When Stereochemistry Raised Its Ugly Head in Coordination Chemistry—An Appreciation of Howard Flack
Abstract
:1. Introduction
2. Chirality
2.1. Through a Glass, Darkly
2.2. Some Definitions
"Lacking all symmetry elements (other than the trivial one of a one-fold axis of symmetry), i.e., belonging to the symmetry point group C1. The term has been used loosely (and incorrectly) to describe the absence of a rotation–reflection axis (alternating axis) in a molecule, i.e., as meaning chiral, and this usage persists in the traditional terms asymmetric carbon atom, asymmetric synthesis, asymmetric induction, etc".
"The geometric property of a rigid object (or spatial arrangement of points or atoms) of being non-superposable on its mirror image; such an object has no symmetry elements of the second kind (a mirror plane, σ = S1, a centre of inversion, i = S2, a rotation-reflection axis, S2n). If the object is superposable on its mirror image the object is described as being achiral."
3. The Importance of Chirality in Coordination Chemistry
3.1. It all Began with Werner
3.2. Non-Crystallographic Approaches to Determining the Absolute Configuration of Metal Complexes
4. A Brief History of Crystallography
4.1. X-rays—The Early Days
4.2. From X-rays to Chemical Crystallography
4.3. Initial Approaches to the Phase Problem
4.4. The Bijvoet Method
5. Chirality and Crystallography
5.1. Absolutism
5.2. Chiral Space Groups and Chiral Molecules
5.3. The Flack Parameter
5.4. Some Musings on Racemates, Spontaneous Resolution and Other Complexities
6. Chiral Coordination Compounds
6.1. The First Absolute Determination
6.2. The Influence of Flack
7. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Allen, F.H.; Rogers, D. A reference list of organic structures whose absolute configurations have been determined by X-ray fluorescence. Chem. Commun. 1966, 838–841. [Google Scholar] [CrossRef]
- Allen, F.H.; Neidle, S.; Rogers, D. A reference list of organic structures whose absolute configurations have been determined by X-ray methods. Part 2. Chem. Commun. 1968, 308–310. [Google Scholar] [CrossRef]
- Allen, F.H.; Neidle, S.; Rogers, D. A reference list of organic structures whose absolute configurations have been determined by X-ray methods. Part 3. J. Chem. Soc. D 1969, 452–454. [Google Scholar] [CrossRef]
- Neidle, S.; Rogers, D.; Allen, F.H. A reference list of organic structures whose absolute configurations have been determined by X-ray methods. Part IV. J. Chem. Soc. C 1970, 2340. [Google Scholar] [CrossRef]
- Lightner, D.A. Chapter 5 Determination of Absolute Configuration by Cd. Applications of the Octant Rule and the Exciton Chirality Rule. In Analytical Applications of Circular Dichroism; Purdie, N., Brittain, H.G., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 131–174. [Google Scholar]
- Flack, H.D. On enantiomorph-polarity estimation. Acta Crystallogr. Sect. A Found. Crystallogr. 1983, 39, 876–881. [Google Scholar] [CrossRef]
- Yiu, Y. The Mirror and Painting in Early Renaissance Texts. Early Sci. Med. 2005, 10, 187–210. [Google Scholar] [CrossRef]
- Carroll, L. Through the Looking Glass, and What Alice Found There; Macmillan and Co.: London, UK, 1871. [Google Scholar]
- van’t Hoff, J.H. Sur les Formules de Structure dans L’Espace. Arch. Neerl. Sci. Exactes Nat. 1874, 9, 445. [Google Scholar]
- van’t Hoff, J.H. Voorstel Tot Uitbreiding Der Tegenwoordige in De Scheikunde Gebruikte Structuurformules in De Ruimte, Benevens Een Daarmee Samenhangende Opmerking Omtrent Het Verband Tusschen Optisch Actief Vermogen En Chemische Constitutie Van Organische Verbindingen; Greven: Utrecht, The Netherlands, 1874. [Google Scholar]
- Le Bel, J.A. Sur les relations qui existent entre les formules atomiques des corps organiques et le pouvoir rotatoire de leurs dissolutions. Bull. Soc. Chim. Fr. 1874, 22, 337–347. [Google Scholar]
- Riddell, F.; Robinson, M.J. J.H. van’t Hoff and J.A. Le Bel — their historical context. Tetrahedron 1974, 30, 2001–2007. [Google Scholar] [CrossRef]
- Ramberg, P.J. Chemical Structure, Spatial Arrangement; Routledge: London, UK, 1988. [Google Scholar]
- Drayer, D.E. The Early History of Stereochemistry: From the Discovery of Molecular Asymmetry and the First Resolution of a Racemate By Pasteur to the Asymmetrical Chiral Carbon of Van’t Hoff and Le Bel. In Drug Stereochemistry: Analytical Methods and Pharmacology, 3rd ed.; Jóźwiak, K., Lough, W.J., Wainer, I.W., Eds.; Informa Healthcare: London, UK, 2012; pp. 1–16. [Google Scholar]
- Drayer, D.E. The Early History of Stereochemistry: From the Discovery of Molecular Asymmetry and the First Resolution of a Racemate by Pasteur to the Asymmetrical Chiral Carbon of Van’t Hoff and Le Bel. Clin. Res. Regulat. Aff. 2001, 18, 181–203. [Google Scholar] [CrossRef]
- Meijer, E.W.; van’t Hoff, J.H. Hundred Years of Impact on Stereochemistry in The Netherlands. Angew. Chem. Int. Ed. 2001, 40, 3783–3789. [Google Scholar] [CrossRef]
- Cintas, P. On the Origin of Tetrahedral Carbon: A Case for Philosophy of Chemistry? Found. Chem. 2002, 4, 149–161. [Google Scholar] [CrossRef]
- Ochiai, H. Philosophical Foundations of Stereochemistry. HYLE 2015, 21, 1–18. [Google Scholar]
- Kelvin, W.T. The Molecular Tactics of a Crystal; Clarendon Press: Oxford, UK, 1894. [Google Scholar]
- Purdie, T. Resolution of lactic acid into its optically active components. J. Chem. Soc. Trans. 1893, 63, 1143–1157. [Google Scholar] [CrossRef] [Green Version]
- Kipping, F.S.; Pope, W.J. Studies of the terpenes and allied compounds. The sulphonic derivatives of camphor. Part I. J. Chem. Soc. Trans. 1893, 63, 548–604. [Google Scholar] [CrossRef] [Green Version]
- Einhorn, A. Ueber die Beziehungen des Cocaïns zum Atropin. Ber. Dtsch. Chem. Ges. 1890, 23, 1338–1344. [Google Scholar] [CrossRef] [Green Version]
- Zelinsky, N. Ueber die Stereoisomerie der Dimethyldioxyglutarsäuren. Ber. Dtsch. Chem. Ges. 1891, 24, 4006–4017. [Google Scholar] [CrossRef] [Green Version]
- Gal, J. Carl Friedrich Naumann and the introduction of enantio terminology: A review and analysis on the 150th anniversary. Chirality 2007, 19, 89–98. [Google Scholar] [CrossRef]
- Naumann, C.F. Elemente Der Theoretischen Krystallographie; W. Engelmann: Leipzig, Germany, 1856. [Google Scholar]
- Schoenflies, A. Krystallsysteme Und Krystallstructur; Teubner: Leipzig, Germany, 1891. [Google Scholar]
- Moss, G.P. Basic terminology of stereochemistry (IUPAC Recommendations 1996). Pure Appl. Chem. 1996, 68, 2193–2222. [Google Scholar] [CrossRef]
- Gal, J. Louis Pasteur, Chemical Linguist: Founding the Language of Stereochemistry. Helv. Chim. Acta 2019, 102, e1900098. [Google Scholar] [CrossRef]
- Gal, J. Louis Pasteur, language, and molecular chirality. I. Background and Dissymmetry. Chirality 2011, 23, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Gal, J. Stereochemical vocabulary for structures that are chiral but not asymmetric: History, analysis, and proposal for a rational terminology. Chirality 2011, 23, 647–659. [Google Scholar] [CrossRef] [PubMed]
- Gal, J. Molecular Chirality in Chemistry and Biology: Historical Milestones. Helv. Chim. Acta 2013, 96, 1617–1657. [Google Scholar] [CrossRef]
- Gal, J. Molecular Chirality: Language, History, and Significance. In Differentiation of Enantiomers I; Schurig, V., Ed.; Springer: Cham, Switzerland, 2013; pp. 1–20. [Google Scholar]
- Larmor, J. On Electro-crystalline properties as conditioned by atomic lattices. Proc. R. Soc. Lond. Ser. A 1921, 99, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Larmor, J. The structural significance of optical rotatory quality. Rep. Br. Ass. Advmt. Sci. 1922, 351–352. [Google Scholar]
- Raman, C.V. Crystals of quartz with iridescent faces. Proc. Indian Acad. Sci. Sect. A 1950, 31A, 275–279. [Google Scholar] [CrossRef]
- Whyte, L.L. Chirality. Nature 1957, 180, 513. [Google Scholar] [CrossRef]
- Whyte, L.L. Chirality. Nature 1958, 182, 198. [Google Scholar] [CrossRef]
- Cahn, R.S.; Ingold, C.K. Specification of configuration about quadricovalent asymmetric atoms. J. Chem. Soc. 1951, 612. [Google Scholar] [CrossRef]
- Cahn, R.S.; Ingold, C.K.; Prelog, V. The specification of asymmetric configuration in organic chemistry. Experientia 1956, 12, 81–94. [Google Scholar] [CrossRef]
- Cahn, R.S.; Ingold, C.; Prelog, V. Specification of Molecular Chirality. Angew. Chem. Int. Ed. Engl. 1966, 5, 385–415. [Google Scholar] [CrossRef]
- Gal, J. The discovery of biological enantioselectivity: Louis Pasteur and the fermentation of tartaric acid, 1857--a review and analysis 150 yr later. Chirality 2008, 20, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Gal, J. When did Louis Pasteur present his memoir on the discovery of molecular chirality to the Académie des sciences? Analysis of a discrepancy. Chirality 2008, 20, 1072–1084. [Google Scholar] [CrossRef] [PubMed]
- Gal, J. In defense of Louis Pasteur: Critique of Gerald Geison’s deconstruction of Pasteur’s discovery of molecular chirality. Chirality 2019, 31, 261–282. [Google Scholar] [CrossRef]
- Mcnaught, A.D.; Wilkinson, A.; IUPAC. Compendium of Chemical Terminology, 2nd ed.; (the “Gold Book”); Blackwell Scientific Publications: Oxford, UK, 1997; Online Version (2019-) Created By S.J. Chalk; ISBN 0-9678550-9-8. [Google Scholar] [CrossRef]
- Cotton, F.A. Chemical Applications of Group Theory, 3rd; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Werner, A. Zur Kenntnis des asymmetrischen Kobaltatoms. I. Ber. Dtsch. Chem. Ges. 1911, 44, 1887–1898. [Google Scholar] [CrossRef] [Green Version]
- Werner, A. Zur Kenntnis des asymmetrischen Kobaltatoms. II. Ber. Dtsch. Chem. Ges. 1911, 44, 2445–2455. [Google Scholar] [CrossRef]
- Werner, A. Zur Kenntnis des asymmetrischen Kobaltatoms. III. Ber. Dtsch. Chem. Ges. 1911, 44, 3272–3278. [Google Scholar] [CrossRef] [Green Version]
- Werner, A. Zur Kenntnis des asymmetrischen Kobaltatoms. IV. Ber. Dtsch. Chem. Ges. 1911, 44, 3279–3284. [Google Scholar] [CrossRef] [Green Version]
- Werner, A. Zur Kenntnis des asymmetrischen Kobaltatoms. V. Ber. Dtsch. Chem. Ges. 1912, 45, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Werner, A. Über Spiegelbildisomerie bei Rhodium-Verbindungen. I. Ber. Dtsch. Chem. Ges. 1912, 45, 1228–1236. [Google Scholar] [CrossRef] [Green Version]
- Werner, A.; McCutcheon, T.P. Zur Kenntnis des asymmetrischen Kobaltatoms. VI. Ber. Dtsch. Chem. Ges. 1912, 45, 3281–3287. [Google Scholar] [CrossRef]
- Werner, A.; Shibata, Y. Zur Kenntnis des asymmetrischen Kobaltatoms. VII. Ber. Dtsch. Chem. Ges. 1912, 45, 3287–3293. [Google Scholar] [CrossRef] [Green Version]
- Werner, A. Zur Kenntnis des asymmetrischen Kobaltatoms XI. Über Oxalo-diäthylendiamin-kobaltisalze und eine neue Spaltungsmethode für racemische anorganische Verbindungen. Ber. Dtsch. Chem. Ges. 1914, 47, 2171–2182. [Google Scholar] [CrossRef]
- Werner, A.; Tschernoff, G. Zur Kenntnis des asymmetrischen Kobaltatoms. VIII. Ber. Dtsch. Chem. Ges. 1912, 45, 3294–3301. [Google Scholar] [CrossRef] [Green Version]
- Werner, A. Zur Kenntnis des asymmetrischen Kobaltatoms IX. Ber. Dtsch. Chem. Ges. 1913, 46, 3674–3683. [Google Scholar] [CrossRef]
- Werner, A. Zur Kenntnis des asymmetrischen Kobaltatoms X. Ber. Dtsch. Chem. Ges. 1914, 47, 1961–1979. [Google Scholar] [CrossRef] [Green Version]
- Werner, A. Zur Kenntnis des asymmetrischen Kobaltatoms XII. Über optische Aktivität bei kohlenstofffreien Verbindungen. Ber. Dtsch. Chem. Ges. 1914, 47, 3087–3094. [Google Scholar] [CrossRef] [Green Version]
- Jensen, W.B. Polarimeters; Oesper Museum Booklets on the History of Chemical Apparatus, University of Cincinnati: Cincinnati, OH, USA, 2014. [Google Scholar]
- Hargreaves, M.K. Optical Rotatory Dispersion: Its Nature and Origin. Nature 1962, 195, 560–566. [Google Scholar] [CrossRef]
- King, V.L. Über Spaltungsmethoden Und Ihre Anwendung Auf Komplexe Metall-Ammoniakverbindungen. Ph.D. Dissertation, University of Zürich, Zürich, Switzerland, 1912. [Google Scholar]
- Kauffman, G.B. The Discovery of Optically Active Coordination Compounds: A Milestone in Stereochemistry. Isis 1975, 66, 38–62. [Google Scholar] [CrossRef]
- Kauffman, G.B. A Stereochemical Achievement of the First Order: Alfred Werner’s Resolution of Cobalt Complexes, 85 Years Later. Bull. Hist. Chem. 1997, 20, 50–59. [Google Scholar]
- Ernst, K.H.; Berke, H. Optical activity and Alfred Werner’s coordination chemistry. Chirality 2011, 23, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Bailar, J.C.; Haslam, J.H.; Jones, E.M. The Stereochemistry of Complex Inorganic Molecules. III. The Reaction of Ammonia with levo-Dichlorodiethylenediaminocobaltic Chloride. J. Am. Chem. Soc. 1936, 58, 2226–2227. [Google Scholar] [CrossRef]
- Mathieu, J.-P. Activité optique et solubilité de quelques cobaltammines. C. R. Hebd. Seances Acad. Sci. 1934, 199, 278–280. [Google Scholar]
- Mathieu, J.-P. Configuration de quelques complexes hexacoordinés optiquement actifs. C. R. Hebd. Seances Acad. Sci. 1934, 198, 1598–1600. [Google Scholar]
- Mathieu, J.-P. Absorption, activité optique et configuration de complexes minéraux. C. R. Hebd. Seances Acad. Sci. 1935, 201, 1183–1184. [Google Scholar]
- Mathieu, J.-P. Werner complexes; optical activity and the configuration of ions of the type MA3. J. Chim. Phys. 1936, 33, 78–96. [Google Scholar] [CrossRef]
- Mathieu, J.-P. Recherches expérimentales sur le dichroisme circulaire et sur quelques applications physico-chimiques de ce phénomène. Ann. Phys. 1935, 11, 371–460. [Google Scholar] [CrossRef]
- Mathieu, J.-P. Recherches sur les complexes de Werner activité optique et configuration des ions du type MeA3. J. Chim. Phys. 1936, 3, 476–498. [Google Scholar] [CrossRef]
- Mathieu, J.-P. The Werner complexes. Optical activity and configuration of the ions containing the groups M en2 and M ox2. Bull. Soc. Chim. Fr. Mem. 1936, 3, 476–498. [Google Scholar]
- Mathieu, J.-P. The Werner complexes. Absorption of the hexacoördinates of cobalt and chromium in aqueous solution. Bull. Soc. Chim. Fr. Mem. 1936, 3, 463–475. [Google Scholar]
- Mathieu, J.-P. Experiments on the complexes of Werner. Substitution in the optically active complex chlorides. Bull. Soc. Chim. Fr. Mem. 1937, 4, 687–700. [Google Scholar]
- Mathieu, J.-P. Recent views on the stereochemistry of complex inorganic compounds. Bull. Soc. Chim. Fr.; Mem. 1938, 5, 725–805. [Google Scholar]
- Mathieu, J.-P. The Werner complexes-absorption and optical activity of cobalt compounds with a double nucleus. Bull. Soc. Chim. Fr. Mem. 1938, 5, 105–113. [Google Scholar]
- Mathieu, J.-P. Researches on Werner complexes. Cobaltammines containing optically active amino acids. Bull. Soc. Chim. Fr. Mem. 1939, 6, 873–882. [Google Scholar]
- Mathieu, J.-P. Researches on Werner complexes. Optical activity and configuration of platinum. IV. Triethylenediamine ion. Bull. Soc. Chim. Fr. Mem. 1939, 6, 1258–1259. [Google Scholar]
- Mathieu, J.-P. Activité Optique Naturelle. In Handbuch der Physik/Encyclopedia of Physics; Spektroskopie II/Spectroscopy II; Madelung, O., Ed.; Springer: Berlin/Heidelberg, Germany, 1957; pp. 333–432. [Google Scholar]
- Cotton, A. Recherches sur l’absorption et la Dispersion de la lumière par les Milieux Doués du Pouvoir Rotatoire. Ann. Chim. Phys. Sér. 7 1896, 8, 347–432. [Google Scholar] [CrossRef]
- Cotton, A. Absorption inégale des rayons circulaires droit et gauche dans certains corps actifs. C. R. Hebd. Seances Acad. Sci. 1895, 120, 989–991. [Google Scholar]
- Cotton, A. Dispersion rotatoire anomale des corps absorbants. C. R. Hebd. Seances Acad. Sci. 1895, 120, 1044–1046. [Google Scholar]
- Kuhn, W.; Bein, K. Konfiguration Und Optische Drehung Bei Anorganischen Komplexverbindungen, Z. Anorg. Allg. Chem. 1934, 216, 321–348. [Google Scholar] [CrossRef]
- Kuhn, W. Das Problem der absoluten Konfiguration optisch aktiver Stoffe. Sci. Nat. 1938, 26, 289–296. [Google Scholar] [CrossRef]
- Röntgen, W.C. Ueber eine neue Art von Strahlen. Ann. Phys. 1898, 300, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Röntgen, W.C. Ueber eine neue Art von Strahlen (Vorläufige Mittheilung). Sonderabbdruck Sitz. Würzburger Physik.Medic. Ges. 1895, 1896, 2–20. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, W.K.; Laue, M. Interferenz -Erscheinungen bei Röntgenstrahlen (mit 5 Tafeln). Sitz. Bayer. Akad. Wiss. 1912, 303–322. [Google Scholar]
- Laue, M. Eine quantitative Prüfung der Theorie für die Interferenz-Erscheinungen bei Röntgenstrahlen. Sitz. Bayer. Akad. Wiss. 1912, 363–373. [Google Scholar]
- Eckert, M. Max von Laue and the discovery of X-ray diffraction in 1912. Ann. Phys. 2012, 524, A83–A85. [Google Scholar] [CrossRef]
- Hendrickson, W.A. Evolution of diffraction methods for solving crystal structures. Acta Crystallogr. Sect. A Found. Crystallogr. 2013, 69, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Ewald, P.P. Fifty Years of X-Ray Diffraction; Oosthoek’s Uitgevers Mij. N.V.: Utrecht, The Netherlands, 1962; ISBN 978-1-4615-9961-6. [Google Scholar]
- Bragg, W.L. The Development of X-Ray Analysis; G. Bell: London, UK, 1975; ISBN 0486673162. [Google Scholar]
- Bacon, G.E. X-Ray and Neutron Diffraction, 1st ed.; Ter Haar, D., Ed.; Pergamon: Oxford, UK, 1966; ISBN 0080119999. [Google Scholar]
- Hildebrandt, G. The Discovery of the Diffraction of X-rays in Crystals—A Historical Review. Cryst. Res. Technol. 1993, 28, 747–766. [Google Scholar] [CrossRef]
- Bijvoet, J.M.; Bernal, J.D.; Patterson, A.L. Forty years of X-ray diffraction. Nature 1952, 169, 949–950. [Google Scholar] [CrossRef]
- Bijvoet, J.M.; Burgers, W.G.; Hägg, G. (Eds.) Early Papers on Diffraction of X-Rays By Crystals; Oosthoek’s Uitgevers Mij. N.V.: Utrecht, The Netherlands, 1969; Volume 1, ISBN 978-1-4615-6880-3. [Google Scholar]
- Bragg, H.B.; Bragg, W.L. The structure of the diamond. Proc. R. Soc. Lond. Ser. A 1913, 89, 277–291. [Google Scholar] [CrossRef]
- Bragg, W.L.; Bragg, W.L. The Structure of the Diamond. Nature 1913, 91, 557. [Google Scholar] [CrossRef]
- Bragg, W.L. The Specular Reflection of X-rays. Nature 1912, 90, 410. [Google Scholar] [CrossRef] [Green Version]
- Bragg, W.L.; James, R.W.; Bosanquet, C.H. The intensity of reflexion of X-rays by rock-salt.—Part II. Philos. Mag. (1798–1977) 1921, 42, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Bragg, W.L.; James, R.W.; Bosanquet, C.H. The intensity of reflexion of X-rays by rock-salt. Philos. Mag. (1798–1977) 1921, 41, 309–337. [Google Scholar] [CrossRef] [Green Version]
- Bragg, W.L.; James, R.W.; Bosanquet, C.H. The distribution of electrons around the nucleus in the sodium and chlorine atoms. Philos. Mag. (1798–1977) 1922, 44, 433–449. [Google Scholar] [CrossRef]
- Bragg, W.L. The Diffraction of Short Electromagnetic Waves by a Crystal. Proc. Camb. Philos. Soc. 1913, 17, 43–57. [Google Scholar]
- Bragg, W.L. The structure of some crystals as indicated by their diffraction of X-rays. Proc. R. Soc. Lond. Ser. A 1913, 89, 248–277. [Google Scholar] [CrossRef] [Green Version]
- Bragg, W.L. The analysis of crystals by the X-ray spectrometer. Proc. R. Soc. Lond. Ser. A 1914, 89, 468–489. [Google Scholar] [CrossRef] [Green Version]
- Darwin, C.G. LXXVIII. The theory of X-ray reflexion. Part II. Philos. Mag. (1798–1977) 1914, 27, 675–690. [Google Scholar] [CrossRef] [Green Version]
- Darwin, C.G. XXXIV. The theory of X-ray reflexion. Philos. Mag. (1798–1977) 1914, 27, 315–333. [Google Scholar] [CrossRef] [Green Version]
- Bragg, W.L.; Darwin, C.G.; James, R.W. LXXXI. The intensity of reflexion of X-rays by crystals. Philos. Mag. (1798–1977) 1926, 1, 897–922. [Google Scholar] [CrossRef]
- Friedel, G. Sur les symétries cristallines que peut révéler la diffraction des rayons X. C.R. Acad. Sci. Paris 1913, 157, 1533–1536. [Google Scholar]
- Bragg, W.L. The determination of parameters in crystal structures by means of Fourier series. Proc. R. Soc. Lond. Ser. A 1929, 123, 537–559. [Google Scholar] [CrossRef] [Green Version]
- Patterson, A.L. A Fourier Series Method for the Determination of the Components of Interatomic Distances in Crystals. Phys. Rev. 1934, 46, 372–376. [Google Scholar] [CrossRef]
- Patterson, A.L. A Direct Method for the Determination of the Components of Interatomic Distances in Crystals. Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 1935, 90, 517–542. [Google Scholar] [CrossRef]
- Robertson, J.M. X-ray analysis and application of Fourier series methods to molecular structures. Rep. Prog. Phys. 1937, 4, 332–367. [Google Scholar] [CrossRef]
- Cork, J.M. The crystal structure of some of the alums. Philos. Mag. (1798–1977) 1927, 4, 688–698. [Google Scholar] [CrossRef]
- Robertson, J.M. An X-ray study of the phthalocyanines. Part II. Quantitative structure determination of the metal-free compound. J. Chem. Soc. 1936, 1195–1209. [Google Scholar] [CrossRef]
- Robertson, J.M.; Woodward, I. An X-ray study of the phthalocyanines. Part III. Quantitative structure determination of nickel phthalocyanine. J. Chem. Soc. 1937, 219–230. [Google Scholar] [CrossRef]
- Robertson, J.M.; Woodward, I. An X-ray study of the phthalocyanines. Part IV. Direct quantitative analysis of the platinum compound. J. Chem. Soc. 1940, 36–48. [Google Scholar] [CrossRef]
- Nishikawa, S.; Matukawa, K. Hemihedry of Zincblende and X-Ray Reflexion. Proc. Imp. Acad. Jpn. 1928, 4, 96–97. [Google Scholar] [CrossRef]
- Coster, D.; Knol, K.S.; Prins, J.A. Unterschiede in der Intensität der Röntgenstrahlen-reflexion an den beiden 111-Flächen der Zinkblende. Z. Phys. 1930, 63, 345–369. [Google Scholar] [CrossRef]
- Bokhoven, C.; Schoone, J.C.; Bijvoet, J.M. The Fourier synthesis of the crystal structure of strychnine sulphate pentahydrate. Acta Crystallogr. 1951, 4, 275–280. [Google Scholar] [CrossRef]
- Bijvoet, J.M. Phase determination in direct Fourier synthesis of crystal structure. Proc. Sect. Sci. K. Ned. Akad. Wet. 1949, 52, 313–314. [Google Scholar]
- Bokhoven, C.; Schoone, J.C.; Bijvoet, J.M. On the crystal structure of strychnine sulphate and selenate. III. [001] projection. Proc. Sect. Sci. K. Ned. Akad. Wet. 1949, 52, 120–121. [Google Scholar]
- Bokhoven, C.; Schoone, J.C.; Bijvoet, J.M. On the crystal structure of strychnine sulphate and selenate. I. Cell dimensions and spacegroup. Proc. Sect. Sci. K. Ned. Akad. Wet. 1947, 50, 825. [Google Scholar]
- Bokhoven, C.; Schoone, J.C.; Bijvoet, J.M. On the crystal structure of strychnine sulphate and selenate. II. [010] projection and structure formula. Proc. Sect. Sci. K. Ned. Akad. Wet. 1948, 51, 990. [Google Scholar]
- Groenewege, M.P.; Peerdeman, A.F. Johannes Martin Bijvoet. 23 January 1892–4 March 1980. Biogr. Mem. Fellows R. Soc. 1983, 29, 26–41. [Google Scholar] [CrossRef]
- Bijvoet, J.M.; van Bommel, A.J.; Peerdeman, A.F. Determination of absolute configuration of optically active compounds by means of X-rays. Proc. Sect. Sci. K. Ned. Akad. Wet. 1951, 54, 16–19. [Google Scholar] [CrossRef]
- Bijvoet, J.M.; Peerdeman, A.F.; van Bommel, A.J. Determination of the Absolute Configuration of Optically Active Compounds by Means of X-Rays. Nature 1951, 168, 271–272. [Google Scholar] [CrossRef]
- Bijvoet, J.M.; Peerdeman, A.F.; van Bommel, A.J. Structure of Optically Active Compounds in the Solid State. Nature 1954, 173, 888–891. [Google Scholar] [CrossRef]
- Mathieson, A.M. The determination of absolute configuration by the use of an internal reference asymmetric centre. Acta Crystallogr. 1956, 9, 317. [Google Scholar] [CrossRef]
- Karle, J.; Hauptman, H. The phases and magnitudes of the structure factors. Acta Crystallogr. 1950, 3, 181–187. [Google Scholar] [CrossRef]
- Karle, J.; Hauptman, H. A theory of phase determination for the four types of non-centrosymmetric space groups 1P222, 2P22, 3P12, 3P22. Acta Crystallogr. 1956, 9, 635–651. [Google Scholar] [CrossRef]
- Woolfson, M.M. Direct methods in crystallography. Rep. Prog. Phys. 1971, 34, 369–434. [Google Scholar] [CrossRef]
- Ladd, M.F.C.; Palmer, R.A. (Eds.) Theory and Practice of Direct Methods in Crystallography; Springer: New York, NY, USA, 1980. [Google Scholar]
- Jones, P.G. The determination of absolute structure. I. Some experiences with the Rogers η refinement. Acta Crystallogr. Sect. A Found. Crystallogr. 1984, 40, 660–662. [Google Scholar] [CrossRef]
- Flack, H.D. Absolute-structure determination: Past, present and future. Chimia 2014, 68, 26–30. [Google Scholar] [CrossRef]
- Sohncke, L. Entwickelung Einer Theorie Der Krystallstruktur; B.G. Teubner: Leipzig, Germany, 1879. [Google Scholar]
- Pidcock, E. Achiral molecules in non-centrosymmetric space groups. Chem. Commun. 2005, 3457–3459. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, W.C. Significance tests on the crystallographic R factor. Acta Crystallogr. 1965, 18, 502–510. [Google Scholar] [CrossRef]
- Rogers, D. On the application of Hamilton’s ratio test to the assignment of absolute configuration and an alternative test. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1981, 37, 734–741. [Google Scholar] [CrossRef]
- CCDC the Cambridge Structural Database (CSD). Available online: https://www.ccdc.cam.ac.uk (accessed on 20 July 2020).
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Flack, H. Chiral and Achiral Crystal Structures. Helv. Chim. Acta 2003, 86, 905–921. [Google Scholar] [CrossRef]
- Eliel, E.L.; Wilen, S.H.; Mander, L.N. Stereochemistry of Organic Compounds; Wiley-Interscience: New York, NY, USA, 1994. [Google Scholar]
- von Zelewsky, A. Stereochemistry of Coordination Compounds; John Wiley & Sons Inc.: Chichester, UK, 1996. [Google Scholar]
- Hawkins, C.J. Absolute Configuration of Metal Complexes; Wiley-Interscience: New York, NY, USA, 1971. [Google Scholar]
- Amouri, H.; Gruselle, M. Chirality in Transition Metal Chemistry; John Wiley & Sons Inc.: Chichester, UK, 2008. [Google Scholar]
- Gillard, R.D.; Mitchell, P.R. The Absolute Configuration of Transition Metal Complexes. In Structure and Bonding; Springer: Berlin/Heidelberg, Germany, 1970; Volume 7, pp. 46–86. [Google Scholar]
- Saito, Y. Absolute configurations of metal complexes determined by X-ray analysis. Coord. Chem. Rev. 1974, 13, 305–337. [Google Scholar] [CrossRef]
- Saito, Y. Absolute Configuration of Transition Metal Complexes. In ACS Symposium Series: Stereochemistry of Optically Active Transition Metal Compounds; American Chemical Society: Washington, DC, USA, 1980; pp. 13–42. [Google Scholar]
- Buckingham, D.A.; Sargeson, A.M. Conformational Analysis and Steric Effects in Metal Chelates. In Topics in Stereochemistry; Allinger, N.L., Eliel, E.L., Eds.; Wiley: Chichester, UK, 1971; Volume 6, pp. 219–277. [Google Scholar]
- Saito, Y.; Nakatsu, K.; Shiro, M.; Kuroya, H. Determination of the absolute configuration of optically active complex ion, [Coen3]3+, by means of X-rays. Acta Crystallogr. 1955, 8, 729–730. [Google Scholar] [CrossRef]
- Zhong, J.; Zhang, L.; August, D.P.; Whitehead, G.F.S.; Leigh, D.A. Self-Sorting Assembly of Molecular Trefoil Knots of Single Handedness. J. Am. Chem. Soc. 2019, 141, 14249–14256. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, S.; Nieto, R.A.; Wu, T.; Feng, P.; Bu, X. A tale of three carboxylates: Cooperative asymmetric crystallization of a three-dimensional microporous framework from achiral precursors. Angew. Chem. Int. Ed. Engl. 2010, 49, 1267–1270. [Google Scholar] [CrossRef]
- Zheng, W.; Wei, Y.; Xiao, X.; Wu, K. Spontaneous asymmetric crystallization of a quartz-type framework from achiral precursors. Dalton Trans. 2012, 41, 3138–3140. [Google Scholar] [CrossRef]
- Yuan, S.; Deng, Y.-K.; Xuan, W.-M.; Wang, X.-P.; Wang, S.-N.; Dou, J.-M.; Sun, D. Spontaneous chiral resolution of a 3D (3,12)-connected MOF with an unprecedented ttt topology consisting of cubic [Cd4(μ3-OH)4] clusters and propeller-like ligands. Cryst. Eng. Comm. 2014, 16, 3829–3833. [Google Scholar] [CrossRef]
- Watkin, D.J.; Cooper, R.I. Why direct and post-refinement determinations of absolute structure may give different results. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 661–683. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Constable, E.C.; Housecroft, C.E. When Stereochemistry Raised Its Ugly Head in Coordination Chemistry—An Appreciation of Howard Flack. Chemistry 2020, 2, 759-776. https://doi.org/10.3390/chemistry2030049
Constable EC, Housecroft CE. When Stereochemistry Raised Its Ugly Head in Coordination Chemistry—An Appreciation of Howard Flack. Chemistry. 2020; 2(3):759-776. https://doi.org/10.3390/chemistry2030049
Chicago/Turabian StyleConstable, Edwin C., and Catherine E. Housecroft. 2020. "When Stereochemistry Raised Its Ugly Head in Coordination Chemistry—An Appreciation of Howard Flack" Chemistry 2, no. 3: 759-776. https://doi.org/10.3390/chemistry2030049
APA StyleConstable, E. C., & Housecroft, C. E. (2020). When Stereochemistry Raised Its Ugly Head in Coordination Chemistry—An Appreciation of Howard Flack. Chemistry, 2(3), 759-776. https://doi.org/10.3390/chemistry2030049