Crotonaldehyde Adsorption on Cu-Pt Surface Alloys: A Quantum Mechanics Study
Abstract
1. Introduction
2. Methods
3. Results
3.1. Energetics and Structural Properties
3.2. Vibrational Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bond, G.C. Metal-Catalysed Reactions of Hydrocarbons; Springer: New York, NY, USA, 2005. [Google Scholar]
- Sanfilippo, D.; Rylander, P.N. Hydrogenation and Dehydrogenation. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012; Volume 18, pp. 451–471. [Google Scholar]
- Ma, Z.; Zaera, F. Heterogeneous Catalysis by Metals. In Encyclopedia of Inorganic and Bioinorganic Chemistry; Scott, R.A., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2014; p. eibc0079. [Google Scholar]
- Sinfelt, J.H. Bimetallic Catalysts: Discoveries, Concepts and Applications; John Wiley and Sons: New York, NY, USA, 1983; p. 164. [Google Scholar]
- Ferrando, R.; Jellinek, J.; Johnston, R.L. Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles. Chem. Rev. 2008, 108, 845–910. [Google Scholar] [CrossRef]
- Yu, W.; Porosoff, M.D.; Chen, J.G. Review of Pt-Based Bimetallic Catalysis: From Model Surfaces to Supported Catalysts. Chem. Rev. 2012, 112, 5780–5817. [Google Scholar] [CrossRef]
- Meemken, F.; Baiker, A. Recent Progress in Heterogeneous Asymmetric Hydrogenation of C═O and C═C Bonds on Supported Noble Metal Catalysts. Chem. Rev. 2017, 117, 11522–11569. [Google Scholar] [CrossRef]
- Zaera, F. The Surface Chemistry of Metal-Based Hydrogenation Catalysis. ACS Catal. 2017, 7, 4947–4967. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, M.; Wang, A.; Zhang, T. Selective Hydrogenation over Supported Metal Catalysts: From Nanoparticles to Single Atoms. Chem. Rev. 2020, 120, 683–733. [Google Scholar] [CrossRef]
- Vilé, G.; Albani, D.; Almora-Barrios, N.; López, N.; Pérez-Ramírez, J. Advances in the Design of Nanostructured Catalysts for Selective Hydrogenation. ChemCatChem 2016, 8, 21–33. [Google Scholar] [CrossRef]
- Burch, R.; Garla, L.C. Platinum-tin reforming catalysts: II. Activity and selectivity in hydrocarbon reactions. J. Catal. 1981, 71, 360–372. [Google Scholar] [CrossRef]
- Joyner, R.W.; Shpiro, E.S. Alloying in platinum-based catalysts for gasoline reforming: A general structural proposal. Catal. Lett. 1991, 9, 239–243. [Google Scholar] [CrossRef]
- Delbecq, F.; Sautet, P. Influence of Sn additives on the selectivity of hydrogenation of α-β-unsaturated aldehydes with Pt catalysts: A density functional study of molecular adsorption. J. Catal. 2003, 220, 115–126. [Google Scholar] [CrossRef]
- Yang, X.; Koel, B.E. Adsorption and Reaction of Unsaturated Hydrocarbons on Sn/Pt Alloys. In Encyclopedia of Interfacial Chemistry; Wandelt, K., Ed.; Elsevier: Oxford, UK, 2018; pp. 1–10. [Google Scholar]
- Stassi, J.; Méndez, J.; Vilella, I.; de Miguel, S.; Zgolicz, P. Synthesis of PtSn nanoparticles on carbon materials by different preparation methods for selective catalytic hydrogenation of citral. Chem. Eng. Commun. 2020, 207, 1074–1091. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, B.; Guerrero-Sánchez, J.; Lee, I.; Zhou, X.; Takeuchi, N.; Zaera, F. Controlling Selectivity in Unsaturated Aldehyde Hydrogenation Using Single-Site Alloy Catalysts. ACS Catal. 2019, 9, 9150–9157. [Google Scholar] [CrossRef]
- Chen, B.; Zaera, F. Hydrogenation of Cinnamaldehyde on Cu(110) Single-Crystal Surfaces. J. Phys. Chem. C 2021, 125, 14709–14717. [Google Scholar] [CrossRef]
- Nayakasinghe, M.T.; Ponce Perez, R.; Chen, B.; Takeuchi, N.; Zaera, F. Adsorption, thermal conversion, and catalytic hydrogenation of acrolein on Cu surfaces. J. Catal. 2022, 414, 257–266. [Google Scholar] [CrossRef]
- Johansson, M.; Lytken, O.; Chorkendorff, I. The sticking probability for H2 on some transition metals at a hydrogen pressure of 1 bar. J. Chem. Phys. 2008, 128, 034706. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Falcón, L.; Viñes, F.; Notario-Estévez, A.; Illas, F. On the hydrogen adsorption and dissociation on Cu surfaces and nanorows. Surf. Sci. 2016, 646, 221–229. [Google Scholar] [CrossRef]
- Han, J.; Lu, J.; Wang, M.; Wang, Y.; Wang, F. Single Atom Alloy Preparation and Applications in Heterogeneous Catalysis. Chin. J. Chem. 2019, 37, 977–988. [Google Scholar] [CrossRef]
- Hannagan, R.T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E.C.H. Single-Atom Alloy Catalysis. Chem. Rev. 2020, 120, 12044–12088. [Google Scholar] [CrossRef]
- Zaera, F. Molecular approaches to heterogeneous catalysis. Coord. Chem. Rev. 2021, 448, 214179. [Google Scholar] [CrossRef]
- Zaera, F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive with Those of Homogeneous Catalysts? Chem. Rev. 2022, 122, 8594–8757. [Google Scholar] [CrossRef]
- Luneau, M.; Lim, J.S.; Patel, D.A.; Sykes, E.C.H.; Friend, C.M.; Sautet, P. Guidelines to Achieving High Selectivity for the Hydrogenation of α,β-Unsaturated Aldehydes with Bimetallic and Dilute Alloy Catalysts: A Review. Chem. Rev. 2020, 120, 12834–12872. [Google Scholar] [CrossRef]
- Sykes, E.C.H.; Christopher, P. Recent advances in single-atom catalysts and single-atom alloys: Opportunities for exploring the uncharted phase space in-between. Curr. Opin. Chem. Eng. 2020, 29, 67–73. [Google Scholar] [CrossRef]
- Thirumalai, H.; Kitchin, J.R. Investigating the Reactivity of Single Atom Alloys Using Density Functional Theory. Top. Catal. 2018, 61, 462–474. [Google Scholar] [CrossRef]
- Schumann, J.; Bao, Y.; Hannagan, R.T.; Sykes, E.C.H.; Stamatakis, M.; Michaelides, A. Periodic Trends in Adsorption Energies around Single-Atom Alloy Active Sites. J. Phys. Chem. Lett. 2021, 12, 10060–10067. [Google Scholar] [CrossRef] [PubMed]
- Zaera, F. In-Situ and Operando Spectroscopies for the Characterization of Catalysts and of Mechanisms of Catalytic Reactions. J. Catal. 2021, 404, 900–910. [Google Scholar] [CrossRef]
- Zafeiratos, S.; Piccinin, S.; Teschner, D. Alloys in catalysis: Phase separation and surface segregation phenomena in response to the reactive environment. Catal. Sci. Technol. 2012, 2, 1787–1801. [Google Scholar] [CrossRef]
- Gumuslu, G.; Kondratyuk, P.; Boes, J.R.; Morreale, B.; Miller, J.B.; Kitchin, J.R.; Gellman, A.J. Correlation of Electronic Structure with Catalytic Activity: H2–D2 Exchange across CuxPd1–x Composition Space. ACS Catal. 2015, 5, 3137–3147. [Google Scholar] [CrossRef]
- Simonovis, J.P.; Hunt, A.; Palomino, R.M.; Senanayake, S.D.; Waluyo, I. Enhanced Stability of Pt-Cu Single-Atom Alloy Catalysts: In Situ Characterization of the Pt/Cu(111) Surface in an Ambient Pressure of CO. J. Phys. Chem. C 2018, 122, 4488–4495. [Google Scholar] [CrossRef]
- Yang, K.; Yang, B. Identification of the Active and Selective Sites over a Single Pt Atom-Alloyed Cu Catalyst for the Hydrogenation of 1,3-Butadiene: A Combined DFT and Microkinetic Modeling Study. J. Phys. Chem. C 2018, 122, 10883–10891. [Google Scholar] [CrossRef]
- Han, T.; Li, Y.; Cao, Y.; Lee, I.; Zhou, X.; Frenkel, A.I.; Zaera, F. In situ identification of surface sites in Cu–Pt bimetallic catalysts: Gas-induced metal segregation. J. Chem. Phys. 2022, 157, 234706. [Google Scholar] [CrossRef]
- Finzel, J.; Christopher, P. Dynamic Pt Coordination in Dilute AgPt Alloy Nanoparticle Catalysts Under Reactive Environments. Top. Catal. 2022, 65, 1587–1603. [Google Scholar] [CrossRef]
- Rodriguez, J.A. Physical and Chemical Properties of Bimetallic Surfaces. Surf. Sci. Rep. 1996, 24, 223–287. [Google Scholar] [CrossRef]
- Wang, Y.; Balbuena, P.B. Design of Oxygen Reduction Bimetallic Catalysts: Ab-Initio-Derived Thermodynamic Guidelines. J. Phys. Chem. B 2005, 109, 18902–18906. [Google Scholar] [CrossRef]
- Medford, A.J.; Vojvodic, A.; Hummelshøj, J.S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J.K. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 2015, 328, 36–42. [Google Scholar] [CrossRef]
- Greiner, M.T.; Jones, T.E.; Beeg, S.; Zwiener, L.; Scherzer, M.; Girgsdies, F.; Piccinin, S.; Armbrüster, M.; Knop-Gericke, A.; Schlögl, R. Free-atom-like d states in single-atom alloy catalysts. Nat. Chem. 2018, 10, 1008–1015. [Google Scholar] [CrossRef]
- Duchesne, P.N.; Li, Z.Y.; Deming, C.P.; Fung, V.; Zhao, X.; Yuan, J.; Regier, T.; Aldalbahi, A.; Almarhoon, Z.; Chen, S.; et al. Golden single-atomic-site platinum electrocatalysts. Nat. Mater. 2018, 17, 1033–1039. [Google Scholar] [CrossRef]
- Hopper, N.; Thuening, T.; Manzi, S.; Weinert, M.; Tysoe, W.T. Binding of Oxygen on Single-Atom Sites on Au/Pd(100) Alloys with High Gold Coverages. J. Phys. Chem. C 2021, 125, 9715–9729. [Google Scholar] [CrossRef]
- Xin, H.; Vojvodic, A.; Voss, J.; Nørskov, J.K.; Abild-Pedersen, F. Effects of d-band shape on the surface reactivity of transition-metal alloys. Phys. Rev. B 2014, 89, 115114. [Google Scholar] [CrossRef]
- Han, T.; Lee, I.; Cao, Y.; Zhou, X.; Zaera, F. Thermodynamics of Carbon Monoxide Adsorption on Cu/SBA-15 Catalysts: Under Vacuum versus under Atmospheric Pressures. J. Phys. Chem. C 2022, 126, 3078–3086. [Google Scholar] [CrossRef]
- Ponec, V. Alloy catalysts: The concepts. Appl. Catal. A 2001, 222, 31–45. [Google Scholar] [CrossRef]
- Liu, P.; Nørskov, J.K. Ligand and ensemble effects in adsorption on alloy surfaces. Phys. Chem. Chem. Phys. 2001, 3, 3814–3818. [Google Scholar] [CrossRef]
- Gao, F.; Goodman, D.W. Pd-Au bimetallic catalysts: Understanding alloy effects from planar models and (supported) nanoparticles. Chem. Soc. Rev. 2012, 41, 8009–8020. [Google Scholar] [CrossRef] [PubMed]
- Trimm, D.L. Coke Formation and Minimisation During Steam Reforming Reactions. Catal. Today 1997, 37, 233–238. [Google Scholar] [CrossRef]
- Marcella, N.; Lim, J.S.; Płonka, A.M.; Yan, G.; Owen, C.J.; van der Hoeven, J.E.S.; Foucher, A.C.; Ngan, H.T.; Torrisi, S.B.; Marinkovic, N.S.; et al. Decoding reactive structures in dilute alloy catalysts. Nat. Commun. 2022, 13, 832. [Google Scholar] [CrossRef]
- Mancera, L.A.; Diemant, T.; Groß, A.; Behm, R.J. Molecular and Dissociative Hydrogen Adsorption on Bimetallic PdAg/Pd(111) Surface Alloys: A Combined Experimental and Theoretical Study. J. Phys. Chem. C 2022, 126, 3060–3077. [Google Scholar] [CrossRef]
- Lucci, F.R.; Liu, J.; Marcinkowski, M.D.; Yang, M.; Allard, L.F.; Flytzani-Stephanopoulos, M.; Sykes, E.C.H. Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit. Nat. Commun. 2015, 6, 8550. [Google Scholar] [CrossRef]
- Humbert, M.P.; Chen, J.G. Correlating hydrogenation activity with binding energies of hydrogen and cyclohexene on M/Pt(111) (M = Fe, Co, Ni, Cu) bimetallic surfaces. J. Catal. 2008, 257, 297–306. [Google Scholar] [CrossRef]
- Lv, C.-Q.; Liu, J.-H.; Guo, Y.; Wang, G.-C. Selective hydrogenation of 1,3-butadiene over single Pt1/Cu(111) model catalysts: A DFT study. Appl. Surf. Sci. 2019, 466, 946–955. [Google Scholar] [CrossRef]
- Liu, D.; Chen, H.Y.; Zhang, J.Y.; Huang, J.Y.; Li, Y.M.; Peng, Q.M. Theoretical investigation of selective hydrogenation of 1,3-butadiene on Pt doping Cu nanoparticles. Appl. Surf. Sci. 2018, 456, 59–68. [Google Scholar] [CrossRef]
- Cao, Y.; Guerrero-Sańchez, J.; Lee, I.; Zhou, X.; Takeuchi, N.; Zaera, F. Kinetic Study of the Hydrogenation of Unsaturated Aldehydes Promoted by CuPtx/SBA-15 Single-Atom Alloy (SAA) Catalysts. ACS Catal. 2020, 10, 3431–3443. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Methfessel, M.; Paxton, A.T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616–3621. [Google Scholar] [CrossRef]
- Wu, X.; Vanderbilt, D.; Hamann, D.R. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys. Rev. B 2005, 72, 035105. [Google Scholar] [CrossRef]
- Karhánek, D. Dakarhanek/Vasp-Infrared-Intensities: Vasp-Infrared-Intensities; (Version v1.0); Zenodo, 2020; Available online: https://zenodo.org/record/3930989#.ZAF24R9ByUk (accessed on 26 January 2023).
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Nayakasinghe, M.T.; Guerrero-Sánchez, J.; Takeuchi, N.; Zaera, F. Adsorption of crotonaldehyde on metal surfaces: Cu vs Pt. J. Chem. Phys. 2021, 154, 104701. [Google Scholar] [CrossRef]
- Haubrich, J.; Becker, C.; Wandelt, K. Adsorption and interaction energy of π ethene on Pt(111) and Pt alloys: A detailed analysis of vibrational, energetic and electronic properties. Surf. Sci. 2009, 603, 1476–1485. [Google Scholar] [CrossRef]
- Lindenmaier, R.; Williams, S.D.; Sams, R.L.; Johnson, T.J. Quantitative Infrared Absorption Spectra and Vibrational Assignments of Crotonaldehyde and Methyl Vinyl Ketone Using Gas-Phase Mid-Infrared, Far-Infrared, and Liquid Raman Spectra: S-cis vs s-trans Composition Confirmed via Temperature Studies and ab Initio Methods. J. Phys. Chem. A 2017, 121, 1195–1212. [Google Scholar] [CrossRef]
- de Jesús, J.C.; Zaera, F. Adsorption and Thermal Chemistry of Acrolein and Crotonaldehyde on Pt(111) Surfaces. Surf. Sci. 1999, 430, 99–115. [Google Scholar] [CrossRef]
- Murillo, L.E.; Menning, C.A.; Chen, J.G. Trend in the CC and CO bond hydrogenation of acrolein on Pt–M (M = Ni, Co, Cu) bimetallic surfaces. J. Catal. 2009, 268, 335–342. [Google Scholar] [CrossRef]
- de Jesús, J.C.; Zaera, F. Double-Bond Activation in Unsaturated Aldehydes: Conversion of Acrolein to Propene and Ketene on Pt(111) Surfaces. J. Mol. Catal. A Chem. 1999, 138, 237–240. [Google Scholar] [CrossRef]
- Islam, A.; Molina, D.L.; Trenary, M. Adsorption of acrolein and its hydrogenation products on Cu(111). Phys. Chem. Chem. Phys. 2022, 24, 24383–24393. [Google Scholar] [CrossRef] [PubMed]
- Greenler, R.G. Infrared Study of Adsorbed Molecules on Metal Surfaces by Reflection Techniques. J. Chem. Phys. 1966, 44, 310–315. [Google Scholar] [CrossRef]
- Zaera, F. New advances in the use of infrared absorption spectroscopy for the characterization of heterogeneous catalytic reactions. Chem. Soc. Rev. 2014, 43, 7624–7663. [Google Scholar] [CrossRef]
- Chen, B.; Ponce, R.; Guerrero-Sánchez, J.; Takeuchi, N.; Zaera, F. Cinnamaldehyde adsorption and thermal decomposition on copper surfaces. J. Vac. Sci. Technol. A 2021, 39, 053205. [Google Scholar] [CrossRef]
- Lucci, F.R.; Darby, M.T.; Mattera, M.F.G.; Ivimey, C.J.; Therrien, A.J.; Michaelides, A.; Stamatakis, M.; Sykes, E.C.H. Controlling Hydrogen Activation, Spillover, and Desorption with Pd–Au Single-Atom Alloys. J. Phys. Chem. Lett. 2016, 7, 480–485. [Google Scholar] [CrossRef]
- Fan, T.; Sun, M.; Ji, Y. First-principles study on the selective hydrogenation of the C=O and C=C bonds of acrolein on Pt–M–Pt (M = Pt, Cu, Ni, Co) surfaces. Phys. Chem. Chem. Phys. 2020, 22, 14645–14650. [Google Scholar] [CrossRef] [PubMed]
Geometry | Gas Phase | Cu2Pt/Cu(111) | Cu3Pt/Cu(111) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
E-(s)-cis | η1-O | η2-OC1 | η2-C2C3 | η3-OC2C3 | η4-OC1C2C3 | η1-O | η2-OC1 | η2-C2C3 | η3-OC2C3 | η4-OC1C2C3 | |
Supercell | - | 3 × 3 | 3 × 3 | 3 × 3 | 3 × 3 | 3 × 3 | 2√3 × 2√3 | 2√3 × 2√3 | 2√3 × 2√3 | 2√3 × 2√3 | 2√3 × 2√3 |
Eab (kJ/mol) | - | −49.7 | −69.57 | −85.0 | −85.7 | −94.8 | −53.3 | −78.6 | −92.850 | −99.8 | −110.5 |
d(C1=O) | 1.227 | 1.247 | 1.287 | 1.240 | 1.270 | 1.252 | 1.250 | 1.307 | 1.236 | 1.278 | 1.273 |
d(C1–C2) | 1.474 | 1.455 | 1.461 | 1.461 | 1.434 | 1.462 | 1.453 | 1.465 | 1.470 | 1.425 | 1.443 |
d(C2=C3) | 1.346 | 1.348 | 1.355 | 1.428 | 1.445 | 1.418 | 1.352 | 1.359 | 1.450 | 1.457 | 1.431 |
d(C3–C4) | 1.486 | 1.482 | 1.485 | 1.512 | 1.512 | 1.502 | 1.483 | 1.485 | 1.514 | 1.514 | 1.509 |
d(O–Cu/Pt) | – | 2.304 | 2.101 | – | 2.285 | 2.538 | 2.236 | 2.032 | – | 2.149 | 2.258 |
d(C1–Cu/Pt) | – | – | 2.430 | – | – | 2.645 | – | 2.299 | 2.655 | – | 2.435 |
d(C2–Cu/Pt) | – | – | – | 2.416 | 2.277 | 2.277 | – | – | 2.226 | 2.212 | 2.456 |
d(C3–Cu/Pt) | – | – | – | 2.229 | 2.201 | 2.242 | – | – | 2.180 | 2.188 | 2.182 |
Geometry | Gas Phase | Cu2Pt/Cu(111) | Cu3Pt/Cu(111) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
E-(s)-trans | η1-O | η2-OC1 | η2-C2C3 | η3-OC2C3 | η4-OC1C2C3 | η1-O | η2-OC1 | η2-C2C3 | η3-OC2C3 | η4-OC1C2C3 | |
Supercell | - | 3 × 3 | 3 × 3 | 3 × 3 | 3 × 3 | 3 × 3 | 2√3 × 2√3 | 2√3 × 2√3 | 2√3 × 2√3 | 2√3 × 2√3 | 2√3 × 2√3 |
Eab (kJ/mol) | - | −68.7 | −75.5 | −84.2 | −43.0 | −72.8 | −73.1 | −81.2 | −88.3 | −62.2 | −97.7 |
d(C1=O) | 1.226 | 1.247 | 1.262 | 1.240 | 1.270 | 1.252 | 1.242 | 1.296 | 1.237 | 1.243 | 1.275 |
d(C1–C2) | 1.463 | 1.455 | 1.457 | 1.461 | 1.434 | 1.462 | 1.444 | 1.464 | 1.463 | 1.474 | 1.434 |
d(C2=C3) | 1.346 | 1.348 | 1.353 | 1.428 | 1.445 | 1.418 | 1.349 | 1.359 | 1.446 | 1.466 | 1.440 |
d(C3–C4) | 1.488 | 1.482 | 1.486 | 1.512 | 1.512 | 1.502 | 1.484 | 1.483 | 1.516 | 1.512 | 1.511 |
d(O–Cu/Pt) | – | 2.427 | 2.280 | – | 2.323 | 3.087 | 2.198 | 2.069 | – | 2.234 | 2.148 |
d(C1–Cu/Pt) | – | – | 2.604 | – | – | 2.898 | – | 2.330 | – | – | 2.550 |
d(C2–Cu/Pt) | – | – | – | 2.340 | 2.145 | 2.815 | – | – | 2.247 | 2.142 | 2.428 |
d(C3–Cu/Pt) | – | – | – | 2.233 | 2.217 | 2.978 | – | – | 2.191 | 2.161 | 2.178 |
Geometry | Gas phase | Cu3Pt/Cu(111) | Cu2Pt/Cu(111) | ||||
---|---|---|---|---|---|---|---|
E-(s)-trans | E-(s)-cis | η2-C2C3-cis | η3-OC2C3-cis | η4-OC1C2C3-cis | η4-OC1C2C3-trans | η4-OC1C2C3-cis | |
Supercell | - | - | 2√3 × 2√3 | 2√3 × 2√3 | 2√3 × 2√3 | 2√3 × 2√3 | 3 × 3 |
ν(C–H) range | 3110-2753 | 3095–2828 | 3037–2876 | 3045–2880 | 3043–2888 | 3022–2859 | 3089–2863 |
ν(C1=O) | 1701 | 1708 | |||||
ν(C2=C3) | 1648 | 1622 | 1594 | 1537 | |||
δa(CH3) | 1457 | 1473 | 1456 | 1462 | |||
δ(CHx) | 1431, 1427 | 1423, 1429 | 1432, 1441 | 1423, 1435 | 1428, 1443 | 1427, 1440 | 1422, 1435 |
δip(CH)ald | 1393 | 1400 | 1413 | 1396 | |||
δs(CH3) | 1355, 1365 | 1351, 1376 | 1348, 1356 | 1356 | 1363 | 1358 | 1334, 1358 |
δip(CH)vinyl | 1234, 1293 | 1271, 1288 | 1265 | 1245, 1283 | 1266, 1308 | 1223, 1293 | 1201, 1268 |
ν(C1–C2) | 1136 | 1119 | 1148 | 1145 | 1182 | 1128, 1166 | 1110 |
ν(C3–C4) | 1073 | 1080 | 1049, 1080 | 1092 | 1066 | ||
1030 | 1005, 1036 | 1015 | 999 | 1005 | 1003 | 998, 1025 | |
ρ(CH3), τC2H2) | 973, 996 | 972, 989 | 985 | 947 | 963 | ||
δoop(CH)ald | 926, 934 | 884, 904 | 823, 894 | 899, 920 | 913 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruvalcaba, R.; Guerrero-Sanchez, J.; Takeuchi, N.; Zaera, F. Crotonaldehyde Adsorption on Cu-Pt Surface Alloys: A Quantum Mechanics Study. Chemistry 2023, 5, 463-478. https://doi.org/10.3390/chemistry5010034
Ruvalcaba R, Guerrero-Sanchez J, Takeuchi N, Zaera F. Crotonaldehyde Adsorption on Cu-Pt Surface Alloys: A Quantum Mechanics Study. Chemistry. 2023; 5(1):463-478. https://doi.org/10.3390/chemistry5010034
Chicago/Turabian StyleRuvalcaba, Ricardo, Jonathan Guerrero-Sanchez, Noboru Takeuchi, and Francisco Zaera. 2023. "Crotonaldehyde Adsorption on Cu-Pt Surface Alloys: A Quantum Mechanics Study" Chemistry 5, no. 1: 463-478. https://doi.org/10.3390/chemistry5010034
APA StyleRuvalcaba, R., Guerrero-Sanchez, J., Takeuchi, N., & Zaera, F. (2023). Crotonaldehyde Adsorption on Cu-Pt Surface Alloys: A Quantum Mechanics Study. Chemistry, 5(1), 463-478. https://doi.org/10.3390/chemistry5010034