Potentiometric Determination of Free Fluoride Content in Wines from Dalmatia Region (Croatia)—A Comparative Study of Direct Potentiometry and Standard Addition Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Solutions
2.2. Wine Samples
2.3. Apparatus
2.4. Potentiometric Measurenments
2.5. Statistical Analysis
3. Results and Discussion
3.1. Buffer Influence in Fluoride Determination
3.2. Method Evaluation
3.3. Fluoride Content in Wine Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Budisa, N.; Kubyshkin, V.; Schulze-Makuch, D. Fluorine-Rich Planetary Environments as Possible Habitats for Life. Life 2014, 4, 374–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Štepec, D.; Ponikvar-Svet, M. Fluoride in Human Health and Nutrition. Acta Chim. Slov. 2019, 66, 255–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbier, O.; Arreola-Mendoza, L.; Del Razo, L.M. Molecular mechanisms of fluoride toxicity. Chem. Biol. Interact. 2010, 188, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Jaudenes, J.R.; Hardisson, A.; Paz, S.; Rubio, C.; Gutiérrez, A.J.; Burgos, A.; Revert, C. Potentiometric Determination of Fluoride Concentration in Beers. Biol. Trace Elem. Res. 2018, 181, 178–183. [Google Scholar] [CrossRef]
- Dhar, V.; Bhatnagar, M. Physiology and toxicity of fluoride. Indian J. Dent. Res. 2009, 20, 350. [Google Scholar] [CrossRef]
- Gutiérrez, A.J. Potentiometric Determination of Fluoride in Vinegars. Open Access J. Toxicol. 2018, 2, 555589. [Google Scholar] [CrossRef]
- Paz, S.; Jaudenes, J.R.; Gutiérrez, A.J.; Rubio, C.; Hardisson, A.; Revert, C. Determination of Fluoride in Organic and Non-organic Wines. Biol. Trace Elem. Res. 2017, 178, 153–159. [Google Scholar] [CrossRef]
- Perumal, E.; Paul, V.; Govindarajan, V.; Panneerselvam, L. A brief review on experimental fluorosis. Toxicol. Lett. 2013, 223, 236–251. [Google Scholar] [CrossRef]
- Miya, K.S.; Jha, V.K. Determination of Fluoride in Various Samples Using a Fluoride Selective Electrode. J. Anal. Sci. Methods Instrum. 2020, 10, 97–103. [Google Scholar] [CrossRef]
- Guth, S.; Hüser, S.; Roth, A.; Degen, G.; Diel, P.; Edlund, K.; Eisenbrand, G.; Engel, K.-H.; Epe, B.; Grune, T.; et al. Toxicity of fluoride: Critical evaluation of evidence for human developmental neurotoxicity in epidemiological studies, animal experiments and in vitro analyses. Arch. Toxicol. 2020, 94, 1375–1415. [Google Scholar] [CrossRef]
- Rodríguez Gómez, M.; Hardisson de La Torre, A.; Burgos Ojeda, A.; Álvarez Marante, R.; Díaz-Flores, L. Fluoride levels in wines of the Canary Islands (Spain). Eur. Food Res. Technol. 2003, 216, 145–149. [Google Scholar] [CrossRef]
- Trombella, B.E.; Caputi, A.; Musso, D.; Ribeiro, A.; Ryan, T.; Andrade, G.; Burns, G.; Eder, R.; Gallego, R.G.; Garcia, J.; et al. Determination of Fluoride in Wine by Fluoride Selective Ion Electrode, Standard Addition Method: Collaborative Study. J. AOAC Int. 2003, 86, 1203–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kage, S.; Kudo, K.; Nishida, N.; Ikeda, H.; Yoshioka, N.; Ikeda, N. Determination of fluoride in human whole blood and urine by gas chromatography-mass spectrometry. Forensic Toxicol. 2008, 26, 23–26. [Google Scholar] [CrossRef]
- Pagliano, E.; Meija, J.; Ding, J.; Sturgeon, R.E.; D’Ulivo, A.; Mester, Z. Novel Ethyl-Derivatization Approach for the Determination of Fluoride by Headspace Gas Chromatography/Mass Spectrometry. Anal. Chem. 2013, 85, 877–881. [Google Scholar] [CrossRef] [Green Version]
- Bayón, M.M.; Garcia, A.R.; Ignacio García Alonso, J.; Sanz-Medel, A. Indirect determination of trace amounts of fluoride in natural waters by ion chromatography: A comparison of on-line post-column fluorimetry and ICP-MS detectors. Analyst 1999, 124, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Ozbek, N.; Akman, S. Method Development for the Determination of Fluorine in Water Samples via Molecular Absorption of CaF Using A High-Resolution Continuum Source Electrothermal Atomic Absorption Spectrophotometer. E3S Web Conf. 2013, 1, 05006. [Google Scholar] [CrossRef]
- Morés, S.; Monteiro, G.C.; Santos, F.D.S.; Carasek, E.; Welz, B. Determination of fluorine in tea using high-resolution molecular absorption spectrometry with electrothermal vaporization of the calcium mono-fluoride CaF. Talanta 2011, 85, 2681–2685. [Google Scholar] [CrossRef] [Green Version]
- Noh, J.-H.; Coetzee, P. Evaluation of the potentiometric determination of trace fluoride in natural and drinking water with a fluoride ISE. Water SA 2007, 33, 519–529. [Google Scholar]
- Dhillon, A.; Nair, M.; Kumar, D. Analytical methods for determination and sensing of fluoride in biotic and abiotic sources: A review. Anal. Methods 2016, 8, 5338–5352. [Google Scholar] [CrossRef]
- Du, J.; Sheng, C.; Wang, Y.; Zhang, H.; Jiang, K. Determination of trace fluoride in water samples by silylation and gas chromatography/mass spectrometry analysis. Rapid Commun. Mass Spectrom. 2021, 35, e9089. [Google Scholar] [CrossRef]
- Guo, W.; Jin, L.; Hu, S.; Guo, Q. Method Development for the Determination of Total Fluorine in Foods by Tandem Inductively Coupled Plasma Mass Spectrometry with a Mass-Shift Strategy. J. Agric. Food Chem. 2017, 65, 3406–3412. [Google Scholar] [CrossRef] [PubMed]
- Moirana, R.L.; Kivevele, T.; Mkunda, J.; Mtei, K.; Machunda, R. Trends towards Effective Analysis of Fluorinated Compounds Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). J. Anal. Methods Chem. 2021, 2021, 8837315. [Google Scholar] [CrossRef]
- Moro, T.T.; Arcênio, P.P.; de Oliveira, F.J.S.; Chaves, E.S.; Bascuñan, V.L.A.F.; Maranhão, T.d.A. Determination of extractable fluorine from residue of oil and gas industry by HR-CS MAS applying toxicity characteristic leaching procedure. J. Fluor. Chem. 2021, 252, 109917. [Google Scholar] [CrossRef]
- Akman, S.; Welz, B.; Ozbek, N.; Pereira, É.R. CHAPTER 5. Fluorine Determination in Milk, Tea and Water by High-Resolution, High-Temperature Molecular Absorption Spectrometry. In Food and Nutritional Components in Focus; Royal Society of Chemistry: London, UK, 2015; pp. 75–95. [Google Scholar]
- Ünal, E.İ.; Kenar, A.; Aksu, M.L.; Tastekin, M. Spectrophotometric methods for the determination of fluoride ion using indole-3-acetic acid interaction with iron(III). Turkish J. Chem. 2019, 43, 415–423. [Google Scholar] [CrossRef]
- Xu, D.H.; Liu, S.H.; Chen, P. Fluoride Determination by Ion Chromatography in Fluorocarbon Coatings. Key Eng. Mater. 2017, 726, 50–54. [Google Scholar] [CrossRef]
- Ozbek, N.; Akman, S. Determination of fluorine in Turkish wines by molecular absorbance of CaF using a high resolution continuum source atomic absorption spectrometer. LWT Food Sci. Technol. 2015, 61, 112–116. [Google Scholar] [CrossRef]
- Švarc-Gajić, J.; Stojanović, Z.; Vasiljević, I.; Kecojević, I. Determination of fluorides in pharmaceutical products for oral hygiene. J. Food Drug Anal. 2013, 21, 384–389. [Google Scholar] [CrossRef] [Green Version]
- Radić, J.; Bralić, M.; Kolar, M.; Genorio, B.; Prkić, A.; Mitar, I. Development of the New Fluoride Ion-Selective Electrode Modified with FexOy Nanoparticles. Molecules 2020, 25, 5213. [Google Scholar] [CrossRef]
- Reshetnyak, V.Y.; Nesterova, O.V.; Admakin, O.I.; Dobrokhotov, D.A.; Avertseva, I.N.; Dostdar, S.A.; Khakimova, D.F. Evaluation of free and total fluoride concentration in mouthwashes via measurement with ion-selective electrode. BMC Oral Health 2019, 19, 251. [Google Scholar] [CrossRef] [Green Version]
- Radić, J.; Buljac, M.; Genorio, B.; Gričar, E.; Kolar, M. A Novel Reduced Graphene Oxide Modified Carbon Paste Electrode for Potentiometric Determination of Trihexyphenidyl Hydrochloride in Pharmaceutical and Biological Matrices. Sensors 2021, 21, 2955. [Google Scholar] [CrossRef]
- Radić, J.; Perović, D.; Gričar, E.; Kolar, K. Potentiometric Determination of Maprotiline Hydrochloride in Pharmaceutical and Biological Matrices Using a Novel Modified Carbon Paste Electrode. Sensors 2022, 22, 9201. [Google Scholar] [CrossRef] [PubMed]
- Jurić, A.; Prkić, A.; Giljanović, J.; Brkljača, M.; Sokol, V.; Bošković, P.; Vukušić, T. Determination of total fluoride content in teas by using fluoride ion-selective electrode. Int. J. Electrochem. Sci. 2014, 9, 5409–5415. [Google Scholar]
- Bralić, M.; Buljac, M.; Prkić, A.; Buzuk, M.; Brinić, S. Determination fluoride in products for oral hygiene using flow-injection (FIA) and continuous analysis (CA) with home-made FISE. Int. J. Electrochem. Sci. 2015, 10, 2253–2264. [Google Scholar]
- Spano, N.; Guccini, V.; Ciulu, M.; Floris, I.; Nurchi, V.M.; Panzanelli, A.; Pilo, M.I.; Sanna, G. Free fluoride determination in honey by ion-specific electrode potentiometry: Method assessment, validation and application to real unifloral samples. Arab. J. Chem. 2018, 11, 492–500. [Google Scholar] [CrossRef]
- Galvis-Sánchez, A.C.; Santos, J.R.; Rangel, A.O.S.S. Standard addition flow method for potentiometric measurements at low concentration levels: Application to the determination of fluoride in food samples. Talanta 2015, 219, 121341. [Google Scholar] [CrossRef]
- Patel, S.; Omid, N.; Zohoori, F.V.; Maguire, A.; Waldron, K.J.; Valentine, R.A. Comparison of total ionic strength adjustment buffers iii and iv in the measurement of fluoride concentration of teas. Nutr. Health 2018, 24, 111–119. [Google Scholar] [CrossRef]
- Forino, M.; Picariello, L.; Rinaldi, A.; Moio, L.; Gambuti, A. How must pH affects the level of red wine phenols. LWT 2020, 129, 109546. [Google Scholar] [CrossRef]
- Gambuti, A.; Picariello, L.; Forino, M.; Errichiello, F.; Guerriero, A.; Moio, L. How the Management of pH during Winemaking Affects Acetaldehyde, Polymeric Pigments and Color Evolution of Red Wine. Appl. Sci. 2022, 12, 2555. [Google Scholar] [CrossRef]
- Fabjanowicz, M.; Kosek, K.; Płotka-Wasylka, J.; Namieśnik, J. Evaluation of the influence of grapevine growing conditions on wine quality. Mon. Fur Chem. 2019, 150, 1579–1584. [Google Scholar] [CrossRef]
Sample | Sort | Vineyards Origin | pH | |||
---|---|---|---|---|---|---|
dp-AcB_DS | dp-TISAB_DS | sam-TISAB_DS | ||||
R1(PDO) | Plavac mali, Babica, Ljutun | Kaštela | 3.58 | 0.14 a ± 10.0% | 0.19 b ± 6.3% | 0.17 b ± 4.3% |
R2(PDO) | Plavac mali | Kaštela | 3.47 | 0.19 a ± 8.1% | 0.22 b ± 5.2% | 0.21 a,b ± 3.6% |
R3(PDO) | Plavac mali | Vis | 3.65 | 0.19 a ± 8.1% | 0.23 b ± 4.5% | 0.22 b ± 3.0% |
R4(PDO) | Trnjak | Vrgorac | 3.27 | 0.12 a ± 12.0% | 0.16 b ± 6.3% | 0.16 b ± 4.2% |
R5(PDO) | Trnjak | Vrgorac | 3.78 | 0.15 a ± 10.5% | 0.20 b ± 5.2% | 0.19 b ± 3.7% |
R6 | more red varieties | Imotski | 3.19 | 0.18 a ± 9.1% | 0.20 b ± 5.5% | 0.19 a,b ± 3.9% |
R7(PDO) | Plavac mali, Babica, Crljenak | Kaštela | 3.64 | 0.15 a ± 10.1% | 0.17 b ± 5.7% | 0.18 b ± 4.1% |
R8(PDO) | Babić 30%, Plavina 18.6%, Crljenak 5.5%, Syrah 8.9%, Merlot 35.6% | Šibenik | 3.43 | 0.14 ns ± 10.6% | 0.14 ns ± 6.0% | 0.14 ns ± 4.2% |
R9 | Plavina 70%, Merlot 13%, Cabernet Sauvignon 17% | Šibenik | 3.42 | 0.14 ns ± 9.9% | 0.15 ns ± 6.0% | 0.15 ns ± 4.5% |
R10(PDO) | Plavina 70%, Merlot 30% | Drniš | 3.53 | 0.14 a ± 9.2% | 0.21 b ± 4.8% | 0.20 b ± 3.2% |
R11(PDO) | Lasina | Skradin | 3.49 | 0.16 ns ± 9.4% | 0.15 ns ± 6.5% | 0.15 ns ± 4.4% |
R12(PDO) | Plavac mali | Vis | 3.69 | 0.15 a ± 9.8% | 0.17 b ± 6.0% | 0.17 b ± 4.5% |
R13(PDO) | Plavac mali | Vis | 3.38 | 0.18 a ± 8.9% | 0.24 b ± 5.0% | 0.23 b ± 3.7% |
R14(PDO) | Plavac mali | Kaštela | 3.92 | 0.16 a ± 9.2% | 0.25 b ± 4.8% | 0.23 b ± 3.2% |
R15(PDO) | Plavac mali | Kaštela | 3.44 | 0.19 a ± 8.3% | 0.22 b ± 5.0% | 0.21 a,b ± 3.3% |
R16(PDO) | Babica | Kaštela | 3.84 | 0.23 ns ± 8.1% | 0.22 ns ± 5.1% | 0.22 ns ± 3.4% |
R17(PDO) | Babić | Primošten | 3.78 | 0.07 a ± 12.0% | 0.11 b ± 6.8% | 0.10 b ± 4.3% |
R18 | Plavac mali 52%, Syrah 35%, Cabernet Sauvignon 13% | Brač | 3.40 | 0.19 a ± 8.5% | 0.26 b ± 4.3% | 0.24 b ± 2.9% |
W1 | A mixture of white varieties | Sinj | 3.05 | 0.12 a ± 11.0% | 0.15 b ± 6.1% | 0.13 a,b ± 4.4% |
W2 | Debit | Vrgorac | 3.10 | 0.15 a ± 10.6% | 0.17 b ± 6.0% | 0.16 a,b ± 4.4% |
W3(PDO) | Pošip | Kaštela | 3.60 | 0.17 ns ± 9.4% | 0.19 ns ± 5.1% | 0.18 ns ± 3.5% |
W4(PDO) | Debit | Drniš | 3.32 | 0.14 a ± 8.7% | 0.18 b ± 5.9% | 0.18 b ± 3.7% |
W5(PDO) | Rukatac | Vrgorac | 1.98 | 0.16 a ± 8.3% | 0.20 b ± 5.9% | 0.20 b ± 4.3% |
W6 | 70% Kujunđuša, 15% Okatica, Maraština | Imotski | 3.41 | 0.12 a ± 11.4% | 0.15 b ± 5.4% | 0.14 b ± 3.5% |
W7(PDO) | Pošip | Kaštela | 3.60 | 0.16 a ± 8.3% | 0.21 b ± 6.0% | 0.22 b ± 4.1% |
W8 | Debit 56%, Maraština 44% | Šibenik | 3.40 | 0.15 a ± 8.6% | 0.18 b ± 6.1% | 0.17 b ± 4.0% |
W9(PDO) | Vugava | Vis | 3.71 | 0.17 a ± 8.3% | 0.24 b ± 4.5% | 0.22 c ± 3.4% |
W10(PDO) | Kujunđuša | Imotski | 3.35 | 0.10 a ± 10.9% | 0.17 b ± 5.7% | 0.16 b ± 4.4% |
W11 | Kujunđuša | Imotski | 3.48 | 0.18 a ± 8.9% | 0.22 b ± 4.7% | 0.21 b ± 3.6% |
W12 | Kuč | Brač | 3.02 | 0.19 a ± 8.0% | 0.25 b ± 4.9% | 0.23 b ± 3.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buljac, M.; Bralić, M.; Vrca, I.; Kolar, M.; Radić, J. Potentiometric Determination of Free Fluoride Content in Wines from Dalmatia Region (Croatia)—A Comparative Study of Direct Potentiometry and Standard Addition Method. Chemistry 2023, 5, 31-40. https://doi.org/10.3390/chemistry5010003
Buljac M, Bralić M, Vrca I, Kolar M, Radić J. Potentiometric Determination of Free Fluoride Content in Wines from Dalmatia Region (Croatia)—A Comparative Study of Direct Potentiometry and Standard Addition Method. Chemistry. 2023; 5(1):31-40. https://doi.org/10.3390/chemistry5010003
Chicago/Turabian StyleBuljac, Maša, Marija Bralić, Ivana Vrca, Mitja Kolar, and Josip Radić. 2023. "Potentiometric Determination of Free Fluoride Content in Wines from Dalmatia Region (Croatia)—A Comparative Study of Direct Potentiometry and Standard Addition Method" Chemistry 5, no. 1: 31-40. https://doi.org/10.3390/chemistry5010003
APA StyleBuljac, M., Bralić, M., Vrca, I., Kolar, M., & Radić, J. (2023). Potentiometric Determination of Free Fluoride Content in Wines from Dalmatia Region (Croatia)—A Comparative Study of Direct Potentiometry and Standard Addition Method. Chemistry, 5(1), 31-40. https://doi.org/10.3390/chemistry5010003