 2021, 278, 121135. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, Y.; Xu, Y.; Ren, X.; Zhou, S.; Shang, Q.; Jiang, Y.; Luan, Y. Molecular engineering of anti-PD-L1 peptide and photosensitizer for immune checkpoint blockade photodynamic-immunotherapy. Chem. Eng. J. 2020, 400, 125995. [Google Scholar] [CrossRef]
- Wang, T.; Chen, G.; Zhang, S.; Li, D.; Wei, G.; Zhao, X.; Liu, Y.; Ding, D.; Zhang, X. Steerable Microneedles Enabling Deep Delivery of Photosensitizers and CRISPR/Cas9 Systems for Effective Combination Cancer Therapy. Nano Lett. 2023, 23, 7990–7999. [Google Scholar] [CrossRef] [PubMed]
- Melo, B.L.; Lima-Sousa, R.; Alves, C.G.; Ferreira, P.; Moreira, A.F.; Correia, I.J.; de Melo-Diogo, D. Nanomedicine: Sulfobetaine Methacrylate-Albumin-Coated Graphene Oxide Incorporating IR780 for Enhanced Breast Cancer Phototherapy. Nanomedicine 2021, 16, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.G.; Lima-Sousa, R.; Melo, B.L.; Ferreira, P.; Moreira, A.F.; Correia, I.J.; de Melo-Diogo, D. Poly (2-Ethyl-2-Oxazoline)–IR780 Conjugate Nanoparticles for Breast Cancer Phototherapy. Nanomedicine 2022, 17, 2057–2072. [Google Scholar] [CrossRef]
- Tan, H.; Tian, Y.; Yang, H.; Liu, Z.; Liang, X.; Li, B.; Cheng, W. Oxygen-sufficient lipid nanobubbles combined with UTMD for enhanced sonodynamic therapy of Hep-G2 cells. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 1796–1806. [Google Scholar] [CrossRef]
- Wei, M.; Wang, X.; Mo, Y.; Kong, C.; Zhang, M.; Qiu, G.; Tang, Z.; Chen, J.; Wu, F. Combined Effects of Anti-PD-L1 and Nanosonodynamic Therapy on HCC Immune Activation in Mice: An Investigation. Int. J. Nanomed. 2024, 19, 7215–7236. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, H.; Guo, Y.; Yu, S.; Sun, J.; Wang, H.; Zhao, Y.; Chen, X.; Shen, H.; Geng, J.; et al. A Glucose Metabolic Intervention Nanoplatform for Enhanced Chemodynamic Therapy and Sensitized Photothermal Therapy of Hepatocellular Carcinoma. ACS Appl. Mater. Interfaces 2023, 15, 25437–25451. [Google Scholar] [CrossRef]
- Zhang, A.; Gao, A.; Zhou, C.; Xue, C.; Zhang, Q.; De La Fuente, J.M.; Cui, D. Confining Prepared Ultrasmall Nanozymes Loading ATO for Lung Cancer Catalytic Therapy/Immunotherapy. Adv. Mater. 2023, 35, e2303722. [Google Scholar] [CrossRef]
- Lee, J.; Jeong, L.; Jung, E.; Ko, C.; Seon, S.; Noh, J.; Lee, D. Thrombus targeting aspirin particles for near infrared imaging and on-demand therapy of thrombotic vascular diseases. J. Control. Release 2019, 304, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.; Bongcaron, V.; Nguyen, T.K.; Jirwanka, Y.; Maluenda, A.; Walsh, A.P.G.; Palasubramaniam, J.; Hulett, M.D.; Srivastava, R.; Bobik, A.; et al. An Ultrasound-Responsive Theranostic Cyclodextrin-Loaded Nanoparticle for Multimodal Imaging and Therapy for Atherosclerosis. Small 2022, 18, e2200967. [Google Scholar] [CrossRef]
- Refaat, A.; del Rosal, B.; Bongcaron, V.; Walsh, A.P.G.; Pietersz, G.; Peter, K.; Moulton, S.E.; Wang, X. Activated Platelet-Targeted IR780 Immunoliposomes for Photothermal Thrombolysis. Adv. Funct. Mater. 2023, 33, 2209019. [Google Scholar] [CrossRef]
- Wang, C.; Song, X.; Li, P.; Sun, S.; Su, J.; Liu, S.; Wei, W. Multifunctional Nanocarrier for Synergistic Treatment of Alzheimer’s Disease by Inhibiting β-Amyloid Aggregation and Scavenging Reactive Oxygen Species. ACS Appl. Mater. Interfaces 2024, 16, 27127–27138. [Google Scholar] [CrossRef]
- Zhang, C.; Zheng, J.; Chen, W.; Yang, W.; Tan, X.; Fan, X.; Shen, G.; Qu, L.; Chen, Z.; Shi, C. Mitochondrial-targeting fluorescent small molecule IR-780 alleviates radiation-induced brain injury. Brain Res. 2023, 1805, 148285. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, C.; Yan, J.; Lu, Z.; Shi, L.; Zhang, Y.; Lin, J.; Cao, Y.; Pei, R. A responsive nanoplatform with molecular and structural imaging capacity for assisting accurate diagnosis of early rheumatoid arthritis. Int. J. Biol. Macromol. 2024, 271, 132514. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Liu, W.; Li, Z.; Wang, B.; Chitrakar, B.; Xiong, W.; Liu, Y.; Zeng, Z. Photothermal and selective microbial inactivation behaviors of gluconamide-coated IR780 nanoparticles. Colloids Surf. B Biointerfaces 2023, 222, 113126. [Google Scholar] [CrossRef]
- Tan, L.; Li, J.; Liu, X.; Cui, Z.; Yang, X.; Zhu, S.; Li, Z.; Yuan, X.; Zheng, Y.; Yeung, K.W.K.; et al. Rapid Biofilm Eradication on Bone Implants Using Red Phosphorus and Near-Infrared Light. Adv. Mater. 2018, 30, e1801808. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, M.; Jia, Y.; Gao, T.; Deng, L.; Gong, T.; Zhang, Z.; Cao, X.; Fu, Y. Adipocyte-targeted delivery of rosiglitazone with localized photothermal therapy for the treatment of diet-induced obesity in mice. Acta Biomater. 2024, 181, 317–332. [Google Scholar] [CrossRef]
- Yuan, A.; Qiu, X.; Tang, X.; Liu, W.; Wu, J.; Hu, Y. Self-assembled PEG-IR-780-C13 micelle as a targeting, safe and highly-effective photothermal agent for in vivo imaging and cancer therapy. Biomaterials 2015, 51, 184–193. [Google Scholar] [CrossRef]
- Yang, G.-G.; Pan, Z.-Y.; Zhang, D.-Y.; Cao, Q.; Ji, L.-N.; Mao, Z.-W. Precisely Assembled Nanoparticles against Cisplatin Resistance via Cancer-Specific Targeting of Mitochondria and Imaging-Guided Chemo-Photothermal Therapy. ACS Appl. Mater. Interfaces 2020, 12, 43444–43455. [Google Scholar] [CrossRef] [PubMed]
- Dash, B.S.; Lu, Y.-J.; Pejrprim, P.; Lan, Y.-H.; Chen, J.-P. Hyaluronic acid-modified, IR780-conjugated and doxorubicin-loaded reduced graphene oxide for targeted cancer chemo/photothermal/photodynamic therapy. Biomater. Adv. 2022, 136, 212764. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Zhang, J.; Yan, F.; Lu, Z.; Huang, J.; Pan, C.; Yuan, J.; Zheng, W.; Zhang, K.; Wei, D.; et al. Synthesis of IR-780 dye-conjugated abiraterone for prostate cancer imaging and therapy. Int. J. Oncol. 2016, 49, 1911–1920. [Google Scholar] [CrossRef] [PubMed]
- Palao-Suay, R.; Martín-Saavedra, F.M.; Aguilar, M.R.; Escudero-Duch, C.; Martín-Saldaña, S.; Parra-Ruiz, F.J.; Rohner, N.A.; Thomas, S.N.; Vilaboa, N.; Román, J.S. Photothermal and photodynamic activity of polymeric nanoparticles based on α-tocopheryl succinate-RAFT block copolymers conjugated to IR-780. Acta Biomater. 2017, 57, 70–84. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, K.; Chen, Y.; Liu, Y.; Tang, J.; Zhang, X.; Liu, J. Engineering Diselenide-IR780 Homodimeric Nanoassemblies with Enhanced Photodynamic and Immunotherapeutic Effects for Triple-Negative Breast Cancer Treatment. ACS Nano 2023, 17, 22553–22570. [Google Scholar] [CrossRef]
- Cai, X.; Wang, M.; Mu, P.; Jian, T.; Liu, D.; Ding, S.; Luo, Y.; Du, D.; Song, Y.; Chen, C.-L.; et al. Sequence-Defined Nanotubes Assembled from IR780-Conjugated Peptoids for Chemophototherapy of Malignant Glioma. Research 2021, 2021, 9861384. [Google Scholar] [CrossRef]
- Shi, J.; Tian, H.; Peng, L.; Huang, C.; Nice, E.C.; Zou, B.; Zhang, H. A nanoplatform reshaping intracellular osmolarity and redox homeostasis against colorectal cancer. J. Control. Release 2022, 352, 766–775. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, S.; Zhao, X.; Chang, L.; Hu, Y.; Chen, Z.; Mei, X.; Chen, D. Preparation of NIR-sensitive, photothermal and photodynamic multi-functional Mxene nanosheets for laryngeal cancer therapy by regulating mitochondrial apoptosis. Mater. Des. 2022, 220, 110887. [Google Scholar] [CrossRef]
- Yang, J.; Yang, M.; Wang, Q.; Luo, Q.; Wang, Y.; Sun, J.; Liu, J.; Chen, J.; Mao, J.; Yin, H.; et al. A photosensitive modification of recombinant Salmonella carrying shRNA-PD-L1 promotes host immunity against poorly immunogenic tumors. Chem. Eng. J. 2024, 500, 157034. [Google Scholar] [CrossRef]
- Yuan, P.; Luo, Y.; Ma, L. NIR-triggered hydrogel with dynamic stiffness via ion chelation to modulate macrophage phenotypes. J. Polym. Sci. 2022, 60, 3176–3185. [Google Scholar] [CrossRef]
- Liu, D.; Ma, L.; An, Y.; Li, Y.; Liu, Y.; Wang, L.; Guo, J.; Wang, J.; Zhou, J. Thermoresponsive Nanogel-Encapsulated PEDOT and HSP70 Inhibitor for Improving the Depth of the Photothermal Therapeutic Effect. Adv. Funct. Mater. 2016, 26, 4749–4759. [Google Scholar] [CrossRef]
- Shramova, E.I.; Kotlyar, A.B.; Lebedenko, E.N.; Deyev, S.M.; Proshkina, G.M. Near-infrared activated cyanine dyes as agents for photothermal therapy and diagnosis of tumors. Acta Naturae 2020, 12, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.G.; Lima-Sousa, R.; Melo, B.L.; Moreira, A.F.; Correia, I.J.; de Melo-Diogo, D. Heptamethine Cyanine-Loaded Nanomaterials for Cancer Immuno-Photothermal/Photodynamic Therapy: A Review. Pharmaceutics 2022, 14, 1015. [Google Scholar] [CrossRef] [PubMed]
- Gournaris, E.; Park, W.; Cho, S.; Bentrem, D.J.; Larson, A.C.; Kim, D.-H. Near-Infrared Fluorescent Endoscopic Image-Guided Photothermal Ablation Therapy of Colorectal Cancer Using Dual-Modal Gold Nanorods Targeting Tumor-Infiltrating Innate Immune Cells in a Transgenic TS4 CRE/APCloxΔ468 Mouse Model. ACS Appl. Mater. Interfaces 2019, 11, 21353–21359. [Google Scholar] [CrossRef]
- Harlaar, N.J.; Koller, M.; de Jongh, S.J.; van Leeuwen, B.L.; Hemmer, P.H.; Kruijff, S.; van Ginkel, R.J.; Been, L.B.; de Jong, J.S.; Kats-Ugurlu, G.; et al. Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colorectal origin: A single-centre feasibility study. Lancet Gastroenterol. Hepatol. 2016, 1, 283–290. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fialho, M.C.P.; de Oliveira, M.A.; Machado, M.G.C.; Lacerda, C.M.; Mosqueira, V.C.F. IR780-Based Nanotheranostics and In Vivo Effects: A Review. J. Nanotheranostics 2025, 6, 8. https://doi.org/10.3390/jnt6010008
Fialho MCP, de Oliveira MA, Machado MGC, Lacerda CM, Mosqueira VCF. IR780-Based Nanotheranostics and In Vivo Effects: A Review. Journal of Nanotheranostics. 2025; 6(1):8. https://doi.org/10.3390/jnt6010008
Chicago/Turabian StyleFialho, Márcia Célia Pacheco, Maria Alice de Oliveira, Marina Guimarães Carvalho Machado, Carlos Marchiorio Lacerda, and Vanessa Carla Furtado Mosqueira. 2025. "IR780-Based Nanotheranostics and In Vivo Effects: A Review" Journal of Nanotheranostics 6, no. 1: 8. https://doi.org/10.3390/jnt6010008
APA StyleFialho, M. C. P., de Oliveira, M. A., Machado, M. G. C., Lacerda, C. M., & Mosqueira, V. C. F. (2025). IR780-Based Nanotheranostics and In Vivo Effects: A Review. Journal of Nanotheranostics, 6(1), 8. https://doi.org/10.3390/jnt6010008