Environmental Applications of Zeolites: Hydrophobic Sn-BEA as a Selective Gas Sensor for Exhaust Fumes
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Physicochemical Characterization of Zeolite Samples
3.2. Detection of CO, CO2, NO, NO2 by Sn-BEA and DeAl-BEA Zeolite-Based Sensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO-OEHT. WHO AIR Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide; WHO: Geneva, Switzerland, 2006.
- European Environment Agency (EEA). Air Quality in Europe—2020 Report; EEA: Copenhagen, Denmark, 2020. [Google Scholar]
- Sassykova, L.R.; Aubakirov, Y.A.; Sendilvelan, S.; Tashmukhambetova, Z.K.; Faizullaeva, M.F.; Bhaskar, K.; Batyrbayeva, A.A.; Ryskaliyeva, R.G.; Tyussyupova, B.B.; Zhakupova, A.A.; et al. The Main Components of Vehicle Exhaust Gases and Their Effective Catalytic Neutralization. Orient. J. Chem. 2019, 35, 110–127. [Google Scholar] [CrossRef]
- Department for Environment Food and Rural Affairs. What Are the Causes of Air Pollution Pollutant Description and Main UK Sources Potential Effects on Health/Environment Particulate. 2011. Available online: https://uk-air.defra.gov.uk/assets/documents/What_are_the_causes_of_Air_Pollution.pdf (accessed on 17 January 2023).
- Wadhwani, P.; Yadav, S. Gas Sensors Market Size & Share—Global Forecasts 2026; GMI Pulse: Selbyville, DE, USA, 2020. [Google Scholar]
- Fergus, J.W. Materials for high temperature electrochemical NOx gas sensors. Sens. Actuators B Chem. 2007, 121, 652–663. [Google Scholar] [CrossRef]
- Park, C.O.; Fergus, J.W.; Miura, N.; Park, J.; Choi, A. Solid-state electrochemical gas sensors. Ionics 2009, 15, 261–284. [Google Scholar] [CrossRef]
- Gardon, M.; Guilemany, J.M. A review on fabrication, sensing mechanisms and performance of metal oxide gas sensors. J. Mater. Sci. Mater. Electron. 2013, 24, 1410–1421. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal oxide gas sensors: Sensitivity and influencing factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Dinh, T.-V.; Choi, I.-Y.; Son, Y.-S.; Kim, J.-C. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sens. Actuators B 2016, 231, 529–538. [Google Scholar] [CrossRef]
- Cejka, J.; van Bekkum, H.; Corma, A.; Schuth, F. (Eds.) Introduction to Zeolite Science and Practice; Elsevier Science: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Talapaneni, S.N.; Grand, J.; Thomas, S.; Ahmad, H.A.; Mintova, S. Nanosized Sn-MFI zeolite for selective detection of exhaust gases. Mater. Des. 2016, 99, 574–580. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J.; Long, Y. Zeolite-based Materials for Gas Sensors. Sensors 2006, 6, 1751–1764. [Google Scholar] [CrossRef]
- Sahner, K.; Hagen, G.; Schönauer, D.; Reiß, S.; Moos, R. Zeolites—Versatile materials for gas sensors. Solid State Ionics 2008, 179, 2416–2423. [Google Scholar] [CrossRef]
- Yang, P.; Ye, X.; Lau, C.; Li, Z.; Liu, X.; Lu, J. Design of Efficient Zeolite Sensor Materials for n-Hexane. Anal. Chem. 2007, 79, 1425–1432. [Google Scholar] [CrossRef]
- Corma, A.; Camblor, M.A.; Esteve, P.; Martínez, A.; Pérez-Pariente, J. Activity of Ti-Beta Catalyst for the Selective Oxidation of Alkenes and Alkanes. J. Catal. 1994, 145, 151–158. [Google Scholar] [CrossRef]
- Zhou, W.; Sun, P.; Navrotsky, A.; Kim, S.H.; Hong, S.B. Formation and dehydration enthalpies of gallosilicate materials with different framework topologies and Ga contents. Microporous Mesoporous Mater. 2009, 121, 200–207. [Google Scholar] [CrossRef]
- Bui, L.; Luo, H.; Gunther, W.R.; Román-Leshkov, Y. Domino Reaction Catalyzed by Zeolites with Brønsted and Lewis Acid Sites for the Production of γ-Valerolactone from Furfural. Angew. Chem. Int. Ed. 2013, 52, 8022–8025. [Google Scholar] [CrossRef]
- Luo, H.Y.; Consoli, D.F.; Gunther, W.R.; Román-Leshkov, Y. Investigation of the reaction kinetics of isolated Lewis acid sites in Beta zeolites for the Meerwein–Ponndorf–Verley reduction of methyl levulinate to γ-valerolactone. J. Catal. 2014, 320, 198–207. [Google Scholar] [CrossRef]
- Lewis, J.D.; Van de Vyver, S.; Román-Leshkov, Y. Acid–Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization. Angew. Chem. Int. Ed. 2015, 54, 9835–9838. [Google Scholar] [CrossRef] [PubMed]
- Corma, A.; Nemeth, L.T.; Renz, M.; Valencia, S. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations. Nature 2001, 412, 423–425. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.J.; Gounder, R.; Bhawe, Y.; Orazov, M.; Bermejo-Deval, R.; Davis, M.E. Solid State NMR Characterization of Sn-Beta Zeolites that Catalyze Glucose Isomerization and Epimerization. Top. Catal. 2015, 58, 435–440. [Google Scholar] [CrossRef]
- Bermejo-De Val, R.; Assary, R.S.; Nikolla, E.; Moliner, M.; Roman-Leshkov, Y.; Hwang, S.-J.; Palsdottir, A.; Silverman, D.; Lobo, R.F.; Curtiss, L.A.; et al. Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. Proc. Natl. Acad. Sci. USA 2012, 109, 9727–9732. [Google Scholar] [CrossRef]
- Moliner, M.; Román-Leshkov, Y.; Davis, M.E. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proc. Natl. Acad. Sci. USA 2010, 107, 6164–6168. [Google Scholar] [CrossRef]
- Roman-Leshkov, Y.; Moliner, M.; Labinger, J.A.; Davis, M.E. Mechanism of glucose isomerization using a solid lewis acid catalyst in water. Angew. Chem. Int. Ed. 2010, 49, 8954–8957. [Google Scholar] [CrossRef] [PubMed]
- Taarning, E.; Saravanamurugan, S.; Holm, M.S.; Xiong, J.; West, R.M.; Christensen, C.H. Zeolite-Catalyzed Isomerization of Triose Sugars. ChemSusChem 2009, 2, 625–627. [Google Scholar] [CrossRef]
- Dijkmans, J.; Gabriëls, D.; Dusselier, M.; de Clippel, F.; Vanelderen, P.; Houthoofd, K.; Malfliet, A.; Pontikes, Y.; Sels, B.F. Productive sugar isomerization with highly active Sn in dealuminated β zeolites. Green Chem. 2013, 15, 2777–2785. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, H.; Jiang, J.; Liu, X.; Ding, J.; Wu, P. Postsynthesis of FAU-type stannosilicate as efficient heterogeneous catalyst for Baeyer-Villiger oxidation. Appl. Catal. A Gen. 2016, 519, 155–164. [Google Scholar] [CrossRef]
- Harris, J.W.; Liao, W.-C.; Di Iorio, J.R.; Henry, A.M.; Ong, T.-C.; Comas-Vives, A.; Copéret, C.C.; Gounder, R.; Davidson, C.D. Molecular Structure and Confining Environment of Sn Sites in Single-Site Chabazite Zeolites. Chem. Mater. 2017, 29, 8824–8837. [Google Scholar] [CrossRef]
- Skeels, G.W.; Flanigen, E.M. Zeolite Chemistry VII-Framework Substitution for Aluminum in Zeolites VIA Secondary Synthesis Treatment. Stud. Surf. Sci. Catal. 1989, 49, 331–344. [Google Scholar]
- Gunther, W.R.; Wang, Y.; Ji, Y.; Michaelis, V.K.; Hunt, S.T.; Griffin, R.G.; Román-Leshkov, Y. Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift. Nat. Commun. 2012, 3, 1109. [Google Scholar] [CrossRef] [PubMed]
- Yakimov, A.V.; Kolyagin, Y.G.; Tolborg, S.; Vennestrøm, P.N.R.; Ivanova, I.I. Accelerated synthesis of Sn-BEA in fluoride media: Effect of H2O content in the gel. New J. Chem. 2016, 40, 4367–4374. [Google Scholar] [CrossRef]
- Chang, C.-C.; Wang, Z.; Dornath, P.; Cho, H.J.; Fan, W. Rapid synthesis of Sn-Beta for the isomerization of cellulosic sugars. RSC Adv. 2012, 2, 10475–10477. [Google Scholar] [CrossRef]
- Harris, J.W.; Cordon, M.J.; Di Iorio, J.R.; Vega-Vila, J.C.; Ribeiro, F.H.; Gounder, R. Titration and quantification of open and closed Lewis acid sites in Sn-Beta zeolites that catalyze glucose isomerization. J. Catal. 2016, 335, 141–154. [Google Scholar] [CrossRef]
- Boronat, M.; Concepción, P.; Corma, A.; Renz, M.; Valencia, S. Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies. J. Catal. 2005, 234, 111–118. [Google Scholar] [CrossRef]
- Sushkevich, V.L.; Ivanova, I.I.; Yakimov, A.V. Revisiting Acidity of SnBEA Catalysts by Combined Application of FTIR Spectroscopy of Different Probe Molecules. J. Phys. Chem. C 2017, 121, 11437–11447. [Google Scholar] [CrossRef]
- Lewis, J.D.; Ha, M.; Luo, H.; Faucher, A.; Michaelis, V.K.; Román-Leshkov, Y. Distinguishing Active Site Identity in Sn-Beta Zeolites Using 31P MAS NMR of Adsorbed Trimethylphosphine Oxide. ACS Catal. 2018, 8, 3076–3086. [Google Scholar] [CrossRef]
- Josephson, T.R.; Jenness, G.R.; Vlachos, D.G.; Caratzoulas, S. Distribution of open sites in Sn-Beta zeolite. Microporous Mesoporous Mater. 2017, 245, 45–50. [Google Scholar] [CrossRef]
- Freitas, C.; Barrow, N.; Zholobenko, V. Accessibility and Location of Acid Sites in Zeolites as Probed by Fourier Transform Infrared Spectroscopy and Magic Angle Spinning Nuclear Magnetic Resonance. Johns. Matthey Technol. Rev. 2018, 62, 279–290. [Google Scholar] [CrossRef]
- Zholobenko, V.; Freitas, C.; Jendrlin, M.; Bazin, P.; Travert, A.; Thibault-Starzyk, F. Probing the acid sites of zeolites with pyridine: Quantitative AGIR measurements of the molar absorption coefficients. J. Catal. 2020, 385, 52–60. [Google Scholar] [CrossRef]
- Kobler, J.; Abrevaya, H.; Mintova, S.; Bein, T. High-Silica Zeolite-β: From Stable Colloidal Suspensions to Thin Films. J. Phys. Chem. C 2008, 112, 14274–14280. [Google Scholar] [CrossRef]
- Sushkevich, V.L.; Kots, P.A.; Kolyagin, Y.G.; Yakimov, A.V.; Marikutsa, A.V.; Ivanova, I.I. Origin of Water-Induced Brønsted Acid Sites in Sn-BEA Zeolites. J. Phys. Chem. C 2019, 123, 5540–5548. [Google Scholar] [CrossRef]
- Van de Vyver, S.; Odermatt, C.; Romero, K.; Prasomsri, T.; Román-Leshkov, Y. Solid Lewis Acids Catalyze the Carbon–Carbon Coupling between Carbohydrates and Formaldehyde. ACS Catal. 2015, 5, 972–977. [Google Scholar] [CrossRef]
- Pacheco, J.J.; Davis, M.E. Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural. Proc. Natl. Acad. Sci. USA 2014, 111, 8363–8367. [Google Scholar] [CrossRef]
- Holm, M.S.; Pagán-Torres, Y.J.; Saravanamurugan, S.; Riisager, A.; Dumesic, J.A.; Taarning, E. Sn-Beta catalysed conversion of hemicellulosic sugars. Green Chem. 2012, 14, 702–706. [Google Scholar] [CrossRef]
- Bermejo-Deval, R.; Gounder, R.; Davis, M.E. Framework and Extraframework Tin Sites in Zeolite Beta React Glucose Differently. ACS Catal. 2012, 2, 2705–2713. [Google Scholar] [CrossRef]
- Hammond, C.; Conrad, S.; Hermans, I. Simple and Scalable Preparation of Highly Active Lewis Acidic Sn-β. Angew. Chem. Int. Ed. 2012, 51, 11736–11739. [Google Scholar] [CrossRef] [PubMed]
- Treacy, M.M.J.; Higgins, J.B. (Eds.) Collection of Simulated XRD Powder Patterns for Zeolites; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Al-Ani, A.; Haslam, J.J.C.; Mordvinova, N.E.; Lebedev, O.I.; Vicente, A.; Fernandez, C.; Zholobenko, V. Synthesis of nanostructured catalysts by surfactantlating of large-pore zeolites. Nanoscale Adv. 2019, 1, 2029–2039. [Google Scholar] [CrossRef]
- Protsak, I.S.; Morozov, Y.M.; Dong, W.; Le, Z.; Zhang, D.; Henderson, I.M. A 29Si, 1H, and 13C Solid-State NMR Study on the Surface Species of Various Depolymerized Organosiloxanes at Silica Surface. Nanoscale Res. Lett. 2019, 14, 160. [Google Scholar] [CrossRef] [PubMed]
- Dubray, F.; Moldovan, S.; Kouvatas, C.; Grand, J.; Aquino, C.; Barrier, N.; Gilson, J.-P.; Nesterenko, N.; Minoux, D.; Mintova, S. Direct Evidence for Single Molybdenum Atoms Incorporated in the Framework of MFI Zeolite Nanocrystals. J. Am. Chem. Soc. 2019, 141, 8689–8693. [Google Scholar] [CrossRef]
- Zheng, A.; Liu, S.-B.; Deng, F. 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts. Chem. Rev. 2017, 117, 12475–12531. [Google Scholar] [CrossRef]
- Ohlin, L.; Berezovsky, V.; Öberg, S.; Farzaneh, A.; Holmgren, A.; Grahn, M. Effect of Water on the Adsorption of Methane and Carbon Dioxide in Zeolite Na-ZSM-5 Studied Using in Situ ATR-FTIR Spectroscopy. J. Phys. Chem. C 2016, 120, 29144–29152. [Google Scholar] [CrossRef]
- Wang, Z.-M.; Arai, T.; Kumagai, M. Cooperative and Competitive Adsorption Mechanism of NO2, NO, and H2O on H-Type Mordenite. Ind. Eng. Chem. Res. 2001, 40, 1864–1871. [Google Scholar] [CrossRef]
- Ohlin, L.; Bazin, P.; Frédé, F.; Thibault-Starzyk, F.; Hedlund, J.; Grahn, M. Adsorption of CO2, CH4, and H2O in Zeolite ZSM-5 Studied Using In Situ ATR-FTIR Spectroscopy. J. Phys. Chem. C 2013, 117, 16972–16982. [Google Scholar] [CrossRef]
- Szanyi, J.; Kwak, J.H.; Moline, R.A.; Peden, C.H.F. The adsorption of NO2 and the NO+O2 reaction on Na-Y, FAU: An in situ FTIR investigation. Phys. Chem. Chem. Phys. 2003, 5, 4045–4051. [Google Scholar] [CrossRef]
- Szanyi, J.; Kwak, J.H.; Peden, C.H.F. The Effect of Water on the Adsorption of No2 in Na- and Ba-Y, FAU Zeolites: A combined FTIR and TPD Investigation. J. Phys. Chem. B 2004, 108, 3746–3753. [Google Scholar] [CrossRef]
- Hadjiivanov, K.I. Identification of neutral and charged NxOy surface species by IR spectroscopy. Catal. Rev. Sci. Eng. 2000, 42, 71–144. [Google Scholar] [CrossRef]
- Santhosh Kumar, M.; Schwidder, M.; Grunert, W.; Bentrup, U.; Brückner, A. Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content: Part II. Assessing the function of different Fe sites by spectroscopic in situ studies. J. Catal. 2006, 239, 173–186. [Google Scholar] [CrossRef]
- Brosius, R.; Bazin, P.; Thibault-Starzyk, F.; Martens, J.A. Operando FTIR study of reaction pathways of selective catalytic reduction of NOx with decane in the presence of water on iron-exchanged MFI-type zeolite. J. Catal. 2005, 234, 191–198. [Google Scholar] [CrossRef]
- Ahrens, M.; Marie, O.; Bazin, P.; Daturi, M. Fe-H-BEA and Fe-H-ZSM-5 for NO2 removal from ambient air—A detailed in situ and operando FTIR study revealing an unexpected positive water-effect. J. Catal. 2010, 271, 1–11. [Google Scholar] [CrossRef]
BEA | DeAl-BEA | Sn-BEA | |
---|---|---|---|
Si/Al ratio | 19.2 | 497 | 1541 |
Si/Sn ratio | - | - | 64 |
w (H2O) (%) | 16 | 14 | 1 |
Particle size (μm) | 0.5–2 | 0.5–2 | 0.5–2 |
N2 ads-des (m2/g) | 640 | 572 | 504 |
BAS (μmol/g) | 395 | 16 | 3 |
LAS (μmol/g) | 106 | 6 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jendrlin, M.; Grand, J.; Lakiss, L.; Dubray, F.; Bazin, P.; El Fallah, J.; Mintova, S.; Zholobenko, V. Environmental Applications of Zeolites: Hydrophobic Sn-BEA as a Selective Gas Sensor for Exhaust Fumes. Chemistry 2023, 5, 334-347. https://doi.org/10.3390/chemistry5010025
Jendrlin M, Grand J, Lakiss L, Dubray F, Bazin P, El Fallah J, Mintova S, Zholobenko V. Environmental Applications of Zeolites: Hydrophobic Sn-BEA as a Selective Gas Sensor for Exhaust Fumes. Chemistry. 2023; 5(1):334-347. https://doi.org/10.3390/chemistry5010025
Chicago/Turabian StyleJendrlin, Martin, Julien Grand, Louwanda Lakiss, Florent Dubray, Philippe Bazin, Jaafar El Fallah, Svetlana Mintova, and Vladimir Zholobenko. 2023. "Environmental Applications of Zeolites: Hydrophobic Sn-BEA as a Selective Gas Sensor for Exhaust Fumes" Chemistry 5, no. 1: 334-347. https://doi.org/10.3390/chemistry5010025
APA StyleJendrlin, M., Grand, J., Lakiss, L., Dubray, F., Bazin, P., El Fallah, J., Mintova, S., & Zholobenko, V. (2023). Environmental Applications of Zeolites: Hydrophobic Sn-BEA as a Selective Gas Sensor for Exhaust Fumes. Chemistry, 5(1), 334-347. https://doi.org/10.3390/chemistry5010025